Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87914
標題: 適用於特定神經網路任務之可調節映射平行度的模組化加速器
IP-Based Accelerator with Adjustable Mapping Parallelism Dataflow for Task-Specific DNN
作者: 林宥陞
You-Sheng Lin
指導教授: 陳良基
Liang-Gee Chen
關鍵字: 模組化架構,特定任務加速器,神經網路加速器,可調整資料流,網路分割,
IP-Base Architecture,Task-specific accelerator,DNN accelerator,Adjustable dataflow,Network partition,
出版年 : 2023
學位: 碩士
摘要: AI在各個領域廣泛應用。為了應對具有數十億參數和快速演進架構的模型的複雜性,神經網絡模型和計算能力需要高度整合。儘管通用加速器使用複雜的網絡來適應模型變化,但特定任務的加速器提供了更好的解決方案。通過分析,我們發現神經網絡模型的變化是漸進和可預測的。我們提出了一種新的架構,將神經網絡模型劃分為具有相似計算特性的子集。通過將這些子集映射到優化的子加速器上,我們實現了計算能力和神經網絡模型之間的高度整合。我們的架構在Resnet50中相較於最先進的加速器,平均減少了32%的PE使用量和24%的能源消耗。對於像UNet這樣的影像分割模型,相較於最先進的加速器,我們提供了49%的PE使用量減少和39%的能源消耗減少。
AI is widely used in various domains. To handle the complexity of models with billions of parameters and rapidly evolving architectures, NN models and computational power need to be highly integrated. While general-purpose accelerators used complex networks to adapt to model variations, task-specific accelerators offer better solutions.Through analysis, we found that NN model variations are gradual and predictable. We propose a new architecture that divides NN models into subsets with similar computational characteristics. By mapping these subsets to optimized sub-accelerators, we achieve a high level of integration between computational power and NN models.Our architecture reduces PE usage by an average of 32% and energy costs by 24% compared to state-of-the-art accelerators in Resnet50. For models like UNet, we provide a 49% decrease in PE usage and a 39% decrease in energy costs compared to state-of-the-art accelerators.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87914
DOI: 10.6342/NTU202301139
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2028-06-27
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
2.92 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved