請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87857完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru-Shi Liu | en |
| dc.contributor.author | 賴彥銘 | zh_TW |
| dc.contributor.author | Yan-Ming Lai | en |
| dc.date.accessioned | 2023-07-24T16:07:42Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-13 | - |
| dc.identifier.citation | [1] Handorf, D. E. The Baghdad Battery - Myth or Reality? Plating surf. finish. 2002, 89, 84–87.
[2] Sarma, D. D.; Shukla, A. K. Building Better Batteries: A Travel Back in Time. ACS Energy Lett. 2018, 3, 2841–2845. [3] Volta, A. XVII. On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds. In a Letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S. Phil. Trans. R. Soc 1997, 90, 403–431. [4] Piccolino, M. The Bicentennial of the Voltaic Battery (1800–2000): The Artificial Electric Organ. Trends Neurosci. 2000, 23, 147–151. [5] Scrosati, B. History of Lithium Batteries. J Solid State Electrochem 2011, 15, 1623–1630. [6] Whittingham, M. S. The Role of Ternary Phases in Cathode Reactions. J. Electrochem. Soc. 1976, 123, 315. [7] Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789. [8] Goodenough, J. B.; Park, K. S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [9] Sharma, S. K.; Sharma, G.; Gaur, A.; Arya, A.; Mirsafi, F. S.; Abolhassani, R.; Rubahn, H. G.; Yu, J. S.; Mishra, Y. K. Progress in Electrode and Electrolyte Materials: Path to All-Solid-State Li-Ion Batteries. Energy Adv. 2022, 1, 457–510. [10] Liu, H.; Zhou, Y.; Moré, R.; Müller, R.; Fox, T.; Patzke, G. R. Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides. ACS Catal. 2015, 5, 3791–3800. [11] Wickham, D. G.; Croft, W. J. Crystallographic and Magnetic Properties of Several Spinels Containing Trivalent Ja-1044 Manganese. J. Phys. Chem. Solids 1958, 7, 351–360. [12] Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188. [13] Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359–367. [14] Zanini, M.; Basu, S.; Fischer, J. E. Alternate Synthesis and Reflectivity Spectrum of Stage 1 Lithium—Graphite Intercalation Compound. Carbon 1978, 16, 211–212. [15] Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. J. Power Sources 2014, 257, 421–443. [16] Vijayakumar, M.; Kerisit, S.; Rosso, K. M.; Burton, S. D.; Sears, J. A.; Yang, Z.; Graff, G. L.; Liu, J.; Hu, J. Lithium Diffusion in Li4Ti5O12 at High Temperatures. J. Power Sources 2011, 196, 2211–2220. [17] Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L. Z.; Nan, C. W. Solid Garnet Batteries. Joule 2019, 3, 1190–1199. [18] Kasper, H. M. Series of Rare Earth Garnets Ln3+3M2Li+3O12 (M = Te, W). Inorg. Chem. 1969, 8, 1000–1002. [19] Thangadurai, V.; Kaack, H.; Weppner, W. J. F. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 2003, 86, 437–440. [20] Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [21] Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal Structure of Fast Lithium-Ion-Conducting Cubic Li7La3Zr2O12. Chem. Lett. 2010, 40, 60–62. [22] Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with the Garnet-Related Type Structure. J. Solid State Chem. 2009, 182, 2046–2052. [23] Chen, F.; Li, J. T.; Huang, Z.; Yang, Y.; Shen, Q.; Zhang, L. Origin of the Phase Transition in Lithium Garnets. J. Phys. Chem. C 2018, 122, 1963–1972. [24] Bernuy-Lopez, C.; Manalastas, W. J.; Lopez del Amo, J. M.; Aguadero, A.; Aguesse, F.; Kilner, J. A. Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics. Chem. Mater. 2014, 26, 3610–3617. [25] Li, Y.; Wang, Z.; Li, C.; Cao, Y.; Guo, X. Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering. J. Power Sources 2014, 248, 642–646. [26] Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M. J.; Fu, R.; Mi, J. X.; Yang, Y. Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chem. Mater. 2015, 27, 6650–6659. [27] Huo, H.; Chen, Y.; Zhao, N.; Lin, X.; Luo, J.; Yang, X.; Liu, Y.; Guo, X.; Sun, X. In-Situ Formed Li2CO3-Free Garnet/Li Interface by Rapid Acid Treatment for Dendrite-Free Solid-State Batteries. Nano Energy 2019, 61, 119–125. [28] Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A. Fast Na+-Ion Transport in Skeleton Structures. Mater. Res. Bull. 1976, 11, 203–220. [29] Thangadurai, V.; Weppner, W. Recent Progress in Solid Oxide and Lithium Ion Conducting Electrolytes Research. Ionics 2006, 12, 81–92. [30] Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Y. Ionic Conductivity and Sinterability of Lithium Titanium Phosphate System. Solid State Ionics 1990, 40, 38–42. [31] Zhu, Y.; Zhang, Y.; Lu, L. Influence of Crystallization Temperature on Ionic Conductivity of Lithium Aluminum Germanium Phosphate Glass-Ceramic. J. Power Sources 2015, 290, 123–129. [32] Kennedy, J. H.; Sahami, S.; Shea, S. W.; Zhang, Z. Preparation and Conductivity Measurements of SiS2-Li2S Glasses Doped with LiBr and LiCl. Solid State Ionics 1986, 18, 368–371. [33] Ginnings, D. C.; Phipps, T. E. Temperature-Conductance Curves of Solid Salts. Iii. Halides of Lithium. J. Am. Chem. Soc. 1930, 52, 1340–1345. [34] Weppner, W.; Huggins, R. A. Ionic Conductivity of Solid and Liquid LiAlCl4. J. Electrochem. Soc. 1977, 124, 35. [35] Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Adv. Mater. 2018, 30, 1803075. [36] Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X. Progress and Perspectives on Halide Lithium Conductors for All-Solid-State Lithium Batteries. Energy Environ. Sci 2020, 13, 1429–1461. [37] Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T. K.; Zhang, L.; Zhao, S.; et al. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew. Chem. Int. Ed. 2019, 58, 16427–16432. [38] Feng, X.; Fang, H.; Wu, N.; Liu, P.; Jena, P.; Nanda, J.; Mitlin, D. Review of Modification Strategies in Emerging Inorganic Solid-State Electrolytes for Lithium, Sodium, and Potassium Batteries. Joule 2022, 6, 543–587. [39] Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [40] Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries. Nat. Rev. Mater. 2020, 5, 229–252. [41] Fan, L. Z.; He, H.; Nan, C. W. Tailoring Inorganic-Polymer Composites for the Mass Production of Solid-State Batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [42] Wright, P. V. Electrical Conductivity in Ionic Complexes of Poly(ethylene oxide). Br. Polym. J. 1975, 7, 319–327. [43] Armand, M. Polymer Solid Electrolytes - An Overview. Solid State Ionics 1983, 9, 745–754. [44] MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G. Structure of the Polymer Electrolyte Poly(ethylene oxide)6:LiAsF6. Nature 1999, 398, 792–794. [45] Wang, Q.; Song, W. L.; Fan, L. Z.; Song, Y. Facile Fabrication of Polyacrylonitrile/Alumina Composite Membranes Based on Triethylene Glycol Diacetate-2-Propenoic Acid Butyl Ester Gel Polymer Electrolytes for High-Voltage Lithium-Ion Batteries. J. Membr. Sci. Res. 2015, 486, 21–28. [46] Zhang, X.; Wang, S.; Xue, C.; Xin, C.; Lin, Y.; Shen, Y.; Li, L.; Nan, C. W. Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes. Adv. Mater. 2019, 31, 1806082. [47] Zhang, J. P.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; et al. Safety-Reinforced Poly(propylene carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. Adv. Energy Mater. 2015, 5, 1501082. [48] Chen, H. W.; Lin, T. P.; Chang, F. C. Ionic Conductivity Enhancement of the Plasticized PMMA/LiClO4 Polymer Nanocomposite Electrolyte Containing Clay. Polymer 2002, 43, 5281–5288. [49] Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A Review of Polymer Electrolytes: Fundamental, Approaches and Applications. Ionics 2016, 22, 1259–1279. [50] Young, W. S.; Kuan, W. F.; Epps, I. I. I. T. H. Block Copolymer Electrolytes for Rechargeable Lithium Batteries. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1–16. [51] Chaurasia, S. K.; Singh, R. K.; Chandra, S. Ion-Polymer Complexation and Ion-Pair Formation in a Polymer Electrolyte PEO:LiPF6 Containing an Ionic Liquid Having Same Anion: A Raman Study. Vib Spectrosc 2013, 68, 190–195. [52] Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-Based Electrolytes for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [53] Johansson, P. First Principles Modelling of Amorphous Polymer Electrolytes: Li+-PEO, Li+-PEI, and Li+-PES Complexes. Polymer 2001, 42, 4367–4373. [54] Reinoso, D. M.; Frechero, M. A. Strategies for Rational Design of Polymer-Based Solid Electrolytes for Advanced Lithium Energy Storage Applications. Energy Stor. Mater. 2022, 52, 430–464. [55] Tao, C.; Gao, M. H.; Yin, B. H.; Li, B.; Huang, Y. P.; Xu, G.; Bao, J. J. A Promising TPU/PEO Blend Polymer Electrolyte for All-Solid-State Lithium Ion Batteries. Electrochim. Acta. 2017, 257, 31–39. [56] Jacob, M. M. E.; Prabaharan, S. R. S.; Radhakrishna, S. Effect of PEO Addition on the Electrolytic and Thermal Properties of PVDF-LiClO4 Polymer Electrolytes. Solid State Ionics 1997, 104, 267–276. [57] Tsuchida, E.; Ohno, H.; Tsunemi, K.; Kobayashi, N. Lithium Ionic Conduction in Poly (methacrylic acid)-Poly (ethylene oxide) Complex Containing Lithium Perchlorate. Solid State Ionics 1983, 11, 227–233. [58] Shriver, D. F.; Papke, B. L.; Ratner, M. A.; Dupon, R.; Wong, T.; Brodwin, M. Structure and Ion Transport in Polymer-Salt Complexes. Solid State Ionics 1981, 5, 83–88. [59] Chatani, Y.; Okamura, S. Crystal Structure of Poly(ethylene oxide)—Sodium Iodide Complex. Polymer 1987, 28, 1815–1820. [60] Gray, F. M.; MacCallum, J. R.; Vincent, C. A.; Giles, J. R. M. Novel Polymer Electrolytes Based on ABA Block Copolymers. Macromolecules 1988, 21, 392–397. [61] Alloin, F.; Sanchez, J. Y.; Armand, M. Triblock Copolymers and Networks Incorporating Oligo (oxyethylene) Chains. Solid State Ionics 1993, 60, 3–9. [62] Jannasch, P. Ionic Conductivity in Physical Networks of Polyethylene−Polyether−Polyethylene Triblock Copolymers. Chem. Mater. 2002, 14, 2718–2724. [63] Fan, L. Z.; Maier, J. Composite Effects in Poly(ethylene oxide)–Succinonitrile Based All-Solid Electrolytes. Electrochem. Commun. 2006, 8, 1753–1756. [64] Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M. A. Role of the Ceramic Fillers in Enhancing the Transport Properties of Composite Polymer Electrolytes. Electrochim. Acta. 2001, 46, 2457–2461. [65] Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P. New Polymer Electrolyte Nanocomposites: Melt Intercalation of Poly(ethylene oxide) in Mica-Type Silicates. Adv. Mater. 1995, 7, 154–156. [66] Hu, L.; Tang, Z.; Zhang, Z. New Composite Polymer Electrolyte Comprising Mesoporous Lithium Aluminate Nanosheets and PEO/LiClO4. J. Power Sources 2007, 166, 226–232. [67] Rocco, A. M.; da Fonseca, C. P.; Pereira, R. P. A Polymeric Solid Electrolyte Based on a Binary Blend of Poly(ethylene oxide), Poly(methyl vinyl ether-maleic acid) and LiClO4. Polymer 2002, 43, 3601–3609. [68] Rocco, A. M.; Moreira, D. P.; Pereira, R. P. Specific Interactions in Blends of Poly(ethylene oxide) and Poly(bisphenol a-co-epichlorohydrin): FTIR and Thermal Study. Eur. Polym. J. 2003, 39, 1925–1934. [69] Rocco, A. M.; Fonseca, C. P.; Loureiro, F. A. M.; Pereira, R. P. A Polymeric Solid Electrolyte Based on a Poly(ethylene oxide)/Poly(bisphenol A-co-epichlorohydrin) Blend with LiClO4. Solid State Ionics 2004, 166, 115–126. [70] Arya, A.; Sharma, A. L. Effect of Salt Concentration on Dielectric Properties of Li-Ion Conducting Blend Polymer Electrolytes. J. Mater. Sci. Mater. Electron. 2018, 29, 17903–17920. [71] Newman, G. H.; Francis, R. W.; Gaines, L. H.; Rao, B. M. L. Hazard Investigations of LiClO4/Dioxolane Electrolyte. J. Electrochem. Soc. 1980, 127, 2025. [72] Böttcher, T.; Duda, B.; Kalinovich, N.; Kazakova, O.; Ponomarenko, M.; Vlasov, K.; Winter, M.; Röschenthaler, G. V. Syntheses of Novel Delocalized Cations and Fluorinated Anions, New Fluorinated Solvents and Additives for Lithium Ion Batteries. Prog. Solid State Chem. 2014, 42, 202–217. [73] Bandara, L. R. A. K.; Dissanayake, M. A. K. L.; Mellander, B. E. Ionic Conductivity of Plasticized(PEO)-LiCF3SO3 Electrolytes. Electrochim. Acta. 1998, 43, 1447–1451. [74] Robitaille, C. D.; Fauteux, D. Phase Diagrams and Conductivity Characterization of Some PEO‐LiX Electrolytes. J. Electrochem. Soc. 1986, 133, 315. [75] Nagasubramanian, G.; Shen, D. H.; Surampudi, S.; Wang, Q.; Prakash, G. K. S. Lithium Superacid Salts for Secondary Lithium Batteries. Electrochim. Acta. 1995, 40, 2277–2280. [76] Rey, I.; Lassègues, J. C.; Grondin, J.; Servant, L. Infrared and Raman Study of the PEO-LiTFSI Polymer Electrolyte. Electrochim. Acta. 1998, 43, 1505–1510. [77] Appetecchi, G. B.; Henderson, W.; Villano, P.; Berrettoni, M.; Passerini, S. PEO-LiN(SO2CF2CF3)2 Polymer Electrolytes: I. XRD, DSC, and Ionic Conductivity Characterization. J. Electrochem. Soc. 2001, 148, A1171. [78] Appetecchi, G. B.; Passerini, S. Poly(ethylene oxide)-LiN(SO2CF2CF3)2 Polymer Electrolytes: II. Characterization of the Interface with Lithium. J. Electrochem. Soc. 2002, 149, A891. [79] Seki, S.; Takei, K.; Miyashiro, H.; Watanabe, M. Physicochemical and Electrochemical Properties of Glyme-LiN(SO2F)2 Complex for Safe Lithium-Ion Secondary Battery Electrolyte. J. Electrochem. Soc. 2011, 158, A769. [80] Zhang, H.; Liu, C.; Zheng, L.; Xu, F.; Feng, W.; Li, H. H.; Huang, X.; Armand, M.; Nie, J.; Zhou, Z. Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte. Electrochim. Acta. 2014, 133, 529–538. [81] Niedzicki, L.; Kasprzyk, M.; Kuziak, K.; Żukowska, G. Z.; Armand, M.; Bukowska, M.; Marcinek, M.; Szczeciński, P.; Wieczorek, W. Modern Generation of Polymer Electrolytes Based on Lithium Conductive Imidazole Salts. J. Power Sources 2009, 192, 612–617. [82] Egashira, M.; Scrosati, B.; Armand, M.; Béranger, S.; Michot, C. Lithium Dicyanotriazolate as a Lithium Salt for Poly(ethylene oxide) Based Polymer Electrolytes. Electrochem. Solid-State Lett. 2003, 6, A71. [83] Michael, M. S.; Jacob, M. M. E.; Prabaharan, S. R. S.; Radhakrishna, S. Enhanced Lithium Ion Transport in PEO-Based Solid Polymer Electrolytes Employing a Novel Class of Plasticizers. Solid State Ionics 1997, 98, 167–174. [84] Chung, S. H.; Heitjans, P.; Winter, R.; Bzäucha, W.; Florjańczyk, Z.; Onoda, Y. Enhancement of Ionic Conductivity by the Addition of Plasticizers in Cationic Monoconducting Polymer Electrolytes. Solid State Ionics 1998, 112, 153–159. [85] Alarco, P. J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The Plastic-Crystalline Phase of Succinonitrile as a Universal Matrix for Solid-State Ionic Conductors. Nat. Mater. 2004, 3, 476–481. [86] Fan, L. Z.; Hu, Y. S.; Bhattacharyya, A. J.; Maier, J. Succinonitrile as a Versatile Additive for Polymer Electrolytes. Adv. Funct. Mater. 2007, 17, 2800–2807. [87] Echeverri, M.; Kim, N.; Kyu, T. Ionic Conductivity in Relation to Ternary Phase Diagram of Poly(ethylene oxide), Succinonitrile, and Lithium Bis(trifluoromethane)sulfonimide Blends. Macromolecules 2012, 45, 6068–6077. [88] Wang, C.; Adair, K. R.; Liang, J.; Li, X.; Sun, Y.; Li, X.; Wang, J.; Sun, Q.; Zhao, F.; Lin, X.; et al. Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2019, 29, 1900392. [89] Chaurasia, S. K.; Singh, R. K.; Chandra, S. Dielectric Relaxation and Conductivity Studies on (PEO:LiClO4) Polymer Electrolyte with Added Ionic Liquid [BMIM][PF6]: Evidence of Ion–Ion Interaction. J. Polym. Sci. B Polym. Phys. 2011, 49, 291–300. [90] Polu, A. R.; Rhee, H. W. Ionic Liquid Doped PEO-Based Solid Polymer Electrolytes for Lithium-Ion Polymer Batteries. Int. J. Hydrog. Energy 2017, 42, 7212–7219. [91] Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv. Sci. 2020, 7, 1903088. [92] Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. Adv. Mater. 2019, 31, 1902029. [93] Maia, B. A.; Magalhães, N.; Cunha, E.; Braga, M. H.; Santos, R. M.; Correia, N. Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymer 2022, 14. [94] Liu, S.; Liu, W.; Ba, D.; Zhao, Y.; Ye, Y.; Li, Y.; Liu, J. Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries. Adv. Mater. 2023, 35, 2110423. [95] Wu, N.; Chien, P. H.; Qian, Y.; Li, Y.; Xu, H.; Grundish, N. S.; Xu, B.; Jin, H.; Hu, Y. Y.; Yu, G.; et al. Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte. Angew. Chem. Int. Ed. 2020, 59, 4131–4137. [96] Gu, W.; Li, F.; Liu, T.; Gong, S.; Gao, Q.; Li, J.; Fang, Z. Recyclable, Self-Healing Solid Polymer Electrolytes by Soy Protein-Based Dynamic Network. Adv. Sci. 2022, 9, 2103623. [97] Peng, N.; Kou, W.; Wu, W.; Guo, S.; Wang, Y.; Wang, J. Laminar Composite Solid Electrolyte with Poly(ethylene oxide)-Threaded Metal-Organic Framework Nanosheets for High-Performance All-Solid-State Lithium Battery. Energy Environ. Sci 2023, 6, 12280. [98] Cui, G. Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries. Matter 2020, 2, 805–815. [99] Wang, Z.; Huang, X.; Chen, L. B. Understanding of Effects of Nano-Al2O3 Particles on Ionic Conductivity of Composite Polymer Electrolytes. Electrochem. Solid-State Lett. 2003, 6, E40. [100] Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature 1998, 394, 456–458. [101] Park, C. H.; Kim, D. W.; Prakash, J.; Sun, Y. K. Electrochemical Stability and Conductivity Enhancement of Composite Polymer Electrolytes. Solid State Ionics 2003, 159, 111–119. [102] Premila, R.; Subbu, C.; Rajendran, S.; Selva kumar, K. Experimental Investigation of Nano Filler TiO2 Doped Composite Polymerelectrolytes for Lithium Ion Batteries. Appl. Surf. Sci. 2018, 449, 426–434. [103] Hua, S.; Jing, M. X.; Han, C.; Yang, H.; Chen, H.; Chen, F.; Chen, L. L.; Ju, B. W.; Tu, F. Y.; Shen, X. Q.; et al. A Novel Titania Nanorods-Filled Composite Solid Electrolyte with Improved Room Temperature Performance for Solid-State Li-Ion Battery. Int. J. Energy Res. 2019, 43, 7296–7305. [104] Dissanayake, M. A. K. L.; Jayathilaka, P. A. R. D.; Bokalawala, R. S. P.; Albinsson, I.; Mellander, B. E. Effect of Concentration and Grain Size of Alumina Filler on the Ionic Conductivity Enhancement of the (PEO)9LiCF3SO3:Al2O3 Composite Polymer Electrolyte. J. Power Sources 2003, 119, 409–414. [105] Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). Nano Lett. 2016, 16, 459–465. [106] Huang, K. C.; Li, H. H.; Fan, H. H.; Guo, J. Z.; Xing, Y. M.; Hu, Y. P.; Wu, X. L.; Zhang, J. P. An In Situ-Fabricated Composite Polymer Electrolyte Containing Large-Anion Lithium Salt for All-Solid-State LiFePO4/Li Batteries. ChemElectroChem 2017, 4, 2293–2299. [107] Skaarup, S.; West, K.; Zachau-Christiansen, B. Mixed Phase Solid Electrolytes. Solid State Ionics 1988, 28, 975–978. [108] Croce, F.; Scrosati, B.; Mariotto, G. Electrochemical and Spectroscopic Study of the Transport Properties of Composite Polymer Electrolytes. Chem. Mater. 1992, 4, 1134–1136. [109] Zhu, P.; Yan, C.; Dirican, M.; Zhu, J.; Zang, J.; Selvan, R. K.; Chung, C. C.; Jia, H.; Li, Y.; Kiyak, Y.; et al. Li0.33La0.557TiO3 Ceramic Nanofiber-Enhanced Polyethylene Oxide-Based Composite Polymer Electrolytes for All-Solid-State Lithium Batteries. J. Mater. Chem. A 2018, 6, 4279–4285. [110] Li, D.; Chen, L.; Wang, T.; Fan, L. Z. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-Free Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078. [111] Choi, J. H.; Lee, C. H.; Yu, J. H.; Doh, C. H.; Lee, S. M. Enhancement of Ionic Conductivity of Composite Membranes for All-Solid-State Lithium Rechargeable Batteries Incorporating Tetragonal Li7La3Zr2O12 into a Polyethylene Oxide Matrix. J. Power Sources 2015, 274, 458–463. [112] Zhang, X.; Liu, T.; Zhang, S.; Huang, X.; Xu, B.; Lin, Y.; Xu, B.; Li, L.; Nan, C. W.; Shen, Y. Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785. [113] Zhang, J.; Zheng, C.; Lou, J.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, W. Poly(ethylene oxide) Reinforced Li6PS5Cl Composite Solid Electrolyte for All-Solid-State Lithium Battery: Enhanced Electrochemical Performance, Mechanical Property and Interfacial Stability. J. Power Sources 2019, 412, 78–85. [114] Oh, D. Y.; Kim, K. T.; Jung, S. H.; Kim, D. H.; Jun, S.; Jeoung, S.; Moon, H. R.; Jung, Y. S. Tactical Hybrids of Li+-Conductive Dry Polymer Electrolytes with Sulfide Solid Electrolytes: Toward Practical All-Solid-State Batteries with Wider Temperature Operability. Mater. Today 2022, 53, 7–15. [115] Zhang, Y.; Chen, R.; Wang, S.; Liu, T.; Xu, B.; Zhang, X.; Wang, X.; Shen, Y.; Lin, Y. H.; Li, M.; et al. Free-Standing Sulfide/Polymer Composite Solid Electrolyte Membranes with High Conductance for All-Solid-State Lithium Batteries. Energy Storage Mater. 2020, 25, 145–153. [116] Wang, H.; Wang, Q.; Cao, X.; He, Y.; Wu, K.; Yang, J.; Zhou, H.; Liu, W.; Sun, X. Thiol-Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium-Metal Batteries. Adv. Mater. 2020, 32, 2001259. [117] Wang, Y. J.; Pan, Y.; Kim, D. W. Conductivity Studies on Ceramic Li1.3Al0.3Ti1.7(PO4)3-Filled PEO-Based Solid Composite Polymer Electrolytes. J. Power Sources 2006, 159, 690–701. [118] Chen, L.; Li, Y.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/Garnet Composite Electrolytes for Solid-State Lithium Batteries: From “Ceramic-in-Polymer” to “Polymer-in-Ceramic”. Nano Energy 2018, 46, 176–184. [119] Zheng, J.; Hu, Y. Y. New Insights into the Compositional Dependence of Li-Ion Transport in Polymer–Ceramic Composite Electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120. [120] Liu, M.; Cheng, Z.; Ganapathy, S.; Wang, C.; Haverkate, L. A.; Tułodziecki, M.; Unnikrishnan, S.; Wagemaker, M. Tandem Interface and Bulk Li-Ion Transport in a Hybrid Solid Electrolyte with Microsized Active Filler. ACS Energy Lett. 2019, 4, 2336–2342. [121] Li, Z.; Huang, H. M.; Zhu, J. K.; Wu, J. F.; Yang, H.; Wei, L.; Guo, X. Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. ACS Appl. Mater. Interfaces 2019, 11, 784–791. [122] Wu, L.; Wang, Y.; Tang, M.; Liang, Y.; Lin, Z.; Ding, P.; Zhang, Z.; Wang, B.; Liu, S.; Li, L.; et al. Lithium-Ion Transport Enhancement with Bridged Ceramic-Polymer Interface. Energy Stor. Mater. 2023. [123] Huo, H.; Chen, Y.; Luo, J.; Yang, X.; Guo, X.; Sun, X. Rational Design of Hierarchical “Ceramic-in-Polymer” and “Polymer-in-Ceramic” Electrolytes for Dendrite-Free Solid-State Batteries. Adv. Energy Mater. 2019, 9, 1804004. [124] Wang, W.; Yi, E.; Fici, A. J.; Laine, R. M.; Kieffer, J. Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles. J. Phys. Chem. C 2017, 121, 2563–2573. [125] Wang, L.; Yang, W.; Li, X.; Evans, D. G. Nanocomposite Polymer Electrolyte Doped with Nanosized Li0.1Ca0.9TiO3 for Lithium Polymer Batteries. Electrochem. solid-state lett. 2010, 13, A7. [126] Zhang, J.; Zhao, N.; Zhang, M.; Li, Y.; Chu, P. K.; Guo, X.; Di, Z.; Wang, X.; Li, H. Flexible and Ion-Conducting Membrane Electrolytes for Solid-State Lithium Batteries: Dispersion of Garnet Nanoparticles in Insulating Polyethylene Oxide. Nano Energy 2016, 28, 447–454. [127] Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693. [128] Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [129] Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A.; de Klerk, N. J. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y.; et al. Clarifying the Relationship between Redox Activity and Electrochemical Stability in Solid Electrolytes. Nat. Mater. 2020, 19, 428–435. [130] Zhu, J.; Zhao, J.; Xiang, Y.; Lin, M.; Wang, H.; Zheng, B.; He, H.; Wu, Q.; Huang, J. Y.; Yang, Y. Chemomechanical Failure Mechanism Study in NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries. Chem. Mater. 2020, 32, 4998–5008. [131] Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Interphase Formation on Lithium Solid Electrolytes—An In Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy. Solid State Ionics 2015, 278, 98–105. [132] Meesala, Y.; Chen, C. Y.; Jena, A.; Liao, Y. K.; Hu, S. F.; Chang, H.; Liu, R. S. All-Solid-State Li-Ion Battery Using Li1.5Al0.5Ge1.5(PO4)3 As Electrolyte Without Polymer Interfacial Adhesion. J. Phys. Chem. C 2018, 122, 14383–14389. [133] Hartmann, P.; Leichtweiss, T.; Busche, M. R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. J. Phys. Chem. C 2013, 117, 21064–21074. [134] Chung, H.; Kang, B. Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell. Chem. Mater. 2017, 29, 8611–8619. [135] Tippens, J.; Miers, J. C.; Afshar, A.; Lewis, J. A.; Cortes, F. J. Q.; Qiao, H.; Marchese, T. S.; Di Leo, C. V.; Saldana, C.; McDowell, M. T. Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte. ACS Energy Lett. 2019, 4, 1475–1483. [136] Paolella, A.; Zhu, W.; Xu, G. L.; La Monaca, A.; Savoie, S.; Girard, G.; Vijh, A.; Demers, H.; Perea, A.; Delaporte, N.; et al. Understanding the Reactivity of a Thin Li1.5Al0.5Ge1.5(PO4)3 Solid-State Electrolyte toward Metallic Lithium Anode. Adv. Energy Mater. 2020, 10, 2001497. [137] Kaboli, S.; Girard, G.; Zhu, W.; Gheorghe Nita, A.; Vijh, A.; George, C.; Trudeau, M. L.; Paolella, A. Thermal Evolution of NASICON Type Solid-State Electrolytes with Lithium at High Temperature via In Situ Scanning Electron Microscopy. ChemComm 2021, 57, 11076–11079. [138] Cheng, Q.; Li, A.; Li, N.; Li, S.; Zangiabadi, A.; Li, T. D.; Huang, W.; Li, A. C.; Jin, T.; Song, Q.; et al. Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating. Joule 2019, 3, 1510–1522. [139] Liu, Y.; Li, C.; Li, B.; Song, H.; Cheng, Z.; Chen, M.; He, P.; Zhou, H. Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. Adv. Energy Mater. 2018, 8, 1702374. [140] Zhang, Y.; Liu, H.; Xie, Z.; Qu, W.; Liu, J. Improving the Stability of Lithium Aluminum Germanium Phosphate with Lithium Metal by Interface Engineering. Nanomaterials 2022, 12. [141] Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc. 2016, 138, 9385–9388. [142] Zhao, Y.; Huang, Z.; Chen, S.; Chen, B.; Yang, J.; Zhang, Q.; Ding, F.; Chen, Y.; Xu, X. A Promising PEO/LAGP Hybrid Electrolyte Prepared by a Simple Method for All-Solid-State Lithium Batteries. Solid State Ionics 2016, 295, 65–71. [143] Wang, C.; Yang, Y.; Liu, X.; Zhong, H.; Xu, H.; Xu, Z.; Shao, H.; Ding, F. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702. [144] Peng, J.; Wu, L. N.; Lin, J. X.; Shi, C. G.; Fan, J. J.; Chen, L. B.; Dai, P.; Huang, L.; Li, J. T.; Sun, S. G. A Solid-State Dendrite-Free Lithium-Metal Battery with Improved Electrode Interphase and Ion Conductivity Enhanced by a Bifunctional Solid Plasticizer. J. Mater. Chem. A 2019, 7, 19565–19572. [145] Liu, Q.; Yu, Q.; Li, S.; Wang, S.; Zhang, L.; Cai, B.; Zhou, D.; Li, B. Safe LAGP-Based All Solid-State Li Metal Batteries with Plastic Super-Conductive Interlayer Enabled by In-Situ Solidification. Energy Stor. Mater. 2020, 25, 613–620. [146] Zha, W.; Ruan, Y.; Wen, Z. A Janus Li1.5Al0.5Ge1.5(PO4)3 with High Critical Current Density for High-Voltage Lithium Batteries. Chem. Eng. J. 2022, 429, 132506. [147] Bragg, W. H.; Bragg, W. L. The Reflection of X-rays by Crystals. Proc. Math. Phys. Eng. Sci. 1997, 88, 428–438. [148] Smekal, A. Zur Quantentheorie der Dispersion. Naturwissenschaften 1923, 11, 873–875. [149] Raman, C. V.; Krishnan, K. S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [150] Tong, Z.; Lai, Y.-M.; Liu, C.-E.; Liao, S.-C.; Chen, J.-M.; Hu, S.-F.; Liu, R.-S. Degradation of a Li1.5Al0.5Ge1.5(PO4)3-Based Solid-State Li-Metal Battery: Corrosion of Li1.5Al0.5Ge1.5(PO4)3 against the Li-Metal Anode. ACS Appl. Energy Mater. 2022, 5, 11694–11704. [151] Chen, C. C.; Fu, L.; Maier, J. Synergistic, Ultrafast Mass Storage and Removal in Artificial Mixed Conductors. Nature 2016, 536, 159−164. [152] Ajili, M.; Louati, B. Studies on Structural, Optical and Electrical Properties of K2Ba3(P2O7)2. Appl. Phys. A 2021, 128, 73. [153] Irfan, M.; Sri P, S.; Baraneedharan, P.; Reddy, B. M. A Comparative Study of Nanohydroxyapetite Obtained from Natural Shells and Wet Chemical Process. J. Mater. Sci. Surf. Eng. 2020, 7, 938−943. [154] Boonchom, B.; Baitahe, R. Synthesis and Characterization of Nanocrystalline Manganese Pyrophosphate Mn2P2O7. Mater. Lett. 2009, 63, 2218−2220. [155] Tian, H. K.; Liu, Z.; Ji, Y.; Chen, L. Q.; Qi, Y. Interfacial Electronic Properties Dictate Li Dendrite Growth in Solid Electrolytes. Chem. Mater. 2019, 31, 7351−7359. [156] Stegmaier, S.; Schierholz, R.; Povstugar, I.; Barthel, J.; Rittmeyer, S. P.; Yu, S.; Wengert, S.; Rostami, S.; Kungl, H.; Reuter, K.; et al. Nano-Scale Complexions Facilitate Li Dendrite-Free Operation in LATP Solid-State Electrolyte. Adv. Energy Mater. 2021, 11, 2100707. [157] Ouyang, B.; Wang, J.; He, T.; Bartel, C. J.; Huo, H.; Wang, Y.; Lacivita, V.; Kim, H.; Ceder, G. Synthetic Accessibility and Stability Rules of NASICONs. Nat. Commun 2021, 12, 5752. [158] Wang, S.; Xu, H.; Li, W.; Dolocan, A.; Manthiram, A. Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. J. Am. Chem. Soc. 2018, 140, 250−257. [159] Sun, Q.; He, L.; Zheng, F.; Wang, Z.; An Oh, S. J.; Sun, J.; Zhu, K.; Lu, L.; Zeng, K. Decomposition Failure of Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolytes Induced by Electric Field: A Multi-Scenario Study Using Scanning Probe Microscopy-Based Techniques. J. Power Sources 2020, 471, 228468. [160] Liu, C.; Rui, K.; Shen, C.; Badding, M. E.; Zhang, G.; Wen, Z. Reversible Ion Exchange and Structural Stability of Garnet-Type Nb-Doped Li7La3Zr2O12 in Water for Applications in Lithium Batteries. J. Power Sources 2015, 282, 286−293. [161] Li, Y.; Chen, X.; Dolocan, A.; Cui, Z.; Xin, S.; Xue, L.; Xu, H.; Park, K. S.; Goodenough, J. B. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. J. Am. Chem. Soc. 2018, 140, 6448−6455. [162] Chen, R. J.; Zhang, Y. B.; Liu, T.; Xu, B. Q.; Lin, Y. H.; Nan, C. W.; Shen, Y. Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. ACS Appl. Mater. Interfaces 2017, 9, 9654−9661. [163] Johan, M. R.; Shy, O. H.; Ibrahim, S.; Mohd Yassin, S. M.; Hui, T. Y. Effects of Al2O3 Nanofiller and EC Plasticizer on the Ionic Conductivity Enhancement of Solid PEO–LiCF3SO3 Solid Polymer Electrolyte. Solid State Ionics 2011, 196, 41−47. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87857 | - |
| dc.description.abstract | 為因應全球暖化之氣候變遷議題,各國皆以節能減碳之策略為目標。提升儲能效率乃節能之首要任務,鋰離子電池為儲能系統之大宗。然,傳統式液態電解質之可燃性為安全隱患。故,具阻燃性與高能量密度之無機固態電解質乃為電池研究之焦點。
本研究第一部分將探討鈉超離子導體型(NASICON)固態電解質(Li1.5Al0.5Ge1.5(PO4)3; LAGP)與鋰金屬之界面失效問題。組裝Li|LAGP|LiFePO4電池並藉X光繞射儀分析(012)晶面消失之原因,經各項光譜如FT-IR、Raman與XPS以證實LAGP之受腐蝕之過程,由TOF-SIMS與AFM證實該反應生成混合導電界面層。此外,經對稱電池之測試結果,揭示離子與電子傳輸對LAGP 之電化學腐蝕反應具相同重要之作用。 第二部分之研究以複合式聚合物電解質(composite polymer electrolyte; CPE)為LAGP與鋰金屬間之界面層,以避免LAGP與鋰金屬接觸而引發界面失效。藉石榴石型(garnet-type)固態電解質(Li6.4La3Zr1.4Ta0.6O12; LLZTO)粉末以及丁二腈(succinonitrile; SN)共同引入PEO基聚合物電解質,以配製為界面修飾層之複合式聚合物電解質。導入各項填料(filler)之結果將促使聚合物具優異電化學性能,鋰離子導電率將提升一數量級。該電解質將作為LAGP之界面修飾層,於Li|CPE|LAGP|CPE|Li對稱電池之電化學測試中,保持穩定達300小時且具75 mV之低過電位,而Li|CPE|LAGP|LiFePO4全電池測試之放電容量達136 mAh/g且於75次循環之放電容量保持率達90%。 本研究之新穎性為基於文獻報導之失效反應,深入探討實質原理,並藉各項儀器揭示失效機制之另一觀點。此外,藉PEO、LiTFSI、LLZTO與SN組成之複合式聚合物電解質,作為LAGP之界面修飾材料,以開發高性能之固態電池。 | zh_TW |
| dc.description.abstract | The primary objective of countries worldwide in response to the issue of climate change caused by global warming is to prioritize energy conservation and carbon reduction. Within the realm of energy conservation, improving energy storage efficiency stands as a top priority, with lithium-ion batteries serving as the primary energy storage systems. However, the flammability of traditional liquid electrolytes poses a significant safety hazard. Consequently, the focus of battery research has shifted towards developing inorganic solid-state electrolytes with flame retardancy and high energy density.
The first section of this study aims to investigate the interface failure between the sodium super-ionic conductor (NASICON) solid-state electrolyte, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), and lithium metal. Through the assembly and analysis of a Li|LAGP|LiFePO4 battery using X-ray diffraction, the cause of the disappearance of the (012) crystal plane will be determined. Various spectroscopic techniques, including FT-IR, Raman, and XPS, will be utilized to confirm the corrosion process of LAGP. The formation of a mixed conductive interface layer will be confirmed using TOF-SIMS and AFM. Additionally, a symmetrical battery test will reveal that both ion and electron transport play equally critical roles in the electrochemical corrosion reaction of LAGP. In the second section of the study, a composite polymer electrolyte (CPE) will be used as the interface layer between LAGP and lithium metal to prevent interface failure caused by direct contact. The composite polymer electrolyte will be prepared by incorporating Li6.4La3Zr1.4Ta0.6O12 (LLZTO) powder and succinonitrile (SN) into a PEO-based polymer electrolyte as the interface modifier layer. The introduction of various fillers will promote the excellent electrochemical performance of the polymer electrolyte, resulting in a ten-fold increase in lithium-ion conductivity. The electrolyte will be utilized as the interface modifier layer of LAGP and will maintain stability for 300 hours and a low overpotential of 75 mV in the electrochemical test of a Li|CPE|LAGP|CPE|Li symmetrical battery. Furthermore, the discharge capacity of the Li|CPE|LAGP|LiFePO4 full battery test will reach 136 mAh/g, with a discharge capacity retention rate of 90% after 75 cycles. The novelty of this study lies in the thorough exploration of the actual principles underlying the failure reaction documented in existing literature, and the revelation of the failure mechanism from an alternative perspective using various instruments. Moreover, a composite polymer electrolyte composed of PEO, LiTFSI, LLZTO, and SN will be developed as the interface modifier material of LAGP to produce high-performance solid-state batteries. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-24T16:07:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-24T16:07:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1鋰離子電池之發展 1 1.2 鋰離子二次電池 2 1.3鋰離子電池之陰極材料 5 1.3.1 鋰鈷氧化物 5 1.3.2 鋰錳氧化物 6 1.3.3 磷酸鐵鋰 6 1.4鋰離子電池之陽極材料 7 1.4.1 碳基材料 7 1.4.2 鋰金屬 8 1.4.3 鈦酸鋰 9 1.5液態電解質 9 1.6固態電解質 9 1.6.1氧化物型之固態電解質 11 1.6.1.1石榴石型之固態電解質 11 1.6.1.2鈉超離子導體型之固態電解質 13 1.6.2硫化物型之固態電解質 14 1.6.3鹵化物型之固態電解質 15 1.6.4聚合物型之固態電解質 16 1.7 複合式聚合物之固態電解質 25 1.7.1各類填料 26 1.7.1.1 惰性填料 27 1.7.1.2 活性填料 30 1.7.1.3 功能化填料 33 1.7.2活性填料之濃度與型態之影響 34 1.8 固態電解質之界面問題 39 1.8.1 LAGP之固態電解質之失效分析 41 1.9 固態電解質之界面修飾 43 1.10研究動機與目的 47 第二章 實驗步驟與儀器分析原理 48 2.1 化學藥品 48 2.2 實驗步驟 49 2.2.1 陰極漿料之塗佈 49 2.2.2 複合式聚合物電解質之配製 50 2.2.3 固態鋰離子電池之組裝 51 2.3 儀器分析 52 2.3.1 X光繞射儀(X-ray diffractometer; XRD) 53 2.3.2 動態光散射之粒徑分析(dynamic light scattering particle analyzer) 54 2.3.3 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy) 55 2.3.4 拉曼光譜儀(Raman spectroscopy) 57 2.3.5 熱重與差熱分析儀(thermogravimetric analysis, differential thermal analysis; TGA, DTA) 58 2.3.6 掃描式電子顯微鏡(scanning electron microscope; SEM) 59 2.3.7 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 60 2.3.8 原子力顯微鏡(atomic force microscope; AFM) 62 2.3.9 飛行時間二次離子質譜儀(time-of-flight secondary ion mass spectrometer; TOF-SIMS) 64 2.3.10 電化學阻抗頻譜(electrical impedance spectroscopy; EIS) 65 2.3.11 充放電量測儀(cycling test machine) 66 第三章 結果與討論 68 3.1 Li1.5Al0.5Ge1.5(PO4)3之陽極界面失效分析 68 3.1.1 X光繞射圖譜鑑定 68 3.1.2交流阻抗測試 70 3.1.3 陽極界面失效分析 72 3.1.4 混合離子/電子導體界面 78 3.1.5 離子雙向擴散之分析 80 3.2 應用於LAGP界面修飾之複合式聚合物固態電解質 82 3.2.1 LLZTO奈米粉末之分析 82 3.2.2 複合式聚合物固態電解質之分析 86 3.2.2.1 交流阻抗測試 86 3.2.2.2 材料之結晶度與光譜分析 88 3.2.2.3 充放電測試 90 3.2.3 LAGP界面修飾之電化學性能分析 92 第四章 結論 97 參考文獻 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 界面修飾 | zh_TW |
| dc.subject | LAGP固態電解質 | zh_TW |
| dc.subject | 混合離子界面層 | zh_TW |
| dc.subject | 鋰金屬電池 | zh_TW |
| dc.subject | Li-metal battery | en |
| dc.subject | LAGP solid-state electrolyte | en |
| dc.subject | interface modification | en |
| dc.subject | mixed-conductive interphase | en |
| dc.title | 應用於鋰離子電池之鈉超離子導體型固態電解質界面修飾 | zh_TW |
| dc.title | Interface Modification of Na Superionic Conductor (NASICON)-Type Solid-State Electrolyte for Lithium-Ion Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳乃立;張仍奎;姜昌明;方家振 | zh_TW |
| dc.contributor.oralexamcommittee | Nae-Lih Wu;Jeng-Kuei Chang;Chang-Ming Jiang;Chia-Chen Fang | en |
| dc.subject.keyword | LAGP固態電解質,鋰金屬電池,混合離子界面層,界面修飾, | zh_TW |
| dc.subject.keyword | LAGP solid-state electrolyte,Li-metal battery,mixed-conductive interphase,interface modification, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202301007 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-06-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
