Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87882
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳健銘zh_TW
dc.contributor.advisorChien-Ming Wuen
dc.contributor.author廖宣諭zh_TW
dc.contributor.authorHsuan-Yu Liaoen
dc.date.accessioned2023-07-31T16:06:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-31-
dc.date.issued2023-
dc.date.submitted2023-07-05-
dc.identifier.citationArakawa, A., Wu, C.-M. (2013): A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci. 70, 1977-1992.https://doi.org/10.1175/JAS-D-13-0163.1
Balling Jr, R. C. (1985). Warm season nocturnal precipitation in the Great Plains of the United States. Journal of Applied Meteorology and Climatology, 24(12), 1383-1387.
Bechtold, P., Chaboureau, J. P., Beljaars, A., Betts, A. K., Köhler, M., Miller, M., & Redelsperger, J. L. (2004). The simulation of the diurnal cycle of convective precipitation over land in a global model. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 130(604), 3119-3137.
Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 2682–2698, doi:10.1175/JAS-D-11-0317.1.
Bryan, G. H., and M. D. Parker (2010), Observations of a squall line and its near environment using high-requency Rawinsonde launches during VORTEX2, Mon. Weather Rev.,138(11), 4076–4097, doi:10.1175/2010MWR3359.1
Chang, Y. H., Chen, W. T., Wu, C. M., Moseley, C., & Wu, C. C. (2021). Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan. Atmospheric Chemistry and Physics, 21(22), 16709-16725.
Chen TC, Yen MC, Hsieh JC, Arritt RW (1999) Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull Am Meteorol Soc 80:2299–2312
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
Chen, F., Dudhia, J.: Coupling an advanced land surface– hydrology model with the Penn State–NCAR MM5 modeling system. Part II: preliminary model validation. Mon. Weather Rev. 129, 587–604 (2001b)
Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H., Koren, V., Duan, Y., Ek, M., Betts, A.: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. 101(D3), 7251–7268 (1996). https://doi.org/10.1029/95JD02165
Chen, Y.-T., & Wu, C.-M. (2019). The role of interactive SST in the cloud-resolving simulations of aggregated convection. Journal of Advances in Modeling Earth Systems, 11, 3321–3340. https://doi.org/10.1029/2019MS001762
Chien, M.-H., Wu, C.-M.: Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (VVM). J. Adv. Model. Earth Syst. 8, 212–223 (2016). https://doi.org/10.1002/2015MS000514
Dai A, Deser C (1999) Diurnal and semidiurnal variations in global surface wind and divergence fields. J Geophys Res 104:31109–31125
Dai A, Lin X, Hsu KL (2007) The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Clim Dyn 29:727–744
Dai, A. (1999) Recent change in the diurnal cycle of precipitation over the United States. Geophys. Res. Lett., 26, 341-344
Dai, A. (2001), Global precipitation and thunderstorm frequencies. part II: Diurnal variations, J. Clim., 14(66), 1112-1128.
Deardorff, J. W.: Parameterization of the Planetary Boundary layer for Use in General Circulation Models, Mon. Weather Rev., 100, 93–106, https://doi.org/10.1175/1520-0493(1972)100<0093:Potpbl>2.3.Co;2, 1972.
Dione, C., M. Lothon, D. Badiane, B. Campistron, F. Couvreux, F. Guichard, and S. M. Sall, 2013: Phenomenology of Sahelian convection observed in Niamey during the early monsoon. Quart. J. Roy. Meteor. Soc., 140, 500–516, doi:10.1002/qj.2149.
Duvel, J.-P. (1989) Convection over tropical Africa and the Atlantic Ocean during northern summer. Part I: Interannual and diurnal variations. Mon. Weather Rev., 117, 2782-2799
ensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 2105–2117.
Feng, Z., Hagos, S., Rowe, A. K., Burleyson, C. D., Martini, M. N., & de Szoeke, S. P. (2015). Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. Journal of Advances in Modeling Earth Systems, 7(2), 357-381.
Garreaud, R., & Wallace, J. M. (1997). The diurnal march of convective cloudiness over the Americas. Monthly Weather Review, 125(12), 3157-3171.
Grabowski, W. W., Bechtold, P., Cheng, A., Forbes, R., Halliwell, C., Khairoutdinov, M., Lang, S., Nasuno, T., Petch, J., Tao, W.-K., Wong, R., Wu, X., and Xu, K.-M.: Daytime convective development over land: A model intercomparison based on LBA observations, Q. J. Roy. Meteor. Soc., 132, 317–344, https://doi.org/10.1256/qj.04.147, 2006.
Guichard, F., Petch, J. C., Redelsperger, J. L., Bechtold, P., Chaboureau, J. P., Cheinet, S., ... & Tomasini, M. (2004). Modelling the diurnal cycle of deep precipitating convection over land with cloud‐resolving models and single‐column models. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 130(604), 3139-3172.
Hohenegger, C., & Stevens, B. (2013). Preconditioning deep convection with cumulus congestus. Journal of the Atmospheric Sciences, 70(2), 448-464.
Hsieh, M. K., Chen, Y. W., Chen, Y. C., & Wu, C. M. (2022). The Roles of Local Circulation and Boundary Layer Development in Tracer Transport over Complex Topography in Central Taiwan. Journal of the Meteorological Society of Japan. Ser. II, 100(3), 555-573.
Huang WR, Chen KC. (2015). Trends in pre-summer frontal and diurnal rainfall activities during 1982–2012 over Taiwan and southeast China: characteristics and possible causes. Int. J. Climatol.35: 2608–2619.https://doi.org/10.1002/joc.4159.
Huang, J. D., Hung, C. S., Wu, C. M., & Miura, H. (2022). Two Different Pathways toward Convective Self-aggregation in Radiative-convective Equilibrium Simulations between SCALE and VVM. Authorea Preprints.
Huang, W. R., & Chang, Y. H. (2018). Impact of boreal summer intra‐seasonal oscillations on warm season diurnal convection activity in Taiwan. International Journal of Climatology, 38(5), 2187-2200.
Huang, W. R., & Wang, S. Y. (2014). Impact of land–sea breezes at different scales on the diurnal rainfall in Taiwan. Climate dynamics, 43, 1951-1963.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by
Jin, X., Wu, T., & Li, L. (2013). The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dynamics, 41, 977-994.
John Kerns, B. W., Chen, Y. L., & Chang, M. Y. (2010). The diurnal cycle of winds, rain, and clouds over Taiwan during the mei-yu, summer, and autumn rainfall regimes. Monthly weather review, 138(2), 497-516.
Johnson RH, Bresch JF (1991) Diagnosed characteristics of precipitation systems over Taiwan during the May–June 1987 TAMEX. Mon Weather Rev 119:2540–2557
Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2418.
Jung, J.H., Arakawa, A.: A three-dimensional anelastic model based on the vorticity equation. Mon.Weather Rev. 136(1), 276–294 (2008). https://doi.org/10.1175/2007MWR2095.1
Khairoutdinov, M., and D. Randall, 2006: High-resolution simulations of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 3421–3436, doi:10.1175/JAS3810.1.
Kishtawal, C. M., & Krishnamurti, T. N. (2001). Diurnal variation of summer rainfall over Taiwan and its detection using TRMM observations. Journal of Applied Meteorology and Climatology, 40(3), 331-344.
Kuo, K. T., & Wu, C. M. (2019). The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations. Journal of the Meteorological Society of Japan. Ser. II, 97(2), 501-517.
Kurosaki, Y., & Kimura, F. (2002). Relationship between topography and daytime cloud activity around Tibetan Plateau. Journal of the Meteorological Society of Japan. Ser. II, 80(6), 1339-1355.
Li S, Jaroszynski S, Pearse S, Orf L, Clyne J. VAPOR: A Visualization Package Tailored to Analyze Simulation Data in Earth System Science. Atmosphere. 2019; 10(9):488. https://doi.org/10.3390/atmos10090488
Lima, M. A., and J. W. Wilson, 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 1847–1864, doi:10.1175/2007MWR2279.1.
long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008jd009944, 2008.
Lothon, M., B. Campistron, M. Chong, F. Couvreux, F. Guichard, C. Rio, and E. Williams, 2011: Life cycle of a mesoscale circular gust front observed by a C-band Doppler radar in West Africa. Mon. Wea. Rev., 139, 1370–1388, doi:10.1175/2010MWR3480.1.
Morrison, H. and Milbrandt, J. A.: Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests, J. Atmos. Sci., 72, 287–311, https://doi.org/10.1175/jas-d-14-0065.1, 2015.
Ramage CS (1952) Diurnal variation of summer rainfall over east China, Korea and Japan. J Atmos Sci 9:83–86
Rickenbach, T. M., Ferreira, R. N., Halverson, J. B., Herdies, D. L. and Silva Dias, M. A. F. (2002) Modulation of convection in the southwestern Amazon basin byextratropical stationary fronts. J. Geophys. Res., 107(D20), 8040, doi: 10.1029/2000JD000263
Rotunno, R., J. B. Klemp, and M. L. Weisman (1988), A theory for strong, long-lived squall lines, J. Atmos. Sci.,45(3), 463–485, doi:10.1175/1520-0469(1988)045<0463:atfsll>2.0.co;2.
Ruppert JHJ, Johnson RH, Rowe AK (2013) Diurnal circulations and rainfall in Taiwan during SoWMEX/TiMREX (2008). Mon Weather Rev. doi:10.1175/MWR-D-12-00301.1
Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 4289–4300.
Shutts, G. J. and Gray, M. E. B.: A numerical modelling study of the geostrophic adjustment process following deep convection, Q. J. Roy. Meteor. Soc., 120, 1145–1178, https://doi.org/10.1002/qj.49712051903, 1994.
Su, S.-H., Chang, C.-W., Tsai, I.-C., Chu, J.-L., Chen, Y.-L., & Yo, T.-S. (2022, September 9). Taiwan Atmospheric Event Database. https://doi.org/10.17605/OSF.IO/4ZUTJ
Takayabu, Y. N., J. Yokomori, and K. Yoneyama, 2006: A diagnostic study on interactions between atmospheric thermodynamic structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina peninsula. J. Meteor. Soc. Japan, 84, 151–169.
Takayabu, Y. N., Shige, S., Tao, W. K., & Hirota, N. (2010). Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. Journal of climate, 23(8), 2030-2046.
Takemi, T., O. Hirayama, and C. Liu, 2004: Factors responsible for the vertical development of tropical oceanic cumulus convection. Geophys. Res. Lett., 31, L11109, doi:10.1029/2004GL020225.
Tompkins, A. M. (2001), Organization of tropical convection in low vertical wind shears: The role of cold pools, J. Atmos. Sci.,58(13), 1650–1672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.
Trier, S. B., Davis, C. A., & Carbone, R. E. (2014). Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. Journal of the Atmospheric Sciences, 71(11), 4102-4126.
Tsai, J.-Y., & Wu, C.-M. (2016). Critical transitions of stratocumulus dynamical systems due to perturbation in free atmosphere moisture. Dynamics of Atmospheres and Oceans, 76, 1–13. https://doi.org/10.1016/j.dynatmoce.2016.08.002
Tsai, W.-M., Wu, C.-M.: The environment of aggregated deep convection. J. Adv. Model. Earth Sy. 9, 2061–2078 (2017). https://doi.org/10.1002/2017MS000967
Visualization & Analysis Systems Technologies. (2023) Visualization and Analysis Platform for Ocean, Atmosphere, and Solar Researchers (VAPOR version 3.8.0) [Software]. Boulder, CO: UCAR/NCAR – Computational and Information System Lab. doi:10.5281/zenodo.7779648
Waite, M. L., & Khouider, B. (2010). The deepening of tropical convection by congestus preconditioning. Journal of the Atmospheric Sciences, 67(8), 2601-2615.
Wallace, J. M. (1975) Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Weather Rev., 103, 406-419
Wang SY, Chen TC (2008) Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J Appl Meteorol Clim 47:2068–2080
Wu, C. M., Lin, H. C., Cheng, F. Y., & Chien, M. H. (2019). Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55, 701-717.
Wu, C.-M., Arakawa, A.: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. J. Atmos. Sci. 71, 2089–2103 (2014). https://doi.org/10.1175/JAS-D-13-0382.1
Wu, C.-M., Arakawa, A.: Inclusion of surface topography into the vector vorticity equation model (VVM). J. Adv. Model. Earth Syst. 3(2), M04002 (2011). https://doi.org/10.1029/2011MS000061
Wu, C.-M., Lo, M.-H., Chen, W.-T., Lu, C.-T.: The impacts of heterogeneous land surface fluxes on the diurnal cycle precipitation: a framework for improving the GCM representation of land-atmosphere interactions. J. Geophys. Res. Atmos. 120, 3714–3727 (2015). https://doi.org/10.1002/2014JD023030
Wu, P., Manabu, D. Y., & Matsumoto, J. (2008). The formation of nocturnal rainfall offshore from convection over western Kalimantan (Borneo) Island. 気象集誌. 第 2 輯, 86, 187-203.
Yang, G.-Y. and Slingo, J. (2001) The diurnal cycle in the tropics. Mon. Weather Rev., 129, 784–801
Yeh, D. Z., and Y. X. Gao (1979), Meteorological Science of Tibetan Plateau (in Chinese), Science Press, Beijing.
Yu R, Zhou T, Xiong A, Zhu Y, Li J (2007a) Diurnal variations of summer precipitation over contiguous China. Geophys Res Lett 34: L01704. doi:10.1029/2006GL028129
Zeng Q, Yu R, Peng G, Chai F (1994) Research on ‘‘Ya-An-Tian-Lou’’. Part III: physical structure and possible mechanism. Chin J Atmos Sci 18:649–659 (in Chinese)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87882-
dc.description.abstract本研究旨在藉由TaiwanVVM的semi-realistic simulation結果來探究弱綜觀環境下,台灣中部以及西南部地區夜間長延時強降雨事件的發生原因及機制。
透過中央氣象局的雨量歷史資料,以及Chang et al. (2021)所篩選出的台灣夏季弱綜觀個案,長延時夜間強降雨事件大多沿著台灣中部以及西南部山腳以及河谷分布。過去研究也顯示,較早的對流會將環境調整為不同的狀態,像是加濕環境讓對流有利於持續發展;或是將對流可用位能(Convective Available Potential Energy, CAPE)消耗殆盡成對流不易發展的環境。分析結果顯示,較高比例具有長延時夜間強降雨事件的個案,其下午的熱對流持續存在之時間較長,這些持續存在的對流將濕靜能(Moist static energy, MSE)帶至二到三公里高,而建構在地面及二到三公里皆具有較高MSE的MSE雙層結構;同時在高度較高的MSE層以上建立對流不穩定以利於更晚的對流能夠發展。然而對流持續的發展有賴於其他因子。
弱綜觀的環境下,局地發展的熱對流有賴於局地環流的作用。午後熱對流透過局地環流發展成熟後產生降雨,同時伴隨下衝流,透過水滴蒸發、冰晶融化降溫,可以加強下衝流以及下衝流到地表所產生的輻散氣流或是陣風鋒面(gust front),這便是冷池(cold pool)的概念,而透過與地形、局地環流或是其他冷池的交互作用,冷池能夠激發新的對流。同時我們也發現有長延時夜間強降雨事件發生的個案中,冷池存在相當久且不斷激發新對流,也因此環境之MSE更能被調整為雙層結構。另外冷池的分布位置大多被地形鎖定在海拔五百公尺以下的台灣中部及西南部河谷中;此外,透過熱對流與地形的作用,冷池有隨時間往北邊河谷移動的現象。以上結果顯示在弱綜觀條件下,冷池能夠維持對流持續存在並且透過這些對流將環境調整為適當的熱力環境,確實能讓深夜時刻仍有對流發生。
zh_TW
dc.description.abstractIn this study, we aim to investigate the mechanism behind a long-duration nocturnal heavy rainfall event that occurred in central and southwestern Taiwan under weak synoptic weather conditions. To accomplish this, we analyze results using semi-realistic simulations from TaiwanVVM.
Based on the historical data from the Central Weather Bureau and the weak synoptic weather conditions selected by Chang et al. (2021), it has been observed that the long-duration nocturnal heavy rainfall events primarily occur along the foothills of mountains and river valleys in central and southwestern Taiwan. Previous researches have shown that preceding convection can have an impact on the environment, either impeding (through depletion of CAPE) or facilitating subsequent convection (through moistening the environment). Our study reveals that a high proportion of long-duration nocturnal heavy rainfall events are associated with a double-layer of high moist static energy (MSE) at near surface and about 2-3 kilometers above the ground brought. This double-layer of high MSE vertical structure is initiated by persistent afternoon convection. Above this high layer of high MSE is a region of convective instability (or called potential instability), which is ideal for the development of convection. Of all the semi-realistic LESs results with long-duration nocturnal heavy rainfall events, 63% of them have this double-layer of high MSE structure. However, the persistent existence of convection may be influenced by additional factors.
Under weak synoptic weather conditions, local circulation plays a crucial role in the development of convection. Afternoon convection matures and starts to rain, generating downbursts and outflows or gust fronts at the near-surface layer. The downbursts cool nearby temperatures through evaporation or melting, strengthening both themselves and the outflow or gust front, leading to the formation of cold pools. The interaction between cold pools, terrain, local circulation, and other cold pools can stimulate new convection.
We found that the cold pools associated with long-duration nocturnal heavy rainfall events persist for a considerable duration and trigger the formation of new convection which could create an environment with a double-layer of high MSE. Besides, these cold pools remain orographically locked in the river valleys of central and southwestern Taiwan, below an elevation of 500 meters, until late at night. Furthermore, these cold pools typically move from southern to northern river valleys through the interactions with topography and new convection. Our findings show that under weak synoptic weather conditions, cold pools play a significant role in persistently stimulating convection, thereby modifying the thermodynamic environment to favor the occurrence of long-duration nocturnal heavy rainfall events.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-31T16:06:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-31T16:06:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstract iii
目 錄 Contents vi
Figure Captions vii
Table Captions xii
I. Introduction 1
II. Methodology 5
2.1 Model description 5
2.2 Semi-realistic simulation 8
III. Result 11
3.1 Climatology description 11
3.2 The double-layer of high MSE 11
3.3 Horizontal view of Cold pools 14
3.4 Cross-section view of Cold pools 17
3.5 Cold pool hotspots 20
IV. Summary and Discussion 22
References 25
Figures 37
Tables 50
Appendix A 51
Appendix B 53
Appendix C 54
Appendix D 56
Appendix E 57
-
dc.language.isoen-
dc.title對流的雙重效應在台灣複雜地形下產生的夜間強降雨zh_TW
dc.titleDual effects of convection in producing nocturnal heavy rainfall over complex topography in Taiwanen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭鴻基;陳維婷;蘇世顥zh_TW
dc.contributor.oralexamcommitteeHung-Chi Kuo;Wei-Ting Chen;Shih-Hao Suen
dc.subject.keyword夜間,濕靜能,對流不穩定,冷池,局地環流,地形鎖定,TaiwanVVM,zh_TW
dc.subject.keywordnocturnal,moist static energy,convective instability,cold pool,local circulation,orographic lock,TaiwanVVM,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202301332-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-07-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved