請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87864
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林博文 | zh_TW |
dc.contributor.advisor | Bou-Wen Lin | en |
dc.contributor.author | 謝宇宸 | zh_TW |
dc.contributor.author | Yu-Chen Hsieh | en |
dc.date.accessioned | 2023-07-24T16:10:13Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-07-24 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-20 | - |
dc.identifier.citation | 一、中文部分
書籍與企業報告 1.King, B.(2018)。Bank 4.0 : 金融常在, 銀行不再?(周群英、孫一仕、林凱雄譯;初版。臺灣金融研訓院。 2.KPMG(2018)。打造未來 金融機構如何擁抱金融科技並發展成長。KPMG lnternational。 3.日經電腦(2016)。FinTech革命 : 金融科技完全解析(汪平、金恬然、皇甫彥帝譯;初版)。遠見。 4.玉山金控(2022)。玉山金控110年年報。玉山金控。 5.玉山商業銀行(2022)。玉山銀行110年年報。玉山商業銀行。 6.翁禮祺(2022)。金融科技2.0 : 數位金融與科技創新。雙葉書廊有限公司。 7.黃齊元(2020)。從AI到AI+ : 臺灣零售、醫療、基礎建設、金融、製造、農牧、運動產業第一線的數位轉型初版。真文化出版。 8.勤業眾信(2022)。2022 數位與金融脈動展望報告 - 資料共享、保險科技與金融資安。勤業眾信。 9.蘇珊.契斯蒂、亞諾.巴伯斯(2016)。FinTech金融科技聖經 : 全球86位FinTech先驅, 第一手公開「金融科技做什麼?怎麼做?」(劉奕吟、唐祖蔭、陳世杰譯;初版)。城邦。 期刊文章 1.張凱君(2023)。生成式AI崛起 與ChatGPT「聊出新未來」。台灣銀行家,2023.4月號(160),40-43。 2.張嘉伶(2023)。服務新神器 ? 能否與人協作 ?金融業遇見ChatGPT撞出新火花 ?。台灣銀行家,2023.4月號(160),44-49。 3.陳昇瑋、林惠君(2018)。科技長:金融科技聯隊的羅盤。《哈佛商業評論》中文版,2018年4月號。 4.黃庭瑄(2023)。「未來秘書」ChatGPT強勢入侵 你的金融工作未來還在嗎?。台灣銀行家,2023.4月號(160),50-54。 學位論文 1.李陽桂(2023)。人工智慧應用於金融領域的法律規制——基於金融消費者保護視角(未出版之博士論文)。台南市:國立成功大學法律學系。 2.林奐辰(2023)。人工智慧與認識客戶原則(KYC)- 以金融消費者保護法為中心(未出版之碩士論文)。台北市:東吳大學法律學系。 3.羅俊凱(2022)。個人數位金融經營策略之探討-以玉山商業銀行為例(未出版之碩士論文)。台北市:國立臺灣大學商學研究所。 新聞報導 1.FINDIT(2023)。6大領域、超過20種生成式AI應用大集合,下個千億美元新創在哪?。Meet創業小聚。https://meet.bnext.com.tw/articles/view/50094 2.HiSKIO(2019)。生成對抗網路到底在GAN麻?帶你簡單了解近年最紅的AI技術。Medium。https://medium.com/@hiskio/%E7%94%9F%E6%88%90%E5%B0%8D%E6%8A%97%E7%B6%B2%E8%B7%AF%E5%88%B0%E5%BA%95%E5%9C%A8gan%E9%BA%BB-f149efb9eb6b 3.王宏仁(2018)。有了資訊長和數位長,玉山為何還要新設科技長?透視第一位金控科技長的定位和挑戰。iThome新聞。https://www.ithome.com.tw/news/121229 4.王若樸(2021a)。十年養成玉山AI力,下一步瞄準零接觸金融。iThome新聞。iThome新聞。https://www.ithome.com.tw/news/146179 5.王若樸(2021b)。【先用AI研發雲創新,再靠MLaaS將AI嵌入業務系統】玉山2大AI關鍵平臺大解密。iThome新聞。https://www.ithome.com.tw/news/146196 6.王若樸(2022)。上百個AI模型怎麼管?玉山銀揭露ML模型從部署到維運如何自動化。iThome新聞。https://www.ithome.com.tw/news/149843 7.王道維(2023)。王道維觀點:從生成式AI的「虛擬知識」看後知識時代的來臨。新新聞。https://www.storm.mg/article/4766772?mode=whole 8.玉山銀行(2023)。玉山以敏捷、智能、安全三大支柱,架構未來10年科技應用藍圖。數位時代 Business Next。https://www.bnext.com.tw/article/73629/esunbank_tech 9.余至浩(2023)。玉山銀行開始運用ChatGPT協助KYC開戶調查,未來Chatbot客服也要用。iThome新聞。https://www.ithome.com.tw/news/156118 10.吳維雅(2023)。生成式AI的善與惡(二):從ChatGPT談人工智慧的未來隱憂。聯合報鳴人堂。https://opinion.udn.com/opinion/story/120817/7152090 11.林裕洋(2021)。【專訪】玉山金控科技長張智星。CIO Taiwan。https://www.cio.com.tw/interview-yushan-gold-control-technology-officer-zhang-zhixing/ 12.林裕洋(2022)。【專訪】玉山銀行數位長唐枬。Owlting新聞。https://www.owlting.com/news/articles/138703 13.姚惠茹(2022)。SAS 攜手玉山金建置維運化!上百 AI 模型數分鐘監控盜刷。TechNews科技新報。https://technews.tw/2022/03/10/sas-ops 14.陳蕙綾(2022)。〈玉山金法說〉科技聯隊六巨頭亮相 領軍1300位人才拚數位轉型。鉅亨網。https://news.cnyes.com/news/id/4814493 15.廣編企劃(2020)。什麼是MLOps文化?玉山靠這招讓工程師與營運端手牽手,打造高效溝通。The News Lens 關鍵評論網。https://www.thenewslens.com/article/139312 網際網路 1.Liu, S.(2023a)。淺談 GPT 生成式語言模型(1) — 過去。 2023年 5月18日,取自https://blog.infuseai.io/gpt-model-past-introduction-1e2558462e41 2.Liu, S.(2023b)。淺談 GPT 生成式語言模型(2) — ChatGPT 介紹篇。 2023年 5月18日,取自https://blog.infuseai.io/gpt-model-now-introduction-1d993c855deb 3.Microsoft(無日期-a)。Azure OpenAI 服務。 2023年 5月12日,取自https://azure.microsoft.com/zh-tw/products/cognitive-services/openai-service 4.Microsoft(無日期-b)。什麼是 DevOps?。 2023年 5月6日,取自https://azure.microsoft.com/zh-tw/resources/cloud-computing-dictionary/what-is-devops/ 5.Microsoft(2023a)。Azure OpenAI 服務模型。 2023年 4月29日,取自https://learn.microsoft.com/zh-tw/azure/cognitive-services/openai/concepts/models#model-capabilities 6.NVIDIA(2022)。何謂 Transformer 模型?。 2023年 5月21日,取自https://blogs.nvidia.com.tw/2022/06/21/what-is-a-transformer-model/ 7.OOSGA數據生態小組(2022)。生成式AI(Generative AI)為何?科技應用與案例有哪些?。 2023年 3月20日,取自https://zh.oosga.com/docs/generative-ai/ 8.Qbitai(2023)。只要3秒語音合成模型VALL‧E就能完美的模仿任何人的聲音,連環境背景音也能模仿。 2023年 5月20日,取自https://www.techbang.com/posts/103208-speech-synthesis-valle 9.玉山銀行(2020)。讓 AI 服務無所不在,ESUN.MLaaS[影片]。Youtube:ESUNCHANNEL。取自https://www.youtube.com/watch?v=_BX-IEgQXQE 10.杜雨、張孜銘(2023)。《AI生成時代》生成式 AI 是什麼?如何將生成式 AI 應用於金融業?。 2023年 3月21日,取自https://www.stockfeel.com.tw/ai%E7%94%9F%E6%88%90%E6%99%82%E4%BB%A3-%E7%94%9F%E6%88%90%E5%BC%8Fai-%E6%87%89%E7%94%A8 11.科技產業資訊室(2023)。2023年AI投資爆發,生成式AI被視為未來最具顛覆性的技術。 2023年 6月4日,取自https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=19696 二、英文部分 書籍與企業報告 1.Dul, J., & Hak, T. (2008). Case study methodology in business research / Jan Dul and Tony Hak (1st ed.). Butterworth-Heinemann/Elsevier. 2.Moore, G. A. (1999). Inside the tornado : marketing strategies from Silicon Valley's cutting edge (1st HarperPerennial ed.). HarperPerennial. 3.Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press. 4.World Economic Forum & Deloitte. (2017). Beyond Fintech: A Pragmatic Assessment Of Disruptive Potential in Financial Service [超越金融科技:金融新創翻轉產業實務解析]. Future of Financial Service. https://www2.deloitte.com/tw/tc/pages/financial-services/articles/Deloitte-WEF-Fintech.html 期刊文章 1.Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023). A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT. https://doi.org/10.48550/arxiv.2303.04226 2.Dosi, G. (1982). Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Research policy, 11(3), 147-162. 3.Fylan, F. (2005). Semi-structured interviewing. A handbook of research methods for clinical and health psychology, 5(2), 65-78. 4.Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., & Fung, P. (2023). Survey of Hallucination in Natural Language Generation. ACM computing surveys, 1, 4-5. https://doi.org/10.1145/3571730 5.Legard, R., Keegan, J., & Ward, K. (2003). In-depth interviews. Qualitative research practice: A guide for social science students and researchers, 6(1), 138-169. 6.McCarthy, J. (2007). WHAT IS ARTIFICIAL INTELLIGENCE? http://www-formal.stanford.edu/jmc/whatisai.html 7.Mowery, D., & Rosenberg, N. (1979). The influence of market demand upon innovation: a critical review of some recent empirical studies. Research policy, 8(2), 102-153. 8.OpenAI. (2023). GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774 9.Radford, A., & Narasimhan, K. (2018). Improving Language Understanding by Generative Pre-Training. 10.Rothwell, R. (1994). Towards the fifth‐generation innovation process. International marketing review. 11.Zainal, Z. (2007). Case study as a research method. Jurnal kemanusiaan, 5(1). 新聞報導 1.Bondar, M. (2023). The Rise Of Finmachines: Six Potential Banking Applications For Generative AI. Forbes. https://www.forbes.com/sites/forbestechcouncil/2023/04/14/the-rise-of-finmachines-six-potential-banking-applications-for-generative-ai/?sh=411b982a3c29 2.CNBC. (202). These are the 2023 CNBC Disruptor 50 companies. CNBC DISRUPTOR 50. https://www.cnbc.com/2023/05/09/these-are-the-2023-cnbc-disruptor-50-companies.html 3.Crosman, P. (2023). Is there a place for ChatGPT-like tech in banks? American Banker, N.PAG. https://search.ebscohost.com/login.aspx?direct=true&db=bsh&AN=162272544&site=ehost-live&scope=site 4.d'Ambrosio, R. (2023). ChatGPT impact: Boon or bane for the finance industry. In Arabianbusiness.com. London. 5.Marr, B. (2023). Top 10 Use Cases For ChatGPT In The Banking Industry. Forbes. https://www.forbes.com/sites/bernardmarr/2023/03/08/top-10-use-cases-for-chatgpt-in-the-banking-industry/?sh=259026842fbf 6.Mello, G., Shaw, W., & Levitt, H. (2023). Wall Street Banks Are Cracking Down on AI-Powered ChatGPT. Bloomberg. https://www.bloomberg.com/news/articles/2023-02-24/citigroup-goldman-sachs-join-chatgpt-crackdown-fn-reports#xj4y7vzkg 7.Wang, L. (2023). JPMorgan Creates AI Model to Analyze 25 Years of Fed Speeches. Blooberg. https://www.bloomberg.com/news/articles/2023-04-26/jpmorgan-s-ai-puts-25-years-of-federal-reserve-talk-into-a-hawk-dove-score#xj4y7vzkg?leadSource=uverify%20wall 網際網路 1.Borden, B. (2023). The era of generative AI: Driving transformation in banking. Microsoft Industry Blogs. Retrieved May 21, 2023 from https://www.microsoft.com/en-us/industry/blog/financial-services/2023/05/04/the-era-of-generative-ai-driving-transformation-in-banking/ 2.CB Insights. (2023). The state of generative AI in 7 charts. CB Insights. Retrieved May 22, 2023 from https://www.cbinsights.com/research/generative-ai-funding-top-startups-investors/ 3.CopyAI. (2023). Create Social Posts in Minutes. CopyAI. Retrieved May 19, 2023 from https://www.copy.ai/social-media-managers 4.Dilmegani, C. (2023). Top 4 Use Cases of Generative AI in Banking [2023]. AIMultiple. Retrieved March 26, 2023 from https://research.aimultiple.com/generative-ai-in-banking/#risk-management 5.Duarte, F. (2023, May 16, 2023). Number of ChatGPT Users (2023). Exploding Topics. Retrieved May 27, 2023 from https://explodingtopics.com/blog/chatgpt-users 6.E2Analyst. (2023). GPT-4: Everything you want to know about OpenAI’s new AI model. Medium Predict. Retrieved May 18, 2023 from https://medium.com/predict/gpt-4-everything-you-want-to-know-about-openais-new-ai-model-a5977b42e495 7.Europe, C. o. (2023). What's AI? Council of Europe. Retrieved May 16, 2023 from https://www.coe.int/en/web/artificial-intelligence/what-is-ai 8.GitHub. (n.d.). Getting started with GitHub Copilot. GitHub. Retrieved May 21, 2023 from https://docs.github.com/en/copilot/getting-started-with-github-copilot 9.Greyling, C. (2022). Analysis Of The Gartner Hype Cycle for AI. Medium. Retrieved May 28, 2023 from https://cobusgreyling.medium.com/analysis-of-the-gartner-hype-cycle-for-ai-9a3c0e17fd34 10.Hypar. (2023). Hypar Official Website. Hypar. Retrieved May 21, 2023 from https://hypar.io/ 11.Madhvani, N. (2023). Generative AI Tools in the Creative Domains: The Power and Pressure Game Is On! rapidops. Retrieved May 19, 2023 from https://www.rapidops.com/blog/generative-ai-tools/ 12.McKinsey & Company. (2023). What is generative AI? McKinsey & Company. Retrieved May 15, 2023 from https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai 13.Microsoft. (2023b). Data, privacy, and security for Azure OpenAI Service. Microsoft. Retrieved May 12, 2023 from https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy?context=%2Fazure%2Fcognitive-services%2Fopenai%2Fcontext%2Fcontext 14.Nadhamuni, S. (202). How GPT can completely transform Banking. Trustt. Retrieved April 20, 2023 from https://www.trustt.com/blog/how-gpt-can-completely-transform-banking 15.Nuñez, M. (2023). Glean launches new generative AI capabilities to enhance search and discovery across organizations. VentureBeat. Retrieved May 21, 2023 from https://venturebeat.com/ai/glean-launches-new-generative-ai-capabilities-to-enhance-search-and-discovery-across-organizations/ 16.Rajesh, N. (2023). Generative AI & Finance: Unleashing Use Cases and Managing Risk. Linkedin. Retrieved May 14, 2023 from https://www.linkedin.com/pulse/generative-ai-finance-unleashing-use-cases-managing-risk-rajesh 17.Ramola, R. (2023). Transforming Customer Support in Banking and Finance with ChatGPT. Linkedin. Retrieved May 22, 2023 from https://www.linkedin.com/pulse/transforming-customer-support-banking-finance-chatgpt-rahul-ramola 18.Rose, J. (2023). Generative AI solutions in finance: An introduction. The Blue AI. Retrieved May 19, 2023 from https://theblue.ai/blog/generative-ai-in-finance/ 19.Routley, N. (2023). What is generative AI? An AI explains. Retrieved May 20, 2023 from https://www.weforum.org/agenda/2023/02/generative-ai-explain-algorithms-work/ 20.Runway. (2023). Gen-1: The Next Step Forward for Generative AI. runway Research. Retrieved May 20, 2023 from https://research.runwayml.com/gen1 21.Swift. (n.d.). Know Your Customer (KYC). Swift. Retrieved April 18, 2023 from https://www.swift.com/your-needs/financial-crime-cyber-security/know-your-customer-kyc 22.Thomas H. Davenport, N. M. (2023). How Generative AI Is Changing Creative Work. Retrieved March 26, 2023 from https://www.hbrtaiwan.com/article/21836/how-generative-ai-is-changing-creative-work 23.Uizard. (2023). Uizard Official Website. Uizard Retrieved May 21, 2023 from https://uizard.io/ 24.Wiles, J. (2022). What’s New in Artificial Intelligence from the 2022 Gartner Hype Cycle. Retrieved May 27, 2023 from https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2022-gartner-hype-cycle 25.Wiles, J. (2023). Beyond ChatGPT: The Future of Generative AI for Enterprises. Gartner. Retrieved March 26, 2023 from https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of-generative-ai-for-enterprises 26.WriteMyPRD. (n.d.). Make Writing PRDs a Breeze with GPT-3. WriteMyPRD. Retrieved May 21, 2023 from https://writemyprd.com/ | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87864 | - |
dc.description.abstract | 金融科技為銀行帶來了方便以及創新驅動力,改善服務流程以及營運效率。然而,當新科技在社會中出現並擴散時,銀行必須考驗自身的科技創新模式與組織文化接納度,以能夠快速應對和運用這些技術。隨著ChatGPT引發的生成式人工智慧應用風潮,各大產業都在熱烈討論如何將相關技術應用於商業中。然而,由於金融業需要考慮安全性和監管要求,對於相關應用的討論並不如其他產業般熱烈。
本研究透過搜集國內外金融業對生成式人工智慧的態度與應用相關報導與專文,以了解業界對該技術的應用期望和風險態度。同時,採用創新擴散理論架構分析生成式人工智慧所具備的創新特質,以評估其在銀行服務業中擴散的速度,並了解各銀行在技術生命週期中所扮演的採用者角色。接著本研究運用個案分析法,深入了解玉山商業銀行在金融科技與人工智慧領域的科技管理模式。透過與相關科技策略和技術人員進行深度訪談,研究掌握了玉山銀行對生成式人工智慧的創新態度和應用潛力看法。 經由文獻搜集和訪談整理,本研究歸納出生成式人工智慧在銀行業的應用潛力,並發現該技術在銀行業中的傳播速度應屬中等,主要考慮到目前銀行的數位轉型趨勢和風險控制機制。大多數銀行被歸類為接近晚期大眾的類別,對於新科技持謹慎和保守的態度。然而,個案公司玉山商業銀行運用自身的科技創新模式,早期對該新技術進行探索和認識,具有早期接受者的特點。 最後,本研究針對金融創新模式提出相關建議,並認為未來銀行人才需要跨領域、跨專業的協作模式,以應對新科技帶來的衝擊和挑戰。 | zh_TW |
dc.description.abstract | Financial technology has brought convenience and innovation to banks, improving service processes and operational efficiency. However, as innovative technologies emerge and spread in society, banks must evaluate their own technology innovation modes and organizational culture adaptability in order to quickly respond to and utilize these technologies. With the rise of the application trend of generative artificial intelligence sparked by ChatGPT, industries are actively discussing how to apply such technologies in business. However, due to the security and regulatory considerations in the financial industry, the discussion of these applications is not as fervent as in other industries.
This study aims to understand the attitudes and application of the financial industry towards generative artificial intelligence by collecting relevant reports and articles from domestic and international sources. Additionally, the study employs the framework of diffusion of innovation Theory to analyze the innovative characteristics of generative artificial intelligence (GAI), evaluate its diffusion speed in the banking service industry, and understand the roles played by different banks as adopters in the technology life cycle. Subsequently, a case study approach is employed to gain in-depth understanding of the technological management model of E.Sun Commercial Bank in the field of financial technology and artificial intelligence. Through in-depth interviews with relevant technology strategists and technical personnel, the study grasps the bank's innovative attitudes and potential applications of generative artificial intelligence. Through literature collection and interview analysis, this study summarizes the potential applications of generative artificial intelligence in the banking industry and finds that the diffusion speed of this technology in the banking industry is moderate, primarily considering the current digital transformation trends and risk control mechanisms of banks. Most banks are categorized as late adopters, holding cautious and conservative attitudes towards innovative technologies. However, the case company, E.Sun Commercial Bank, demonstrates early adopter characteristics by utilizing its own technology innovation mode to explore and understand this new technology at an early stage. Finally, this study proposes relevant recommendations for financial innovation modes and believes that future banking talents need to adopt a cross-disciplinary, cross-professional collaborative approach to cope with the impact and challenges brought by new technologies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-24T16:10:13Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-24T16:10:13Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 ix 第一章 緒論 1 第 一 節 研究背景 1 第 二 節 研究問題與目的 3 第 三 節 研究流程 4 第二章 文獻探討 5 第 一 節 創新擴散理論 5 第 二 節 技術採用生命週期 8 第 三 節 金融科技創新 11 第 四 節 金融業引入金融科技的方式 13 第三章 研究方法 18 第 一 節 個案研究法 18 第 二 節 研究資料搜集 19 第 三 節 研究限制 21 第四章 生成式人工智慧於金融業的運用展望 22 第 一 節 生成式人工智慧的定義與原理 22 第 二 節 GPT模型 23 第 三 節 生成式人工智慧的應用領域 26 第 四 節 金融業對生成式人工智慧的態度 31 第 五 節 生成式人工智慧在金融產業的潛在運用機會 32 第 六 節 金融業運用生成式人工智慧的發展機會與障礙 37 第五章 個案公司分析 41 第 一 節 公司介紹 41 第 二 節 個案公司科技管理策略 41 第 三 節 個案公司的人工智慧技術策略與管理模式 44 第 四 節 個案公司對於生成式人工智慧的應對方式 52 第 五 節 個案公司對生成式人工智慧的運用研擬方向 58 第 六 節 個案公司的創新模式分析 63 第六章 結論與建議 66 第 一 節 研究發現 66 第 二 節 管理意涵 69 第 三 節 未來研究建議 70 參考文獻 71 附錄一:第一次訪談大綱 80 附錄二:第二次訪談大綱 81 | - |
dc.language.iso | zh_TW | - |
dc.title | 銀行服務業應對生成式人工智慧技術的創新策略與應用展望 --以玉山商業銀行為例 | zh_TW |
dc.title | Innovative Strategies and Prospects for the Application of Generative Artificial Intelligence Technologies in the Banking Service Industry: A Case Study of E.Sun Commercial Bank | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 劉念琪 | zh_TW |
dc.contributor.coadvisor | Nien-Chi Liu | en |
dc.contributor.oralexamcommittee | 郭佳怡;吳肜泰 | zh_TW |
dc.contributor.oralexamcommittee | Chia-I Kuo;Rung-Tai Wu | en |
dc.subject.keyword | 創新擴散理論,技術採用生命週期,金融科技,科技管理,科技創新模式, | zh_TW |
dc.subject.keyword | Innovation Diffusion Theory,Technology Adoption Lifecycle,Financial Technology(Fintech),Technological Management,Technology Innovation Modes, | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU202301078 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-06-21 | - |
dc.contributor.author-college | 管理學院 | - |
dc.contributor.author-dept | 商學研究所 | - |
顯示於系所單位: | 商學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。