Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87901
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡曜陽zh_TW
dc.contributor.advisorYao-Yang Tsaien
dc.contributor.author林柏秀zh_TW
dc.contributor.authorPo-Hsiu Linen
dc.date.accessioned2023-07-31T16:12:39Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-31-
dc.date.issued2023-
dc.date.submitted2023-06-28-
dc.identifier.citation[1] Pouya Saeedi, Inga Petersohn, Paraskevi Salpea, Belma Malanda, Suvi Ka-ruranga, Nigel Unwin, Stephen Colagiuri, Leonor Guariguata, Ayesha A. Motala, Katherine Ogurtsova, Jonathan E. Shaw, Dominic Bright, Rhys Wil-liams, and on behalf of the IDF Diabetes Atlas Committee, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045 : Re-sults from the International Diabetes Federation Diabetes Atlas, Diabetes Res. Clin. Pract. 157 (2019).
[2] Agata Chobot, Katarzyna Górowska-Kowolik, Magdalena Sokołowska, and Przemysława Jarosz-Chobot, Obesity and diabetes-Not only a simple link be-tween two epidemics, Diabetes Metab Res Rev. 34, 7 (2018).
[3] International Diabetes Federation, IDF Diabetes Atlas, 8th ed., (2017).
[4] American Diabetes Association, Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetesd, Diabetes Care. 44, S15 (2021).
[5] American Diabetes Association, Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes, Diabetes Care. 43, S14 (2020).
[6] Justin B Echouffo-Tcheugui, and Elizabeth Selvin, Prediabetes and What It Means: The Epidemiological Evidence, Annu Rev Public Health. 42, 59 (2021).
[7] A.S.H. Makhlouf, Current and advanced coating technologies for industrial ap-plications, Met. Surf. Eng., 3 (2011).
[8] George F Fine, Leon M Cavanagh, Ayo Afonja, and Russell Binions, Metal Ox-ide Semi-Conductor Gas Sensors in Environmental Monitoring, J. Sens. 10, 6, 5469 (2010).
[9] Meng Li, Yuan-Ting Li, Da-Wei Li, and Yi-Tao Long, Recent developments and applications of screen-printed electrodes in environmental assays-A review, Anal. Chim. Acta 734, 31 (2012).
[10] Jonathan P. Metters, Rashid O. Kadara, and Craig E. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments, Analyst 136, 1067 (2011).
[11] Eleojo A. Obaje, Gerard Cummins, Holger Schulze, Salman Mahmood, Marc P.Y. Desmulliez, and Till T. Bachmann, Carbon screen-printed electrodes on ceramic substrates for label-free molecular detection of antibiotic resistance, J. Interdiscip. Nanomed. 1, 3, 93 (2016).
[12] Gerd Grau, Jialiang Cen, Hongki Kang, Rungrot Kitsomboonloha, William J. Scheideler, and Vivek Subramanian, Gravure-Printed Electronics: Recent Pro-gress in Tooling Development, Understanding of Printing Physics, and Realiza-tion of Printed Devices. Flex. Print. Electron. 1,1 (2016).
[13] Felippe J. Pavinatto, Carlos W. A. Paschoal, and Ana C. Arias, Printed and Flexible Biosensor for Antioxidants Using Interdigitated Ink-Jetted Electrodes and Gravure-Deposited Active Layer, Biosens Bioelectron. 67, 539 (2014).
[14] Mallika Bariya, Ziba Shahpar, Hyejin Park, Junfeng Sun, Younsu Jung, Wei Gao, Hnin Yin Yin Nyein, Tiffany Sun Liaw, Li-Chia Tai, Quynh P. Ngo, Minghan Chao, Yingbo Zhao, Mark Hettick, Gyoujin Cho, and Ali Javey, Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medi-cal Devices, 12, 6978 (2018).
[15] Felippe J Pavinatto, Carlos W. A. Paschoal, and Ana C. Arias, Printed and flexi-ble biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer, Biosens Bioelectron. 67, 553 (2014).
[16] C.M. Fung, J.S. Lloyd, S. Samavat, D. Deganello, and K.S. Tenga, Facile fabri-cation of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique, Sens. Actuators, B 247, 807(2017).
[17] S.D. Hoath et al., Fundamentals of Inkjet Printing, Wiley-VCH (2015).
[18] Herman Wijshoff, The dynamics of the Piezo inkjet printhead operation, Phys Rep, 491, 77 (2010).
[19] L Setti, A. Fraleoni-Morgera, B. Ballarin, A. Filippini, D. Frascaro, and C. Pi-ana, An amperometric glucose biosensor prototype fabricated by thermal inkjet printing Biosens Bioelectron, Biosens Bioelectron. 20, 10, 2019 (2005).
[20] Jaeyong Choi, Yong-Jae Kim, Sukhan Lee, Sang Uk Son, Han Seo Ko, Vu Dat Nguyen, and Doyoung Byun, Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head, Appl. Phys. Lett. 93, 193508 (2008).
[21] Xiaofeng Cui, Delphine Dean, Zaverio M. Ruggeri, and Thomas Boland, Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells, Bio-technol Bioeng. 106, 6 ,963 (2010).
[22] S. Madgdassi, The Chemistry of Inkjet Inks, World Scientific (2010).
[23] Xinda Li, Boxun Liu, Ben Pei, Jianwei Chen, Dezhi Zhou, Jiayi Peng, Xinzhi Zhang, Wang Jia, and Tao Xu et al., Inkjet Bioprinting of Biomaterials, Chem. Rev. 120, 10793 (2020).
[24] Pere Serra, and Alberto Piqué, Laser-Induced Forward Transfer: Fundamentals and Applications, Adv. Mater. Technol. 4, 1 (2018).
[25] K. Kaur, Laser-induced forward transfer techniques for printing functional ma-terials and photonic devices, 338 (2011).
[26] J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, Metal deposition at 532 nm using a laser transfer technique, J. Appl. Phys. 63, 4, 1158 (1988).
[27] D. Muñoz Martin, C.F. Brasz, Y. Chen, M. Morales, C.B. Arnold, and C. Molpeceres, Laser-induced forward transfer of high-viscosity silver pastes, Appl. Surf. Sci. 366 (2016).
[28] C. Germain, and Y. Y. Tsui, Femtosecond laser induced forward transfer of ma-terials, Proceedings for 2003 International Conference on MEMS, NANO, Smart Systems 44, 44 (2003).
[29] Chris Germain, Luc Charron, Lothar Lilge, and Ying Y. Tsui, Electrodes for mi-crofluidic devices produced by laser induced forward transfer, Appl. Surf. Sci. 253, 19, 8328 (2007).
[30] C. Florian, F. Caballero-Lucas, J.M. Fernández-Pradas, S. Ogier, L. Winchester, D. Karnakis, R. Geremia, R. Artigas, and P. Serra, Printing of silver conductive lines through laser-induced forward transfer, Appl. Surf. Sci. 374, 265 (2016).
[31] Kyle Christensen, Changxue Xu, Wenxuan Chai, Zhengyi Zhang, Jianzhong Fu, and Yong Huang, Freeform inkjet printing of cellular structures with bifurca-tions, Biotechnol. Bioeng. 112, 5, 1047 (2015).
[32] Ibrahim T Ozbolat, and Monika Hospodiuk, Current advances and future per-spectives in extrusion-based bioprinting, Biomaterials. 76, 321 (2016).
[33] I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, Femtosecond laser microprinting of biomaterials, Appl. Phys. Lett. 86, 16 (2005).
[34] M Colina, P. Serraa, J.M. Fernandez-Pradas, L. Sevillab, and J. L. Morenza, DNA deposition through laser induced forward transfer, Biosens. Bioelectron. 20, 8, 1638 (2005).
[35] Zhengyi Zhang, Changxue Xu, Ruitong Xiong, Douglas B. Chrisey, and Yong Huang, Effects of living cells on the bioink printability during laser printing, Biomicrofluidics. 11, 3 (2017).
[36] P. Sopeña, J.M. Fernández-Pradas, and P. Serra, Laser-induced forward transfer of conductive screen-printing inks, Appl. Surf. Sci. 507 (2020).
[37] Panagiotis Karakaidos, Christina Kryou, Nikiana Simigdala, Apostolos Klinakis, and Ioanna Zergioti, Laser Bioprinting of Cells Using UV and Visible Wave-lengths: A Comparative DNA Damage Study, Bioengineering. 9, 8, 378 (2022).
[38] J. Bohandy, S. F. Kim, and F. J. Adrian, Metal deposition from a supported met-al film using an excimer laser, J. Appl. Phys. 60, 4, 1538 (1986).
[39] Ching-yue Wang, Xiao-chang Ni, Zhi-jun Wang, Wei Jia, and Lu Chai, Micro-droplet deposition of copper film by femtosecond laser-induced forward trans-fer, Appl. Phys. Lett. 89, 16 (2006).
[40] Gerrit Oosterhuis, Bert Huis in't Veld, Gerald Ebberink, Daniël Arnaldo del Cerro, Edwin van den Eijnden, Peter Chall, and Ben van der Zon, Additive in-terconnect fabrication by picosecond Laser Induced Forward Transfer, 3DIC (2010).
[41] James A. Grant-Jacob, Benjamin Mills, Matthias Feinaeugle, Collin L. Sones, Gerrit Oosterhuis, Marc B. Hoppenbrouwers, and Robert W. Eason, Mi-cron-scale copper wires printed using femtosecond laser-induced forward trans-fer with automated donor replenishment, Opt. Mater. Express, 3, 6 (2013).
[42] M. Zenou, A. Saar, and Z. Kotler, Laser jetting of femto-liter metal droplets for high resolution 3D printed structures, Sci. Rep. 5, 17265 (2015).
[43] Shoshana Winter, Michael Zenou, and Zvi Kotler, Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal drop-let shell, J. Phys. D: Appl. Phys. 49 (2016).
[44] Jeff Hecht, Short history of laser development, Opt. Eng. 49, 9, 091002 (2010).
[45] https://en.wikipedia.org/wiki/Transverse_mode (June 1, 2023)
[46] https://www.edmundoptics.com.tw/knowledge-center/application-notes/lasers/advantages-of-using-beam-expanders (June 1, 2023)
[47] Pranjal Chandra, and Rajiv Prakash, Nanobiomaterial Engineering: Concepts and Their Applications in Biomedicine and Diagnostics, (2020).
[48] P. Chandra, Nanobiosensors for Personalized and Onsite Biomedical Diagnosis Institution of Engineering and Technology, (2016).
[49] Leland C. Clark Jr., and Champ Lyons, Electrode systems for continuous moni-toring in cardiovascular surgery, Ann N Y Acad Sci. 102, 29 (1962).
[50] Eun-Hyung Yoo, and Soo-Youn Lee, Glucose biosensors: an overview of use in clinical practice, Sensors (Basel) 10, 5, 4558 (2010).
[51] Chao Chen, Qingji Xie, Dawei Yang, Hualing Xiao, Yingchun Fu, Yueming Tan, and Shouzhuo Yao, Recent advances in electrochemical glucose biosensors: a review, RSC Advances 3, 14, 473 (2013).
[52] Sizhu Rena, Conghai Lia, Xiaobo Jiaoa, Shiru Jiaa, Yanjun Jiangb, Muhammad Bilalc, and Jiandong Cui, Recent progress in multienzymes co-immobilization and multienzyme system applications, Chem. Eng. J. 373, 1254 (2019).
[53] R. Wilson, A.P.F Turner, Glucose oxidase: an ideal enzyme, Biosens. Bioelec-tron. 7, 165 (1992).
[54] Hua Zhu, Li Li, Wei Zhou, Zongping Shao, and Xianjian Chen, Advances in non-enzymatic glucose sensors based on metal oxides, J. Mater. Chem. B, 4, 7333 (2016).
[55] Jinhong Wang, Wanguo Bao, and Lijie Zhang, A nonenzymatic glucose sensing platform based on Ni nanowire modified electrode, Anal. Methods. 4, 4009 (2012).
[56] Xiangheng Niu, Xin Li, Jianming Pan, Yanfang He, Fengxian Qiu, and Yongsheng Yana, Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges, RSC Adv. 6, 84893 (2016).
[57] M. I. Awad, Maha E. Al-Hazemi, and Zahrah T. Al-thagafi, Glucose electrooxi-dation at nickel nanoparticles modified glassy carbon electrode: tolerance to poisoning, Int. J. Electrochem. Sci. 17 (2022).
[58] Yu Dinga, Yixin Liua, Lichun Zhang, Ying Wang, Michael Bellagamba, Joseph Parisi, Chang Ming Li, and Yu Lei, Sensitive and selective nonenzymatic glu-cose detection using functional NiO-Pt hybrid nanofibers, Electrochim. Acta 58, 209 (2011).
[59] Jianping Yanga, Qiaowen Lina, Wei Yina, Tao Jianga, Danhua Zhaoa, and Liaochuan Jiang, A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites, Sens. Actuators, B 253, 1087 (2017).
[60] Xiaojun Zhang, Guangfeng Wang, Xiaowang Liu, Jingjing Wu, Ming Li, Jing Gu, Huan Liu, and Bin Fang, Different CuO Nanostructures: Synthesis, Charac-terization, and Applications for Glucose Sensors, J. Phys. Chem. C 112, 16845 (2008).
[61] Baozhan Zhenga, Guangyue Liua, Aiwen Yaoa, Yanling Xiaoa, Juan Dua, Yong Guoa, Dan Xiao, Qin Huc, and Martin M.F. Choi, A sensitive AgNPs/CuO nano-fibers non-enzymatic glucose sensor based on electrospinning technology, Sens. Actuators, B 195, 431 (2014).
[62] Rizwan Khan, Rafiq Ahmad, Prabhakar Rai, Lee-Woon Jang, Jin-Hyeon Yun, Yeon-Tae Yu, Yoon-Bong Hahn, and In-Hwan Lee, Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors, Sens. Actuators, B 203, 471 (2014).
[63] Toshiro Maruyama, Copper oxide thin films prepared by chemical vapor depo-sition from copper dipivaloylmethanate, Sol. Energy Mater. Sol. Cells. 56, 85 (1998).
[64] Ahalapitiya H. Jayatissa, K. Guo, and Ambalangodage C. Jayasuriya, Fabrica-tion of cuprous and cupric oxide thin films by heat treatment, Appl. Surf. Sci. 255, 9474 (2009).
[65] Sotoudeh Sedaghat, Chad R Piepenburg, Amin Zareei, Zhimin Qi, Samuel Peana, Haiyan Wang, and Rahim Rahimi, Laser-Induced Mesoporous Nickel Oxide as a Highly Sensitive Nonenzymatic Glucose Sensor, ACS Appl. Nano Mater. (2020).
[66] Hyeokjin Kwon, Junil Kim, Kyungmin Ko, Manyalibo J. Matthews, Joonki Suh, Hyuk-Jun Kwon, and Jae-Hyuck Yoo, Laser-induced digital oxidation for cop-per-based flexible photodetectors, Appl. Surf. Sci. 540, 2 (2021).
[67] Dongwoo Paeng, Jae-Hyuck Yoo, Junyeob Yeo, Daeho Lee, Eunpa Kim, Seung Hwan Ko, and Costas P. Grigoropoulos, Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation, Adv Mater. 27, 2762 (2015).
[68] Haldor Topsøe, Geometric Factors in Four Point Resistivity Measurement, (1966)
[69] JSM-6510 series Catalog
[70] https://www.uantwerpen.be/en/research-groups/a-sense-lab/service-equipment/equipment/electrochemistry/metrohm--autolab-typ/ (June 1, 2023)
[71] Antoon Blom, Par Dunias, Piet van Engen, Willem Hoving, and Janneke de Kramer, Process Spread Reduction of Laser Micro-Spot Welding of Thing Cop-per Parts Using Real-Time Control, Proc. SPIE. 4977, 493 (2003).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87901-
dc.description.abstract本研究利用雷射誘發前向轉移(Laser-induced forward transfer, LIFT)之技術應用於製作葡萄糖感測元件,不需透過光罩、模具即可完成電極之列印,透過電腦設計電極圖案,匯入圖檔即可完成電極之設計及製作,可以簡單並且快速地改變電極設計。製程中不需處於真空環境,亦不使用有毒之化學液體,對環境之負擔亦較小。
本研究採用三電極之電化學感測器,參考電極為氯化銀(Ag/AgCl),輔助電極為銅(Cu),而工作電極為氧化銅(CuO)。本研究使用雷射誘發前向轉移(LIFT)之技術將銅(Cu)列印至PET撓性基板上,作為各電極之導線,氧化銅(CuO)之製作利用雷射誘發氧化(LIO)技術,透過雷射施加能量將轉印成功、位於工作電極範圍之銅(Cu)氧化,形成氧化銅;參考電極則使用購置之氯化銀漿塗覆並風乾。列印完成後分別測試各材料之薄膜電性,利用光學顯微鏡觀察其列印品質,並利用EDS分析判斷氧化銅(CuO)之生長情形。封裝後,完成本研究感測元件之製作,而後進行電化學實驗,找到其線性範圍、感測極限以及靈敏度。
雷射誘發前向轉移列印銅薄膜相關實驗之結果,當雷射能量密度大於1471.30 mJ/cm2時,能成功完成銅薄膜之列印。當雷射光斑重疊率為13.4 %時,電阻為最低。而在雷射能量密度為1768.39 mJ/cm2以及光斑重疊率為13.4 %時,最低片電阻為19.7 (Ω/square)。
雷射誘發氧化製程之實驗結果,當雷射能量密度大於442.1 mJ/cm2時,即把銅薄膜幾乎剝蝕,僅殘留少部分之銅於PET基板上,根據實驗結果雷射能量密度需小於271.35 mJ/cm2才可進行雷射誘發氧化加工。透過EDS分析,結果顯示原始列印之銅薄膜其銅氧比約為20 %,而當雷射誘發氧化之雷射輸出功率為1.75 W時,其薄膜銅氧比達到最高約42 %。
進行電化學實驗之循環伏安法時,其結果顯示工作電極之銅氧比為42 %時,其循環伏安圖約於+0.6 V附近,有一明顯之氧化峰,其結果證明了透過增加雷射輸出功率,能夠增強其感測元件對於葡萄糖之催化性能。亦使用計時電流法探討本研究製作之感測元件於葡萄糖之感測性能,靈敏度約為96 μAmM-1cm-2,LOD為115.65 μM,電流響應之線性度其R2為0.956,故本研究製作之感測元件適用於量測濃度範圍為1~11 mM之葡萄糖溶液。
zh_TW
dc.description.abstractIn this study, the laser-induced forward transfer (LIFT) technology was applied to the manufacture of glucose sensors, and the electrodes can be printed without pho-tomasks or molds. The process does not require a vacuum environment and does not use toxic chemicals, so the environmental burden is less.
In this study, a three-electrode electrochemical sensor was used, with silver/silver chloride (Ag/AgCl) as the reference electrode, copper (Cu) as the counter electrode, and cupric oxide (CuO) as the working electrode. In this study, copper (Cu) was printed onto a PET flexible substrate using the laser-induced forward transfer (LIFT) technique as conductive tracks for each electrode. Cupric oxide (CuO) was fabricat-ed using the laser-induced oxidation (LIO) technique to oxidize copper (Cu) in the working electrode area by applying laser power to the electrodes. The reference electrodes are coated with purchased silver chloride paste and air-dried. After print-ing, the electrical properties of each material were tested separately. The electrodes quality was observed using an optical microscope, and EDS analysis was used to de-termine the growth of CuO. After packaging, the fabrication of the sensor is com-pleted and electroanalytical methods are conducted to find the linearity range, limit of detection, and sensitivity.
The results of the laser-induced forward transfer printing of copper thin films were obtained when the laser energy density was greater than 1471.30 mJ/cm2. The lowest resistance was achieved when the overlapping rate was 13.4 %. The lowest sheet re-sistance was 19.7 (Ω/square) at a laser energy density of 1768.39 mJ/cm2 and the overlapping rate of 13.4 %.
According to the experimental results of the laser-induced oxidation process, when the laser energy density was greater than 442.1 mJ/cm2, the copper film was almost peeled off and only a small portion of the copper remained on the PET substrate. The EDS analysis showed that the copper-to-oxygen ratio of the original printed copper film was about 20 %, and the highest copper-to-oxygen ratio was about 42 % when the laser output power of the laser-induced oxidation was 1.75 W.
The cyclic voltammetry demonstrates a clear anodic peak around +0.6 V at the working electrode with a 42 % copper-to-oxygen ratio, which proved that the elec-trocatalytic activity for glucose could be enhanced by increasing the laser power. The sensitivity was about 96 μAmM-1cm-2, the LOD was 115.65 μM, and the linear behavior with an R2= 0.956. As a result, the sensor was suitable for measuring glu-cose solutions in the concentration range of 1~11 mM.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:12:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-31T16:12:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文審定書 I
致謝 II
摘要 III
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XIII
第1章 緒論 1
1.1研究背景及動機 1
1.2研究目的 3
1.3研究架構 4
第2章 文獻回顧 5
2.1感測元件製作方法 5
2.1.1物理氣相沉積(Physical vapor deposition) 6
2.1.2絲網印刷電極(Screen-printed electrode) 6
2.1.3捲對捲製程(Roll-To-Roll) 7
2.1.4噴墨列印(Inkjet printing) 9
2.2雷射誘發前向轉移 10
2.2.1雷射誘發前向轉移原理 11
2.2.2雷射誘發前向轉移技術應用 13
2.2.3雷射參數 18
2.3生物感測器 24
2.3.1葡萄糖感測器 25
2.3.2氧化銅感測器 27
2.4小結 30
第3章 研究方法 31
3.1研究架構 31
3.2分析方法 32
3.2.1四點探針 32
3.2.2EDS分析 34
3.2.3電化學分析 38
3.3小節 43
第4章 實驗設備與規劃 44
4.1實驗架構 44
4.2實驗設備 45
4.3 雷射誘發前向轉移實驗規劃 51
4.4雷射誘發氧化實驗規劃 52
4.5電化學實驗規劃 54
4.5.1感測元件製備 54
4.5.2葡萄糖感測實驗 56
第5章 實驗結果與討論 58
5.1雷射誘發前向轉移結果分析 59
5.1.1雷射焦距及能量密度分析 59
5.1.2雷射光斑重疊率變動分析 61
5.1.4小結 63
5.2雷射誘發氧化結果分析 64
5.2.1雷射焦距及能量密度分析 64
5.2.2雷射輸出功率變動分析 66
5.2.3雷射加工之表面形貌 67
5.2.4小結 68
5.3葡萄糖感測性能分析 69
5.3.1循環伏安法 69
5.3.2計時電流法 70
5.3.3小節 72
第6章 結論與未來展望 73
6.1總結 73
6.2未來展望 74
參考文獻 75
-
dc.language.isozh_TW-
dc.subject撓性基板zh_TW
dc.subject雷射誘發氧化zh_TW
dc.subject雷射誘發前向轉移zh_TW
dc.subject綠光脈衝雷射zh_TW
dc.subject葡萄糖感測器zh_TW
dc.subject電化學式zh_TW
dc.subject氧化銅zh_TW
dc.subjectGlucose sensoren
dc.subjectLaser-induced oxidationen
dc.subjectLaser- induced forward transferen
dc.subjectCupric oxideen
dc.subjectElectrochemicalen
dc.subjectGreen pulsed laseren
dc.subjectFlexible substrateen
dc.title雷射誘發前向轉移於葡萄糖感測元件之製作zh_TW
dc.titleLaser-induced forward transfer of thin-film material on the fabrication of glucose sensorsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊宏智;丁健芳;李貫銘;廖英志zh_TW
dc.contributor.oralexamcommitteeHong-Tsu Young;Chien-Fang Ding;Kuan-Ming Li;Ying-Chih Liaoen
dc.subject.keyword氧化銅,電化學式,葡萄糖感測器,綠光脈衝雷射,雷射誘發前向轉移,雷射誘發氧化,撓性基板,zh_TW
dc.subject.keywordCupric oxide,Electrochemical,Glucose sensor,Green pulsed laser,Laser- induced forward transfer,Laser-induced oxidation,Flexible substrate,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202301123-
dc.rights.note未授權-
dc.date.accepted2023-06-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved