請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8790
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林銘郎(Ming-Lang Lin) | |
dc.contributor.author | Chia-Ming Lo | en |
dc.contributor.author | 羅佳明 | zh_TW |
dc.date.accessioned | 2021-05-20T20:01:22Z | - |
dc.date.available | 2012-12-29 | |
dc.date.available | 2021-05-20T20:01:22Z | - |
dc.date.copyright | 2009-12-29 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-12-11 | |
dc.identifier.citation | Andriani, G. F. and Walsh, N. (2007), Rocky coast geomorphology and erosional processes: A case study along the Murgia coastline South of Bari, Apulia-SE Italy. Geomorphology, 87, 224-238.
Azzoni, A., Barbera, L. G. and Zaninetti, A. (1992), Analysis and prediction of Rockfalls using a mathematical. International Journal of Rock Mechanics, 32, 709-724. Azzoni, A. and de Freitas, M. H. (1995), Experimentally gained parameters: decisive for Rockfall analysis. Rock Mechanics and Rock Engineering, 28, 709-724. Azzoni, A., Rossi, P. P., Drigo, E. P. and Zaninetti, A. (1992), In situ observation of Rockfall analysis parameters. In Landslides. Proc. 6th Intl. Symp. Landslides, New Zealand, A.A. Balkema, Rotterdam, 1, 307-314. Ballantyne, C. K., Stone, J. O. and Fifield, L. K. (1998), Cosmogenic Cl-36 dating of postglacial landsliding at the Storr, Scotland. The Holocene, 8, 347-351. Bakker, J. P. and Le. Heux, J. W. N. (1947), Theory on central rectilinear recession of slopes. I. Proceedings of the Section of Sciences/Koninklijke Akademie van Wetenschappen te Amsterdam, 50, 959-966. Barlow, J. (2002), Rock creep and the development of the Niagara Cuesta. Earth Surface Processes and Landforms, 27, 1125-1135. Bertran, P. and Texier, J. P. (1999), Sedimentation procress and face on semivegetated talus, Lousteau, Southwestern France. Earth Surface Processes and Landforms, 24, 177-187. Blikra, L. H., Nemec, W. (1998), Postglacial colluvium in Western Norway: depositional processes, facies, and palaeoclimatic record. Sedimentology, 45, 909-959. Chen, H., Chen, R. H. and Huang, T. H. (1994), An application of an analytical model to a slope subject to Rockfalls, XXXI, 4, 447-458. Crosta, G. B. and Agliardi, F. (2003), A methodology for physically based Rockfall hazard assessment. Natural Hazards and Earth System Sciences, 3, 407-422. Crosta, G. B. and Agliardi, F. (2004), Parametric evaluation of 3D dispersion of Rockfall trajectories. Natural Hazards and Earth System Sciences, 4, 583-598. Cundall, P. A. (1970), A computer model for simulating progressive large scale movements in blocky rock systems. Symposium of the International Society of Rock Mechanics, Nancy, France, II-8, 129-136. Cundall, P. A. and Strack, O. D. L. (1979), A discrete numerical model for granular assemblies. Geotechnique, 29, 47-65. Curry, A. M. and Morris, C. J. (2004), Lateglacial and Holocene talus slope development and rockwall retreat on Mynydd Du, UK. Geomorphology, 58, 85-106. Davies, T. R. and McDougall, S. (1999), Runout of dry granular avalanches. Geotechnique, 36, 313-320. Douglas, G. R. (1980), Magnitude frequency study of Rockfall in Co. Antrim, N. Ireland. Earth Surface Processes, 5, 123-129. Drake, A. R. and Phipps, P. J. (2007), Cliff recession and behavior studies, Hunstanton, UK. Maritime Engineering, 160, 3-17. Evans, S. G. and Hungr, O. (1993), The assessment of Rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30, 620-36. Flageollet, J. C. and Weber, D. (1996), Fall.. In Rich, D., Brunsden, D., Schrott L. and Ibsen. M. L. (editors), Landslide Recognition Identification, Movement and Causes, Wiley, J. and Sons, New York, 13-28. Frayssines, M. and Hantz, D. (2006), Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges (French Alps). Engineering Geology, 86, 256-270. Gardner, J. S. (1977), High magnitude Rockfall-Rockslide frequency and geomorphic significance in the High-wood Pass area, Alberta. Great Plains-Rocky Mountain Geographical Journal, 6, 228-238. Gardner, J. (1980), Frequency, magnitude and spatial distribution of mountain Rockfalls and Rockslides in the Highwood Pass area, Alberta. In Coates, D. R. and Vitek, J. D., Allen. and Unwin. (editors), Thresholds in Geomorphology, Allen and Unwin, New York, 267-295. Gerald, F., Wieczorek, J. B., Snyder, J. W., Borchers, and Paola, Reichenbach. (2007), Staircase falls Rockfall on december 26, 2003, and geologic hazards at Curry Village, Yosemite National Park, California. U.S. Geological Survey, Open-File Report 2007-1378, 6-12. Gerber, W. (1994), Beurteilung des processes steinschlag. V: Ganzheitliche Gefahrenbeurteilung. Unveroffentlichte Kursunterlagen der Eidgenossischen Forschungsanstalt fur Wald, Schnee und Landschaft, Forstliche Arbeitsgruppe fur Naturgefahren (FAN), 20-22. Giani, G. P. (1992), Rock slope stability analysis. Balkema. Rotterdam, 361. Giani, G. P., Migliazza, M. and Segalini, A. (2004), Experimental and theoretical studies to improve Rockfall analysis and protection work design. Rock Mechanics and Rock Engineering, 37, 369-389. Govi, M. (1976), Photo-interpretation and mapping of the landslides triggered by the Friuli earthquake. Bulletin of the International Association of Engineering Geology, 15, 67-72. Guzzetti, F., Reichenbach, P. and Wieczorek, G. F. (2003), Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Natural Hazards and Earth System Sciences, 3, 491-503. Heim, A. (1932), Bergsturz und menschenleben. In. Vjschr, D. and Naturforsch, Ges. (editors), Beiblatt zur Vierteljahrsschrift, Fretz und. and Wasmuth Verlag., Zurich, 218. Hencher, S. R. (1987), The implications of joints and structures for slope stability. In Anderson, M. G. and Richards, K. S. (editors), Slope Stability, Wiley. J. and Sons, New York, 145-186. Hinchliffe, S. and Ballantyne, C. K. (1999), Talus accumulation and rockwall retreat, Trotternish, Isle of Skye, Scotland. Scottish Geographical Journal, 115, 53-70. Hoek, E. (1990), Rockfall-a program in BASIC for the analysis of Rockfalls from slopes. Golder Associates/University of Toronto, Unpublished notes. Hoek, E. and Bary, J. W. (1981), Rock slope engineering. The Institution of Mining and Metallurgy, London, England, 358. Hungr, O. and Evans, S. G. (1988), Engineering evaluation of fragmental Rockfall hazards in landslides. Proc. 5th Intl Symp. Landslides, Lausanne, A.A. Balkema, Rotterdam, 1, 685-690. Hutchinson, J. N. (1998), A small-scale field check on the Fisher-Lehmann and Bakker-LE Heux cliff degradation models. Earth Surface Processes and Landforms, 23, 913-926. Hutchinson, J. N., Millar, D. L. and Trewin, N. H. (2001), Coast erosion at a nuclear waste shaft, Dounreay, Scotland. Quarterly Journal of Engineering Geology and Hydrogeology, 34, 245-268. Hutchinson, J. N. and Stuart, J. N. (2003), Analyses of the morphological changes with time, through denudation and siltation, in ditches of trapezoidal and triangular section. Journal of Archaeological Science, 30, 797-808. Hutter, K., Koch, T., Plüss, C. and Savage, S. B. (1995), The dynamics of avalanches of granular materials from initiation to runout. part II: Experiments. ACTA Mechanics, 109, 127-165. Itasca Consulting Group Inc. (2002), PFC3D (Particle Flow Code in 3 Dimensions). Version 3.0. Minneapolis, MN: ICG. Itoh, K. and Toyosawa, Y. (2006), Centrifugal modelling of Rockfalls. Physical Modelling in Geotechnics. Proc. 6th ICPMG, 6, 349-354. Jaboyedoff, M., Dudt, P. J. and Labiouse, V. (2005), An attempt to refine Rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Natural Hazards and Earth System Sciences, 5, 621-632. KOC, O. (2007), Numberical analysis of rock mass falls using PFC3D. A comparison of two cases: Thurwieser rock avalanche and Frank slide. Master Thesis, Institute for Engineering Geology, Vienna University of Technology. Kogure, T., Aoli, H., Maekado, A., Hirose, T. and Matsukura, Y. (2006), Effect of the development of notches and tension cracks on instability of limestone coastal cliffs in the Ryukyus, Japan. Geomorphology, 80, 236-244. Lajeunesse, E., Quantin, C., Allemand, P. and Delacourt, C. (2006), New insights on the runout of large landslides in the Valles-Marineris Canyons, Mars. Geophysical Research, 33, 1-4. Lajeunesse, E., Monnier J. B. and Homsy G. M. (2005), Granular slumping on a horizontal surface. Physics of fluids, 17, 1-15. Lehmann, O. (1933), Morphologische theorie der verwitterung von steinschlagwänden. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 78, 83-126. Lynn H. and Margo J. (2004), Landslide types and processes. U.S. Geological Survey, Fact Sheet 2004-3072, 1-4. Manzella, I. and Labiouse, V. (2007), Qualitative analysis of rock avalanches propagation by means of physical modeling of non-constrained gravel flows. Rock Mechanics and Rock Engineering, doi: 10.1007/s00603-007-0134-y, 1-19. Matsukura, Y. (2001), Rockfall at Toyohama tunnel, Japan, in 1996: Effect of notch growth on instability of a coastal cliff. Bulletin of Engineering Geology and the Environment, 60, 285-289 Meisl, G. (1998), Modellierung der reichweite von Felssturzen. Fallbeispiele zur GIS-gestutzen gefahrenbeurteilung aus dem Bayerischen und Tiroler Alpenraum. Innsbrucker Geographische Studien, 28, 6-15. Nemec, W. and Kazanci, N. (1999), Quaternary colluvium in west-central Anatolia: sedimentary facies and palaeoclimatic significance. Sedimentology, 29-73. Ni, W. J. and H. Capart (2006), Groundwater drainage and recharge by networks of irregular channels. Journal of Geophysical Research, 111, 1-33. Obanawa, H. and Matsukura, Y. (2006), Mathematical modeling of talus development. Computer and Geosciences, 32, 1461-1478. Obanawa, H. and Matsukura, Y. (2008), Cliff retreat and talus development at the caldera wall of Mount St. Helens: computer simulation using a mathematical model. Gomorphology, 97, 697-711. Okura, Y., Kitahara, H., Sammori, T. and Kawanami, A. (2000), The effect of Rockfall volume on runout distance. Journal of Engineering Geology, 58, pp. 109-124. Paronuzzi, P. (1989), Probabilistic approach for design optimization of Rockfall protective barriers. Journal of Engineering Geology, 22, 175-183. Patton, F. D. and Hendron, JR. A. J. (1974), General report on mass movements. Proceedings of the 2nd International Congress of the International Association of Engineering Geologists, Paris, France, 1-57. Penck, W. (1920), Der Su¨ drand der Puna de Atacama (NWArgentinien): ein beitrag zur kenntnis des andinen Gebirgstypus und zur Frage der Gebirgsbildung. Abh. Math. Phys. Klasse Sa¨chsischen Akad. Wiss. Leipzig, Germany, 37, 1-420. Petje, U., Ribicic, M., and Mikos, M., (2005), Computer simulation of stone falls and Rockfalls. Acta geographica Slovenica, 45-2, 93-120. Pierre, G. (2006), Processes and rate of retreat of the clay and sandstone sea cliffs of the northern Boulonnais (France). Geomorphology, 73, 64–77. Pierson. (1992), Rockfall hazard rating system, control and landslide case histories. Transportation Research Roeord, 1343, National Academy, Wachington D. C.,6-13 Pfeiffer, T. J. and Bowen, T. D. (1989), Computer simulation of Rockfalls. Engineering Geology, 26, 135-146. Pfeiffer, T. J. and Higgins J. A., (1990), Rockfall hazard analysis using the Colorado Rockfall simulation program. Transportation Research Record, 1288, Washington, D.C., 117-126. Pfeiffer, T. J., Higgins, J. D., Schultz, R., and Andrew, R. D. (1991), Colorado Rockfall simulation program users manual for version 2.1. Colorado Department of Transformation, Denver, 127. Pierre, G. and Lahousse, P. (2006), The role of groundwater in cliff instability: An example at Cape Blanc-Nez (Pas-de-Calais, France). Earth Surf. Process. Landforms, 31, 31-45. Preh, A. and Poisel, R. (2007), 3D modelling of rock mass falls using the particle flow code PFC3D. 11th Congress of the International Society for Rock Mechanics, Lisbon, Portugal, 1-5. Prist, S. D. and Hudson, J. A. (1981), Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 18, 183-197. Prive, D. G. and Knill, J. L. (1967), The engineering geology of edinburgh castle rock. Geotechnique, 17, 411-432. Rapp, A. (1960), Recent development of mountain slopes in Karkevagge and Surroundings, N. Scandinavia. Geogr. Ann., 42, 73-200. Ritchie, A. M. (1963), The evaluation of Rockfall and its control. Highway Research Record, 17, 123-125. Santos Jr, O. F., Amaral, R. F. and Scudelari, A. C. (2004), Failure mechanisms of a coastal cliff in Rio Grande do Norte State, NE Brazil. Journal of Coastal Research, 39, 629-632. Sass, O. and Wollny, K. (2001), Investigations regarding alpine talus slopes using ground-penetrating radar (GPR) in the Bavarian Alps, Germany. Earth Surface Processes and Landforms, 26, 1071-1086. Scheidegger, A. E. (1961), Mathematical model of slope development. Geological Society of America Bulletin, 72, 37-50. Scheidegger A. E. (1973), On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics, 5, 231-236. Schrott, L. and Sass, O. (2008), Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology, 93, 55-73. Schumm, S. A. (1956), The role of creep and rainwash on the retreat of badland slopes. American Journal of Science, 254, 693-706. Sekula, J. (1982), Stereographic projections for the engineering of rock. Hong Kong Engineering, 10-59. Shen, S. M. and Chang, J. C. (2003), Application and limitation of the pictorial materials on the study of geomorphic changes in Taiwan. Geographical Research, 38, 67-87. Spang, R. M. (1987), Protection against Rockfall-stepchild in the design of rock slope. Rock Mechanics, 551-557. Statham, I., (1976), A scree slope Rockfall model. Eath Surface Procresses, 43-62 Statham, I., (1979), A simple dynamic model of Rockfall: Some theoretical principles and field experiments. International Colloquium on Physical and Geo-mechanical Models, ISMES, Bergamo, 237-258. Sass, O. (2006), Determination of the internal structure of alpine talus deposits using different geophysical methods in Lechtaler Alps, Austria. Geomorphology, 80, 45-58. Shi, G. H. (1988), Discontinuous deformation analysis, a new numerical model for the static and dynamics of block systems. Ph. D. Thesis, Department of Civil Engineering, University of California at Berkeley. Stead, D., Eberhardt, E. and Coggan, J. S. (2006), Developments in the characterization of complex rock slope deformation and using numerical modelling techniques. Journal of Engineering Geology, 93, 217-235. Stoffel, M., Wehrli, A., Kühne, R., Dorren, L. K. A., Perret, S. and Kienholz, H. (2006), Assessing the protective effect of mountain forests against Rockfall using a 3D simulation model. Journal of Forest Ecography and Management, 225, 113-122. Thompson, E. L. and Huppert, H.E. (2007), Granular column collapses: further experimental results. Journal of Fluid Mechanics, 575, 177-186. Toppe, R. (1987), Terrain models: a tool for natural hazard mapping. Avalanche formation, movement and effects. International Association of Hydrological Sciences, Wallingford, UK, 162, 629-638. Varnes, D. J. (1978), Slope movement type and processes, in landslides, analysis and control. transportation research board. National Research Council, Special Report, 176, 11-33. Wadell, H. (1932), Volume, shape and roundness of rock particles. Journal of Engineering Geology, 40, 443-451. Whalley, W. B. (1984), Rockfalls. In Brusden, D., and Prior, D. B. (editors), Slope Instability, John, W. and Sons, New York, 217-256. Wieczorek, G. F., Morrissey, M. M., Iovine, G., and Godt, J. (1998), Rockfall hazards in the Yosemite Valley. U.S. Geological Survey, Open-File Report 1998-467, 8. Wieczorek, G. F., Snyder, J. B., Borchers, J. W., Reichenbach, P. (2007), Staircase falls Rockfall on December 26, 2003, and geologic hazards at Curry Village, Yosemite National Park, California. U.S. Geological Survey, Open-File Report 2007-1378, 4-12. Wu, S. S. (1985), Rockfall evaluation by computer simulation. Transportation Research Record, 1031, 1-5. Zingg, T. (1935), Beitrag zur schotteranalyse, Schweiz. Mineralog. und Petrog. Mitt., Bd., 15, 39-140. 王鑫 (1988),地形學,聯經出版社,第113-138頁,台北。 何春蓀 (1956),台灣南投集集大山區之地質及煤礦及構造剖面圖,經濟部中央地質調查所,台北。 沈淑敏、張瑞津 (2003),圖像資料在臺灣地區地形變遷研究上的應用與限制,師大地理研究報告,第38期,第67-87頁。 林育玄 (2002),坡面回彈係數與粗糙對落石之影響,中原大學土木工程研究所碩士論文,中壢。 林振民 (1998),CRSP與DDA程式於落石模擬之應用,國立中央大學應用地質研究所碩士論文,中壢。 林銘郎、林振民、葛德治 (1999),CRSP與DDA程式於落石模擬之應用,第八屆地工研究討論會,第938-952頁,屏東。 林銘郎、洪如江 (1992),峽谷地區河谷解壓節理與落石災害,地質防災技術研討會論文集,第13-41頁,台北。 林銘郎、陳榮河、陳凱榮、陳天健 (2000),落石之調查與防護,土木技術,第三卷,第9期,第85-101頁。 倪瑋傑,2005,地形持續發展的溝渠與地下水湧出及補注,台灣大學土木工程學研究所碩士論文。 胡寶麟、邵百暉 (1998),落石行為之探討,岩盤工程研討會論文集,第325-334頁。 徐瑞萍 (2002),二十世紀台灣中比例尺地形圖套疊之研究,國立台灣師範大學地理學系碩士論文,台北。 徐鐵良 (1986),地質與工程,第六版,台北,中國工程師學會。 紀宗吉 (1997),台灣東北部濂洞地區落石行為之研究,國立台灣大學地質研究所碩士論文,台北。 紀宗吉、陳宏宇 (1997),落石運動軌跡之現地調查與模擬分析案例介紹,地工技術,第64期,第59-68頁。 紀宗吉 (2001),台灣近年落石災害淺釋,地質,第22卷,第3期,第43-50頁。 紀宗吉 (2005),坡地地質敏感區劃設與危險度評估作業方法研究,經濟部中央地質調查所出國考察報告,第19-22頁。 陳汝勤、莊文星 (1987),岩石學,大學科學叢書,台北聯經出版社,第414頁。 陳榮河、林美聆、林銘郎 (1997),台灣區道路落石坍方之危險度分級準則及防治改善工法研究,交通部科技顧問室研究報告。 黃安斌、林銘郎、董家鈞 (2005),紅菜坪地滑監測系統建立與變形機制研究(1/2)期末報告,經濟部中央地質調查所研究報告,新竹。 黃安斌、林銘郎、董家鈞 (2006),紅菜坪地滑監測系統建立與變形機制研究(2/2)期末報告,經濟部中央地質調查所研究報告,新竹。 褚炳麟、張義隆、錢思堯、周允文 (2006),以複合圓形顆粒模式探討不規則單粒落石之運動行為,岩盤工程研討會論文集,第169-178頁,台南。 張義隆、陳永祥、劉玉雯、劉正川 (1995),山區道路落石風險評估與防護對策,嘉義農專學報,第42期,第85-97頁。 張義隆 (2003),以複合圓形顆粒模式探討粒狀材料之力學行為,國立中興大學土木工程研究所博士論文,台中。 葛德治、陳詳凱 (2006),三維單粒落石運動軌跡之量測及計算模式,岩盤工程研討會論文集,第159-168頁,台南。 賴進貴、葉高華 (2005),地圖概括化對環境變遷研究之影響-以臺灣地圖資料為例,地理學報,第41期,第1-25頁。 謝明和 (2005),落石尺寸與坡形對於單粒落石彈跳行為之影響,國立雲林科技大學營建工程系碩士論文,雲林。 顧承宇、翁孟嘉、高憲彰、陳建忠、李怡先 (2006),三維雷射掃瞄技術於岩坡落石分析之應用,岩盤工程研討會論文集,第387-396頁,台南。 顧承宇、陳錦清、王銘德 (1996),落石問題之數值模擬,岩盤工程研討會論文集,第243-252頁,台北。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8790 | - |
dc.description.abstract | 台灣山區落石災害層出不窮,每逢地震事件或颱風豪雨季節常引致山區落石災害。回顧台灣落石災害歷史,造成重大傷亡與財產損失的落石事件,往往屬於大規模岩塊群同時崩落所引致的災害。諸如中橫沿線、南雅里、基隆市麥金路及龍泉溪等,其落石群不僅嚴重威脅崖下保全對象,甚至可能形成堰塞湖,更擴大影響下游保全對象之安全。有鑑於此本研究針對崖錐堆積體保存完整之紅菜坪與象山等落石區進行深入調查,搭配歷史地形與航照影像資料,並藉由物理模型釐清崖線崩退與崖錐堆積形態之關連性。
本研究工作內容主要包含三大項,首先於室內進行各時期地形與航照影像定位、疊圖分析,以初步了解落石源頭、運動、堆積等區於各時期之地形變化。接著以現場調查搭配地形分析結果,釐清落石區源頭崩退類型與其崩退機制,並將其落石現象適度簡化反應於室內物理模型實驗設計之中。藉由物理模型實驗控制落石量、落距、地形坡度、源頭崩落形式等變因,來深入了解落石群形成崖錐堆積體之建立過程與堆積形態變化趨勢。另外,選用分離元素軟體(PFC3D)模擬室內物理模型實驗過程,待模擬結果比對正確後再推廣至全尺度現地模擬,以消除尺度效應之問題。最終將依其崖線崩退型式所對應之崖錐堆積特性,利用半錐形函數,建置其崖錐堆積形態與落石群影響範圍之形狀函數。 由歷年地形分析與現場調查結果顯示,紅菜坪落石區崖線崩退型式分成減坡崩退與平行轉減坡崩退等兩種型式,主要崩退機制包含節理弱面分佈、地表水與地下水滲流侵蝕、互層差異侵蝕等,其中以節理構造主控崖線崩退影響最甚。而象山落石區為典型單面山地形,西翼崩崖屬逆向坡地形,其崖線屬減坡崩退類型;東翼崩崖略偏順向坡地形,其崖線崩退則以平行崩退型式為主。象山主要崩退機制包含地表水與地下水滲流侵蝕、互層差異侵蝕、平行崖面之張裂縫與節理分佈、弱面位態偏順逆向坡型態等。 物理模型實驗與地形分析結果顯示,於研究區域中當落石群崩落於不同角度之運動地形,所形成的堆積形態差異甚大。運動坡度於75、90度之地形條件時,其崖錐堆積以縱向前端(L)發展為主,並呈上、中坡段緩、下坡段陡之堆積形態;運動坡度於45、60度之地形條件時,崖錐堆積以橫向及縱向後端發展最為顯著,其落石群影響分佈範圍也較高角度運動地形為大,並呈上坡段陡及中、下坡段緩之堆積形態。當崩落型式屬減坡崩退型式,落石群於75、90度之地形運動時,將使崖錐堆積上坡段逐漸趨緩,呈上坡段更緩,中、下坡段陡之堆積形態;而45、60度運動地形減坡崩退則容易形成上坡段緩、中坡段陡、下坡段緩之堆積形態,其落石群受崖下堆積體之影響,將使落石群分佈範圍大幅減小,其崖錐堆積以縱向後方及兩側發展為主。當落石群崩落型式屬平行崩退時,於75、90度地形運動條件下,將發展成長軸平行崩退方向之半橢圓狀堆積體,並呈上坡段陡、中坡段緩、下坡段陡之堆積形態;而於45、60度地形運動條件下,堆積發展則以縱向後方及兩側發展為主,並呈上坡段緩、中坡段陡、下坡段略緩之堆積型態。 另外,藉由全尺度落石區案例數值模擬與物理模型實驗,將各影響因子(包含坡度、落距、落石量、節裡間距、堆積區粗糙起伏程度、崖線崩退形式等)對於堆積形態之特性,反應於崖錐堆積與落石群影響範圍形狀函數之中。其將有助於落石區現場觀察與研判未來落石群可能影響分佈範圍及未來崖錐堆積之趨勢,以期作為後續落石區土地利用與防護工程配置之參考。 | zh_TW |
dc.description.abstract | During storms or earthquakes, Rockfall is a frequent mishap in mountain areas. Reviewing the histories of Rockfall disasters in Taiwan, as the cluster of Rockfall consists of simultaneous movements, it might cause serious disasters, which has occurred in Central Cross-lsland highway, Nanyali, Maijin road of Jilong City, Taidong Zhiben river, and the landslide-blocked lake of Longquan river. Such disasters have threatened the safety of life and need to be concerned.
Whereas, this research focus on talus deposits development induced by various cliff retreat types in Hungtsaiping and Xiangshan Rockfall area. In the present paper, we analyzed the geomorphologic changes of cliffs and talus deposits based on the findings from the topographic maps and interpreting aerial photos. The physical modeling are carried out by simplifying in-situ Rockfall behavior, which has helpful to understand the relationship of cliff retreat and talus deposition patterns. The results of physical modeling were compared with those produced by numerical analysis (Application of discrete element method by PFC3D program) so that the correctness of the numerical simulation could be justified. Subsequently, calibrated numerical methods adopted in the small-scale model were used to simulate the full-scale model. The simulation results should be as close to reality as much as possible. Finally, combining the results of physical model with numerical analysis to establish the shape function of talus deposition patterns and the cluster of Rockfall influence area. According to the results of geomorphologic analysis and field investigation, the cliff retreat types include central rectilinear slope retreat type and parallel rectilinear slope retreat transform central rectilinear slope retreat type in Hungtsaiping Rockfall area. Based on field observations, three typical cliff retreat profiles at Hungtsaiping area presented which are dominated by the orientation and spacing of the discontinuities, the influence of groundwater seepage, and the degree of differential erosion. Xiangshan belong to the typical cuesta, since the initial topographic surface at eastern cliff was formed by gentle cataclinal slope, the cliff retreat type tended to parallel rectilinear slope retreat type. On the other hand, the western cliff was formed by steep anaclinal slope, they tended to central rectilinear slope retreat type. Five typical cliff retreat profiles at Xiangshan are presented which are dominated by the orientation and spacing of the discontinuities, the influence of groundwater seepage, the thickness of interbeded layer crop out above the apex of the talus slope, and the degree of differential erosion. Base on the results of physical modeling and geomorphologic analysis, the main talus deposition patterns in study area could be categorized into six types, i.e., (1) simultaneous retreat type with steep slope(>60o), the talus deposits tended to lengthwise deposition developement, and appeared gently dipping in the upper, middle parts and steep in the lower part; (2) simultaneous retreat type with gentle slope(<60o), the talus deposits tended to spread wider, and appeared steep dipping in the upper part and gently in the middle, lower parts; (3) central rectilinear slope retreat type with steep slope(>60o), the talus deposits tended to width of deposit developement, and appeared gently dipping in the upper part and steep in the middle, lower parts; (4) central rectilinear slope retreat type with gentle slope(<60o), the talus deposits tended to deposit progressively backward towards the cliff line and width of deposit developement, and appeared gently dipping in the upper, lower parts and steep in the middle part; (5) parallel rectilinear slope retreat type with steep slope(>60o), the talus deposits tended to the half of ellipse form major axis paralleled the cliff retreat direction, and appeared steep dipping in the upper, lower parts and gently in the middle part; and (6) parallel rectilinear slope retreat type with gentle slope(<60o), the talus deposits tended to deposit progressively backward towards the cliff line and width of deposit developement, and appeared gently dipping in the upper, lower parts and steep in the middle part. Furthermore, the shape function reflects the deposits characteristic of main factors (the factor includes the slope angle of movement area, the fall height, Rockfall amount, the joints spacing, the mean roughness height of deposition area, cliff retreat type) through the full-scale model simulation and physical modeling tests. The shape function are helpful for estimated Rockfall hazard zonation and developing reasonable and scientifically sound guidelines while giving land use assessment and protection engineering sited in Rockfall area. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:01:22Z (GMT). No. of bitstreams: 1 ntu-98-D94521004-1.pdf: 135629842 bytes, checksum: fd6f4d8f1b3239b5d810e383000552a2 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………I
致謝……………………………………………………………...….………i 摘要…………………………………………………………………...……ii Abstract……………………………………………………………..…..…iv 目錄………………………………………………………………..………vi 表目錄……………………………………………………………………xi 圖目錄……………………………………………………………………xiii 研究相關名詞定義………………………….……………………..…....N-1 第一章 緒論……………………………………………………………1-1 1.1 前言………………………………………….………………….1-1 1.2研究目的……………………………….………...……………...1-2 1.3 研究方法及流程……………………………………….……….1-3 1.3.1 研究方法…………………………………….………….…….1-3 1.3.2 研究流程…………………………………….……….…….1-4 1.4 研究內容…………………………………….……………….1-6 第二章 文獻回顧………………………………………………………2-1 2.1落石定義、分類與地形特徵…………………………………….2-1 2.1.1 落石定義、分類…………………………………………….2-1 2.1.2落石區地形特徵…………………….………………………2-2 2.2崖線崩退分析與崩壞機制……………….……………………..2-3 2.2.1 崩崖地形測量與崩退分析……………….………………..2-3 2.2.2 崖線崩退機制推估……………….………………..………2-4 2.3 單顆落石與落石群基本運動行為……………….…………….2-6 2.3.1 物理模型實驗……………….………………..……………2-6 2.3.2 數值模擬……………….………………..………………..2-11 2.4崖錐堆積形成過程、特徵與影響範圍推估……………….…..2-14 2.4.1 現地調查……………….………………..………………..2-14 2.4.2 物理模型實驗……………….………………..…………..2-15 2.4.3 崖線崩退與崖錐堆積模式……………….………………2-17 2.4.4 崖錐堆積於推估落石影響範圍之應用……………….…2-19 2.5主要研討議題……………….………………..………………..2-21 第三章 研究方法………………………………………………………3-1 3.1 研究區域選定…………………………………………………..3-1 3.1.1 研究區域選定條件………………………………………...3-1 3.1.2 研究區域地形與地質概況………………………………...3-1 3.2 落石區現地調查與航照影像、地形分析………………………3-3 3.2.1 現地調查項目……………………………………………...3-3 3.2.2 室內正射航照影像與地形分析…………………………...3-3 3.2 物理模型實驗…………………………………………………..3-7 3.2.1 研究基本假設……………………………………………...3-7 3.2.2 物理模型設備……………………………………………...3-8 3.2.3物理實驗模型與模擬岩石材料性質……………………….3-9 3.2.4物理實驗崖錐堆積量測方法…………………..…………...3-9 3.2.5物理模型實驗項目與步驟…………………..………..…...3-12 3.3 數值模擬…………………..………..…………………………3-15 3.3.1 數值模擬方法簡介…………………………..…………...3-15 3.3.2 數值物理模型與參數設定…………………..………..….3-17 3.3.3數值物理模型模擬比對……………………..………..…...3-18 3.3.4全尺度數值模型建立與微觀參數設定……..…………….3-19 第四章 落石區崖線崩退型式、程度與崩壞機制……………………..4-1 4.1 落石區崖線崩退型式…………………………………...……...4-1 4.1.1 紅菜坪落石區…………………………………...…………4-1 4.1.2 象山落石區…………………………………...……………4-3 4.2 落石區崖線崩退程度分析…………………………………......4-4 4.2.1 紅菜坪落石區…………………………………...…………4-4 4.2.2 象山落石區…………………………………...……………4-5 4.3 落石區崩壞機制…………………………………...…………...4-6 4.3.1紅菜坪落石區…………………………………...…………..4-6 4.3.2象山落石區…………………………………...……………..4-8 第五章 由物理模型探討崖錐堆積形態與發展………………………5-1 5.1 崖錐堆積形貌參數與無因次處理…………………………..5-1 5.2 落石量於堆積形態之影響………………………………......5-2 5.3 落距與運動坡度於堆積形態之影響………………………..5-5 5.4 崩退型式於堆積形態之影響………………………………..5-7 5.5 源頭區節理間距於堆積形態之影響………………………5-12 5.6 源頭區材料級配於堆積形態之影響………………………5-14 第六章 由數值分析探討崖錐堆積建立過程…………………………6-1 6.1 落石群運動崖錐堆積建立過程………………………………..6-1 6.1.1垂直運動地形之崖錐堆積建立過程……………………….6-1 6.1.2傾斜運動地形之崖錐堆積建立過程……………………….6-5 6.2 材料參數敏感度分析…………………………………………..6-9 6.2.1 正向與切向接觸勁度………………………….…………..6-9 6.2.2 正向與切向阻尼比………………………….…..………..6-11 6.2.3 摩擦係數………………………….………….…………6-12 第七章 落石案例模擬與分析…………………………………………7-1 7.1落石區崖線崩退與崖錐堆積形態模擬………………………...7-1 7.1.1地形精度與堆積區粗糙起伏程度之影響….………………7-1 7.1.2落距與地形坡度之影響………………………………..…...7-3 7.1.3源頭區岩塊群崩落量之影響……………………………….7-5 7.1.4源頭區節裡間距之影響…………………………………….7-6 7.2 落石區崖線崩退與崖錐堆積形態之關聯性…………………..7-7 7.2.1 紅菜坪落石區……………………………………………...7-7 7.2.2 象山落石區……………………………………………….7-12 7.3 崖錐堆積與落石群影響範圍形狀函數之建立………………7-16 7.3.1崖錐堆積基本形狀函數…………………………………...7-17 7.3.2落石群影響範圍形狀函數………………………………...7-19 第八章 結論與建議……………………………………………………8-1 8.1 結論……………………………………………………………..8-1 8.2 建議……………………………………………………………..8-4 參考文獻………………………………………………………………...R-1 附錄A 推導回彈係數與阻尼之關係…..……………………………...A-1 附錄B 各模擬變因與形狀函數之回歸結果…………...……………...B-1 附錄C 各落石區形狀函數建置成果…………...……………………...C-1 | |
dc.language.iso | zh-TW | |
dc.title | 落石區崖線崩退與崖錐堆積形態之研究 | zh_TW |
dc.title | Cliff Recession and Talus Deposition Pattern in Rockfall Area | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 黃燦輝(Tsan-Hwei Huang),陳榮河(Rong-Her Chen),趙鍵哲(Jen-Jer Jaw),陳宏宇(Hongey Chen),林俊全(Jiun-Chuan Lin),褚炳麟(Bing Lin Chu) | |
dc.subject.keyword | 落石災害,落石群,崖線崩退,崖錐堆積,物理模型實驗,分離元素法, | zh_TW |
dc.subject.keyword | Rockfall disaster,cluster of Rockfall,cliff retreat,talus deposits,physical model,numerical analysis,shape function, | en |
dc.relation.page | 354 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-12-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 132.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。