請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝 | zh_TW |
| dc.contributor.advisor | Hwai-Shen Liu | en |
| dc.contributor.author | 林士鈞 | zh_TW |
| dc.contributor.author | Shih-Chun Lin | en |
| dc.date.accessioned | 2023-07-31T16:13:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-31 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-28 | - |
| dc.identifier.citation | Adnan, A., Nair, G. R., Lay, M. C., Swan, J. E., Umar, R. (2015). Glycerol as a cheaper carbon source in bacterial cellulose (BC) production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. Malaysian Journal of Analytical Sciences, 19(5), 1131-1136.
Azeredo, H., Barud. H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food System, 3, 7. Barud, H. S., Ribeiro, S. J. L., Carone, C. L. P., Ligabue, R., Einloft, S., Queiroz, P. V. S., Borges, A. P. B., Jahno, V. D. (2013). Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polimeros, 23(1), 135-138. Beldjilali-Labro, M., Garcia Garcia, A., Farhat, F., Bedoui, F., Grosset, J.-F., Dufresne, M., & Legallais, C. (2018). Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials, 11(7), 1116. Brown, Jr., RM. (1993). Emerging technologies and future prospects for industrialization of microbially derived cellulose. In: Base A, ed. Harnessing Biotechnology for the 21st Century, American Chemical Society, 76-78. Brown, R. M., Willison, J. H. M., & Richardson, C. L. (1976). Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proceedings of the National Academy of Sciences of the United States of America, 73(12), 4565-4569. Campano, C., Merayo, N., Negro, C., & Blanco, A. (2018). In situ production of bacterial cellulose to economically improve recycled paper properties. International Journal of Biological Macromolecules, 118, 1532-1541. Charles, S. (2014). Massimo Banzi: Building Arduino. Computer, 47(1), 11-12. Carman, P. C. (1937). Fluid flow through granular beds. Trans. Inst. Chem. Eng., 15, 150-166. Chang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84, 40-53. Chen, P., Cho, S. Y., & Jin, H.-J. (2010). Modification and applications of bacterial celluloses in polymer science. Macromolecular Research, 18(4), 309-320. Choi, M.C., Kim, Y., Ha, C.S. (2008). Polymers for flexible displays: from material selection to device applications. Prog. Polym. Sci, 33, 581-630. Czaja, W., Krystynowicz, A., Bielecki, S., & Brown Jr, R. M. (2006). Microbial cellulose—the natural power to heal wounds. Biomaterials, 27(2), 145-151. Di, Z., Shi, Z., Ullah, M. W., Li, S., Yang, G. (2017). A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). International Journal of Biological Macromolecules, 105, 638-644. Dalton, LW. (2004). The Rolls-Royce of celluloses. Chem Eng News, 82, 24-25. Dennis, A., Farr, S., Kellaway, I., Taylor, G., & Davidson, R. (1990). In vivo evaluation of rapid release and sustained release Gelucire capsule formulations. International Journal of Pharmaceutics, 65(1-2), 85-100. Dudman, W. F. (1960). Cellulose production by Acetobacter strain in submerged culture. J. Gen. Microbiol, 22, 25–39. Fontana, J. D., Souza, A. M. D., Fontana, C. K., Torriani, L., Moreschi, J. C., Gallotti, B. J., De Souza, S. J. ,Narcisco, G. P., Bichara, J. A., Farah, L. F. X. (1990). Acetobacter Cellulose Pellicle as a Temporary Skin Substitute. Applied Biochernistry and Biotechnology, 24-25, 253-264. Gregory, D. A., Tripathi, L., Fricker, A. T. R., Asare, E., Orlando, I., Raghavendran, V., & Roy, I. (2021). Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering R: Reports, 145, 27, 100623. Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345. Hu, W., Chen, S., Yang, J., Li, Z., & Wang, H. (2014). Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym, 101, 1043-1060. Huang, J., Li, D., Zhao, M., Lv, P., Lucia, L., & Wei, Q. (2019). Highly stretchable and bio-based sensors for sensitive strain detection of angular displacements. Cellulose, 26, 3401. Huang, J., Zhao, M., Hao, Y., & Wei, Q. (2022). Recent Advances in Functional Bacterial Cellulose for Wearable Physical Sensing Applications. Advanced Materials Technologies, 7, 210067. Huang, Y., Zhu, C. L., Yang, J. Z., Nie, Y., Chen, C. T., & Sun, D. P. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30. Jagannath, A., Kalaiselvan, A., Manjunatha, S. S., Raju, P. S., Bawa, A. S. (2008). The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World J Microbiol Biotechnol, 24, 2593-2599. Jiji, S., Udhayakumar, S., Maharajan, K., Rose, C., Muralidharan, C., & Kadirvelu, K. (2020). Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing. Carbohydrate Polymers, 245, 116573. Jin, H., Abu-Raya, Y. S., & Haick, H. (2017). Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv. Healthcare Mater, 6, 1700024. Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59(1-3), 101-106. Keshk, S., & Sameshima, K. (2005). Evaluation of different carbon sources for bacterial cellulose production. African Journal of Biotechnology, 4(6), 478- 482. Klemm, D., Schumann, D., Udhardt, U., Marsch, S. (2001). Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Prog Polym Sci 26(9), 1561-1603. Kozeny, J. (1927). Uber kapillare leitung der wasser in boden. Royal Academy of Science, Vienna, Proc. Class I, 136, 271-306. Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Goncalves-Miskiewicz, M., Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29(4), 189-195. Lee, K. P., Arnot, T. C., & Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination – development to date and future potential. Journal of Membrane Science, 370(1-2), 1-22. Lin, D., Lopez-Sanchez, P., Li, R., & Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 151, 113-119. Lin, S. P., Calvar, I. L., Catchmark, J. M., Liu, J. R., Demirci, A., Cheng, K. C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20, 2191-2219. Lowrie, & William (2007). Fundamentals of Geophysics. Cambridge University Press. Lupașcu, R. E., Ghica, M. V., Dinu-Pîrvu, C. E., Popa, L., Velescu, B. Ș., & Arsene, A. L. (2022). An overview regarding microbial aspects of production and applications of bacterial cellulose. Materials, 15(2), 676. Lustri, W. R., Barud, H., Peres, M. F., Gutierrez, J., Tercjak, A., Ribeiro, S. J. L. (2015). Microbial cellulose – biosynthesis mechanisms and medical applications. Cellulose-Fundamental Aspects and Current Trends, 1, 133-157. Mahwachi, M., & Mihoubi, D. (2020). Pressure and porosity profiles during filtration-expression process. Theoretical Foundations of Chemical Engineering, 54(2), 370-379. Mohammad, S. M., Rahman, N. A., Khalil, M. S., & Abdullah, S. S. (2014). An overview of biocellulose production using Acetobacter xylinum culture. Advances in Biological Research, 8(6), 307-313. Nakagaito, A., Iwamoto, S., & Yano, H. (2005). Bacterial cellulose: the ultimate nanoscalar cellulose morphology for the production of high-strength composites. Applied Physics A, 80(1), 93-97. Okahisa, Y., Yoshida, A., Miyagushi, S., Yano, H. (2009). Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light emitting diode displays. Compos. Sci. Technol, 69, 1958-1961. Ono, T., Ishiyama, S., Hayashidera, T., Mori, Y., Nejima, R., Miyata, K., & Amano, S. (2017). Twelve-year follow-up of penetrating keratoplasty. Jpn J Ophthalmol, 61(2), 131-136. Pandit, A., & Kumar, R. (2021). A review on production, characterization and application of bacterial cellulose and its biocomposites. Journal of Polymers and the Environment, 29(9), 2738-2755. Rohlf, J. W. (1994). Modern Physics from alpha to Z0. Wiley. Ross, P., Mayer, R., Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiol Rev, 55, 35-58. Ruth, B. F. (1946). Correlating filtration theory with industrial practice. Industrial and Engineering Chemistry, 38(6), 564-571. Santos, S. M., Carbajo, J. M., Gómez, N., Ladero, M., & Villar, J. C. (2017). Paper reinforcing by in situ growth of bacterial cellulose. Journal of Materials Science, 52(10), 5882-5893 Sasmita. (2015). Resistor Color Code. Electronics Post. From: https://electronicspost.com/resistor-color-code/ Schrecker, S., & Gostomski, P. (2005). Determining the water holding capacity of microbial cellulose. Biotechnology Letters, 27(19), 1435-1438. Singhsa, P., Narain, R., & Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571-1581. Shi, Y., Xiong, D., Li, J., Wang, K., & Wang, N. (2017). In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels. RSC advances, 7(2), 1045-1055. Sulaeva, I., Henniges, U., Rosenau, T., & Potthast, A. (2015). Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv, 33(8), 1547-1571 Tantratian, S., Tammarate, P., Krusong, W., Bhattarakosol, P., & Phunsri, A. (2005). Effect of dissolved oxygen on cellulose production by Acetobacter sp. J Sci Res Chula Univ, 30, 179-186. Udegbunam, O. E., & Ademiluyi, J. O. (2018). Problems and prospects of cake filtration theories. International Journal of Research in Environmental Studies 5(3), 42-47. Ul-Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596-603. Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314. Ummartyotin, S., Juntaro, J., Sain, M., Manuspiya, H. (2012). Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Industrial Crops and Products, 35, 92-97. Vandamme, E., De Baets, S., Vanbaelen, A., Joris, K., & De Wulf, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(1-3), 93-99. Wahid, F., Huang, L. H., Zhao, X. Q., Li, W. C., Wang, Y. Y., Jia, S. R., & Zhong, C. (2021). Bacterial cellulose and its potential for biomedical applications. Biotechnology Advances, 53, 31, 107856. Wang, B., & Facchetti, A. (2019). Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. Adv. Mater., 31, 1901408. Wang, C., Xia, K., Xiaoping, H., Zhe, L., & Yingying, Y. (2018). Advanced Carbon for Flexible and Wearable Electronics. Adv. Mater., 31, 1801072. Ward, & Malcolm, R. (1971). Electrical engineering science. McGraw-Hill technical education. Maidenhead, UK: McGraw-Hill. Wasim, M., Mushtaq, M., Khan, S. U., Farooq, A., Naeem, M. A., Khan, M. R., Salam, A., & Wei, Q. (2020). Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. Journal of Industrial Textiles. 1-30. Williams, W. S., & Cannon, R. E. (1989). Alternative environmental roles for cellulose produced by Acetobacter xylinum, Applied and Environmental Microbiology, 55(10), 2448-2452. Yamada, Y., Yukphan, P., Vu, H. T. L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., & Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58(5), 397-404. Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., & Uryu, M. (1989). The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science, 24(9), 3141-3145. Yao, S., Swetha, P., &Zhu, Y. (2018). Nanomaterial-Enabled Wearable Sensors for Healthcare. Adv. Healthcare Mater., 7, 1700889. Yoshinaga, F., Tonouchi, N., Watanabe, K. (1997). Research Progress in Production of Bacterial Cellulose by Aeration and Agitation Culture and Its Application as a New Industrial Material. Biosci, Biotech. Biochem., 61(2), 219-224. Zahan., K., A., Nordin, K., Mustapha, M., & Mohd Zairi, M. N. (2015). Effect of Incubation Temperature on Growth of Acetobacter xylinum 0416 and Bacterial Cellulose Production. Applied Mechanics and Materials, 815, 3-8. Zheng, C., Cao, J., Zhao, S., Luo, H., Yang, Z., Gama, M., Zhang, Q., Su, D., & Wan, Y. (2020). Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma. Cellulose, 27, 2775-2784. 吳東祐. (2021). 不同含水量、厚度之細菌纖維素用以油水分離與其過濾特性之研究. 臺灣大學化學工程學研究所學位論文. 范千鈺. (2020). 培養條件對細菌纖維素乾重、含水量、機械性質的影響. 臺灣大學化學工程學研究所學位論文. 詹詠臻. (2013). 以Gluconacetobacter xylinus 饋料批次靜置生產細菌纖維素之研究. 臺灣大學化學工程學研究所學位論文. 楊柔雯. (2022). 利用瀝乾法測量細菌纖維素之含水量於結晶度及通透性之研究. 臺灣大學化學工程學研究所學位論文. 謝榕庭. (2010). 以Gluconacetobacter xylinus生產細菌纖維素之研究. 臺灣大學化學工程學研究所學位論文. 藍翊蓁. (2017). 利用瀝乾法測量細菌纖維素含水量與乾燥後復水量. 臺灣大學化學工程學研究所學位論文. Jason Chu. (2020). 《Arduino入門》番外篇:認識麵包板. 傑森創工教學網. 取自:https://blog.jmaker.com.tw/breadboard/ Jason Chu. (2020). 《Arduino入門》第六篇:有源蜂鳴器、無源蜂鳴器. 傑森創工教學網. 取自:https://blog.jmaker.com.tw/arduino-buzzer/ Jason Chu. (2020). 《Arduino入門》第四篇:類比輸入、類比輸出,利用可變電阻控制LED明暗變化. 傑森創工教學網. 取自:https://blog.jmaker.com.tw/arduino-tutorials-4/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87904 | - |
| dc.description.abstract | 細菌纖維素係由葡萄糖為單體所聚合成而成的立體奈米網狀結構,故鏈上有許多親水性的羥基,使其具有很高的含水量,而這項指標與其他物理性質有明顯的相關性。先前實驗室訂定了測量細菌纖維素含水量的準則(藍翊蓁,2017),可以客觀地呈現含水量的數值。隨後的另一項研究(范千鈺,2020),利用不同碳源和培養環境,生長出不同產量和含水量的細菌纖維素,並發現兩者呈現反向關係。
本研究探討細菌纖維素浸泡3.125 × 10-7 M硫酸鎂水溶液後,其電阻率與含水量之關係,研究結果顯示當含水量為224.9 ± 16.3 (g H2O/g dry BC)時,其電阻率約為107.4 ± 6.1 (Ω-m);而含水量為56.3 ± 2.2 (g H2O/g dry BC)時,其電阻率則約為297.3 ± 47.7 (Ω-m),兩者呈現一反向關係,這可能與細菌纖維素結構的緊密程度有關,因而影響離子在細菌纖維素內部的流動性。 另一方面,由於肉眼即能觀察到細菌纖維素的透光程度與含水量有相關,故本研究以650 nm作為測量波長,來探討細菌纖維素的透光率,以此做為定量細菌纖維素透光程度的指標。研究結果發現當含水量為221.9 ± 12.7 (g H2O/g dry BC)時,其透光率約為43.8 ± 3.7 (%);而含水量為56.3 ± 2.2 (g H2O/g dry BC)時,其透光率則約為7.3 ± 1.3 (%),兩者呈現正向關係,同樣地,這可能與細菌纖維素結構的緊密程度有關,因而影響光線穿透細菌纖維素。 關鍵字:細菌纖維素、含水量、電阻率、透光率 | zh_TW |
| dc.description.abstract | Bacterial cellulose (BC) is a 3D nano-network structure polymer made from glucose monomers, and therefore contains many hydrophilic hydroxyl groups on its chain, giving it a high water holding capacity (WHC). This indicator, WHC, is significantly correlated with other physical properties. Our lab previously established a criterion for measuring the WHC of BC (Lan, 2017), objectively and successfully related BC yields grown by different carbon sources and WHC (Fan, 2020).
In this study, the relationship between the electrical resistivity and WHC of BC soaked in a 3.125 × 10-7 M MgSO4 aqueous solution was investigated. The results showed that the electrical resistivity was approximately 107.4 ± 6.1 (Ω-m) when the WHC was about 224.9 ± 16.3 (g H2O/g dry BC). In contrast, the electrical resistivity was approximately 297.3 ± 47.7 (Ω-m) when the WHC was about 56.3 ± 2.2 (g H2O/g dry BC). An inverse relationship was confirmed that may be due to the compactness of the BC structure and the mobility of ions within the BC. On the other hand, because the transparency of BC was noticed. The WHC was further positively related to the transmittance at 650 nm. The results showed that when the WHC was about 221.9 ± 12.7 (g H2O/g dry BC), the transmittance was approximately 43.8 ± 3.7 (%), while at a WHC of 56.3 ± 2.2 (g H2O/g dry BC), the transmittance was around 7.3 ± 1.3 (%). This phenomenon may be due to the tightness of the BC structure, as light may be blocked by the cellulose fibers. Keywords: bacterial cellulose, water holding capacity, electrical resistivity, transmittance | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:13:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-31T16:13:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 II Abstract III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 2 2.1 細菌纖維素之介紹 2 2.1.1 生產細菌纖維素的菌株 2 2.1.2 Komagataeibacter xylinus 的特性 4 2.1.3 細菌纖維素的合成機制 7 2.2 影響細菌纖維素生成之因素 12 2.2.1 培養方式 12 2.2.2 培養基組成 17 2.2.3 培養環境 20 2.3 細菌纖維素之特性 24 2.3.1 獨特纖維結構 24 2.3.2 生物相容性 25 2.3.3 高含水量 27 2.3.4 高透明度 28 2.3.5 良好機械性質 29 2.4 細菌纖維素之含水量 30 2.4.1 細菌纖維素產量與含水量之關係 31 2.4.2 細菌纖維素機械性質與含水量之關係 32 2.4.3 細菌纖維素過濾性質與含水量之關係 36 2.4.4 細菌纖維素結晶度與含水量之關係 38 2.4.5 細菌纖維素通透性與含水量之關係 39 2.5 細菌纖維素之厚度 40 2.5.1 細菌纖維素之厚度測量 40 2.5.2 細菌纖維素厚度對過濾性質之影響 41 2.6 電阻率 43 2.7 透光率 45 2.8 細菌纖維素之應用 46 2.8.1 細菌纖維素應用於光電產業 47 2.8.2 細菌纖維素應用於生醫材料 50 2.9 Arduino UNO與電子元件介紹 52 第三章 實驗方法 59 3.1 實驗菌株 59 3.2 生產細菌纖維素之實驗步驟 60 3.2.1 製作固態培養基 60 3.2.2 預培養 61 3.2.3 主培養 62 3.2.4 產物處理 63 3.3 細菌纖維素含水量(Water Holding Capacity, WHC)之測量 65 3.4 細菌纖維素厚度(Thickness)之測量 69 3.4.1 探針法 69 3.4.2 排水法 73 3.5 細菌纖維素電阻率(Resistivity)之測量 74 3.6 細菌纖維素透光率(Transmittance)之測量 78 3.7 實驗藥品 80 3.8 實驗儀器 81 第四章 實驗結果與討論 82 4.1 細菌纖維素之培養條件 82 4.2 厚度測量裝置 84 4.2.1 測量裝置設計 84 4.2.2 迴路之連接 86 4.3 電阻率測量裝置 87 4.3.1 測量裝置設計 87 4.3.2 參考電阻之選擇 89 4.3.3 電解質濃度之選擇 92 4.4 透光率測量波長之選擇 95 4.5 細菌纖維素之厚度 97 4.5.1 比較排水法之測量結果 97 4.5.2 細菌纖維素之厚度分布 99 4.6 不同培養條件下細菌纖維素之電阻率 102 4.6.1 以葡萄糖作為碳源的細菌纖維素電阻率變化 102 4.6.2 以甘油作為碳源的細菌纖維素電阻率變化 105 4.6.3 以乙醇作為碳源的細菌纖維素電阻率變化 108 4.6.4 以葡萄糖及甘油作為碳源的細菌纖維素電阻率變化 111 4.6.5 細菌纖維素電阻率與含水量之關係 116 4.7 不同培養條件下細菌纖維素之透光率 118 4.7.1 以葡萄糖作為碳源的細菌纖維素透光率變化 118 4.7.2 以甘油作為碳源的細菌纖維素透光率變化 120 4.7.3 以乙醇作為碳源的細菌纖維素透光率變化 122 4.7.4 以葡萄糖及甘油作為碳源的細菌纖維素透光率變化 124 4.7.5 細菌纖維素透光率與含水量之關係 127 4.7.6 細菌纖維素透光率單一樣本之變異 129 第五章 結論 132 參考文獻 134 附錄 145 附錄A 色碼 145 附錄B 厚度測量裝置程式碼 146 附錄C 電阻測量程式碼 147 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 透光率 | zh_TW |
| dc.subject | 電阻率 | zh_TW |
| dc.subject | 細菌纖維素 | zh_TW |
| dc.subject | 含水量 | zh_TW |
| dc.subject | water holding capacity | en |
| dc.subject | bacterial cellulose | en |
| dc.subject | electrical resistivity | en |
| dc.subject | transmittance | en |
| dc.title | 細菌纖維素含水量與其電阻率、光學性質之關係 | zh_TW |
| dc.title | Relationship between Water Holding Capacity of Bacterial Cellulose and Its Electrical Resistivity, Optical Property | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江佳穎;吳聲祺;賴進此 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Ying Chiang;Sheng-Chi Wu;Jinn-Tsyy Lai | en |
| dc.subject.keyword | 細菌纖維素,含水量,電阻率,透光率, | zh_TW |
| dc.subject.keyword | bacterial cellulose,water holding capacity,electrical resistivity,transmittance, | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202301148 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-06-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
