Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87856
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹zh_TW
dc.contributor.advisorRu-Shi Liuen
dc.contributor.author蟻嘉輝zh_TW
dc.contributor.authorChia-Hui Yien
dc.date.accessioned2023-07-24T16:07:20Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-24-
dc.date.issued2023-
dc.date.submitted2023-06-14-
dc.identifier.citation[1] Chombo, P. V.; Laoonual, Y. A Review of Safety Strategies of a Li-Ion Battery. J. Power Sources 2020, 478, 228649.
[2] Li, C.; Wang, Z. Y.; He, Z. J.; Li, Y. J.; Mao, J.; Dai, K. H.; Yan, C.; Zheng, J. C. An Advance Review of Solid-State Battery: Challenges, Progress and Prospects. Sustain. Mater. Technol. 2021, 29, e00297.
[3] Lee, J. S.; Tai Kim, S.; Cao, R.; Choi, N. S.; Liu, M.; Lee, K. T.; Cho, J. Metal–Air Batteries with High Energy Density: Li–Air Versus Zn–Air. Adv. Energy Mater. 2011, 1, 34–50.
[4] Li, Y.; Lu, J. Metal–Air Batteries: Will They be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Lett. 2017, 2, 1370–1377.
[5] Schechner, S. The Art of Making Leyden Jars and Batteries According to Benjamin Franklin. Rittenhouse 2015, 26, 1–11.
[6] Bresadola, M. Medicine and Science in the Life of Luigi Galvani (1737–1798). Brain Res. Bull. 1998, 46, 367–380.
[7] Scrosati, B. History of Lithium Batteries. J. Solid State Electrochem. 2011, 15, 1623–1630.
[8] Reddy, M. V.; Mauger, A.; Julien, C. M.; Paolella, A.; Zaghib, K. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884.
[9] Lopes, P. P.; Stamenkovic, V. R. Past, Present, and Future of Lead-Acid Batteries. Science 2020, 369, 923–924.
[10] Fan, X.; Liu, B.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Lv, X.; Xie, Y.; Chen, B.; Hu, W. Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. Trans. Tianjin Univ. 2020, 26, 92–103.
[11] Anoopkumar, V.; John, B.; Mercy, T. Potassium-Ion Batteries: Key to Future Large-Scale Energy Storage? ACS Appl. Energy Mater. 2020, 3, 9478–9492.
[12] Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126–1127.
[13] Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4302.
[14] Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals. Nano Lett. 2015, 15, 1911–1917.
[15] Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B. LixCoO2 (0< x<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789.
[16] Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J. An Overview on the Advances of LiCoO2 Cathodes for Lithium‐Ion Batteries. Adv. Energy Mater. 2021, 11, 2000982.
[17] Yoshino, A. The Birth of the Lithium‐Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800.
[18] Hu, Y. Q.; Xiong, L.; Liu, X. Q.; Zhao, H. Y.; Liu, G. T.; Bai, L. G.; Cui, W. R.; Gong, Y.; Li, X. D. Equation of State of LiCoO2 Under 30 GPa Pressure. Chin. Phys. B 2019, 28, 016402.
[19] Nagaura, T. Lithium Ion Rechargeable Battery. Prog. Batteries Sol. Cells 1990, 9, 209.
[20] Padhi, A.; Nanjundaswamy, K.; Masquelier, C.; Okada, S.; Goodenough, J. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613.
[21] Zhang, W. J. Structure and Performance of LiFePO4 Cathode Materials: A Review. J. Power Sources 2011, 196, 2962–2970.
[22] Castro, L.; Dedryvère, R.; El Khalifi, M.; Lippens, P. E.; Bréger, J.; Tessier, C.; Gonbeau, D. The Spin-Polarized Electronic Structure of LiFePO4 and FePO4 Evidenced by In-Lab XPS. J. Phys. Chem. C 2010, 114, 17995–18000.
[23] Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Flexible Zn–and Li–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.
[24] Zhang, X.; Mu, X.; Yang, S.; Wang, P.; Guo, S.; Han, M.; He, P.; Zhou, H. Research Progress for the Development of Li–Air Batteries: Addressing Parasitic Reactions Arising from Air Composition. Energy Environ. Mater. 2018, 1, 61–74.
[25] Hayat, K.; Vega, L.; AlHajaj, A. What have We Learned by Multiscale Models on Improving the Cathode Storage Capacity of Li–Air Batteries? Recent Advances and Remaining Challenges. Renew. Sust. Energ. Rev. 2022, 154, 111849.
[26] Jung, J. W.; Cho, S. H.; Nam, J. S.; Kim, I. D. Current and Future Cathode Materials for Non-Aqueous Li–Air (O2) Battery Technology–A Focused Review. Energy Storage Mater. 2020, 24, 512–528.
[27] Yoo, K.; Banerjee, S.; Kim, J.; Dutta, P. A Review of Lithium–Air Battery Modeling Studies. Energies 2017, 10, 1748.
[28] Wang, H.; Wang, X.; Li, M.; Zheng, L.; Guan, D.; Huang, X.; Xu, J.; Yu, J. Porous Materials Applied in Nonaqueous Li–O2 Batteries: Status and Perspectives. Adv. Mater. 2020, 32, 2002559.
[29] Abraham, K.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1.
[30] Xie, J.; Yao, X.; Cheng, Q.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. Three Dimensionally Ordered Mesoporous Carbon as a Stable, High‐Performance Li–O2 Battery Cathode. Angew. Chem. Int. Ed. 2015, 127, 4373–4377.
[31] Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev. 2020, 120, 6626–6683.
[32] Hyun, S.; Son, B.; Kim, H.; Sanetuntikul, J.; Shanmugam, S. The Synergistic Effect of Nickel Cobalt Sulfide Nanoflakes and Sulfur-Doped Porous Carboneous Nanostructure as Bifunctional Electrocatalyst for Enhanced Rechargeable Li–O2 Batteries. Appl. Catal. B 2020, 263, 118283.
[33] Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.
[34] Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium−Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193−2203.
[35] Lee, H.; Lee, D. J.; Kim, M.; Kim, H.; Cho, Y. S.; Kwon, H. J.; Lee, H. C.; Park, C. R.; Im, D. High-Energy Density Li–O2 Battery with a Polymer Electrolyte-Coated CNT Electrode via the Layer-by-Layer Method. ACS Appl. Mater. Interfaces 2020, 12, 17385–17395.
[36] Rai, V.; Lee, K. P.; Safanama, D.; Adams, S.; Blackwood, D. J. Oxygen Reduction and Evolution Reaction (ORR and OER) Bifunctional Electrocatalyst Operating in a Wide pH Range for Cathodic Application in Li–Air Batteries. ACS Appl. Energy Mater. 2020, 3, 9417–9427.
[37] Li, X.; Yang, S.; Feng, N.; He, P.; Zhou, H. Progress in Research on Li–CO2 Batteries: Mechanism, Catalyst and Performance. Chinese J. Catal. 2016, 37, 1016–1024.
[38] Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y. A Rechargeable Li–CO2 Battery with a Gel Polymer Electrolyte. Angew. Chem. Int. Ed. 2017, 56, 9126–9130.
[39] Takechi, K.; Shiga, T.; Asaoka, T. A Li–O2/CO2 Battery. Chem. Comm. 2011, 47, 3463–3465.
[40] Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L. Rechargeable Li/CO2–O2 (2:1) Battery and Li/CO2 Battery. Energy Environ. Sci. 2014, 7, 677–681.
[41] Zhang, Z.; Zhang, Q.; Chen, Y.; Bao, J.; Zhou, X.; Xie, Z.; Wei, J.; Zhou, Z. The First Introduction of Graphene to Rechargeable Li–CO2 Batteries. Angew. Chem. Int. Ed. 2015, 127, 6650–6653.
[42] Xu, S.; Das, S. K.; Archer, L. A. The Li–CO2 Battery: A Novel Method for CO2 Capture and Utilization. RSC Adv. 2013, 3, 6656–6660.
[43] Li, J.; Wang, L.; Zhao, Y.; Li, S.; Fu, X.; Wang, B.; Peng, H. Li−CO2 Batteries Efficiently Working at Ultra‐Low Temperatures. Adv. Funct. Mater. 2020, 30, 2001619.
[44] Goodarzi, M.; Nazari, F.; Illas, F. Assessing the Performance of Cobalt Phthalocyanine Nanoflakes as Molecular Catalysts for Li-Promoted Oxalate Formation in Li–CO2–Oxalate Batteries. J. Phys. Chem. C 2018, 122, 25776–25784.
[45] Wang, S.; Song, H.; Zhu, T.; Chen, J.; Yu, Z.; Wang, P.; Yu, L.; Xu, J.; Zhou, H.; Chen, K. An Ultralow-Charge-Overpotential and Long-Cycle-Life Solid-State Li–CO2 Battery Enabled by Plasmon-Enhanced Solar Photothermal Catalysis. Nano Energy 2022, 100, 107521.
[46] Li, Y.; Lu, Y.; Zhao, C.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X.; Chen, L. Recent Advances of Electrode Materials for Low-Cost Sodium-Ion Batteries Towards Practical Application for Grid Energy Storage. Energy Stor. Mater. 2017, 7, 130–151.
[47] Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A Comprehensive Review of Sodium Layered Oxides: Powerful Cathodes for Na-Ion Batteries. Energy Environ. Sci. 2015, 8, 81–102.
[48] Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-Ion Batteries: Present and Future. Chem. Soc. Rev. 2017, 46, 3529–3614.
[49] Joost, M.; Alexander, S. 17th International Meeting on Lithium Batteries–Highlights of the Latest Research on Post-Lithium-Ion Battery Chemistry. Johns. Matthey Technol. Rev. 2015, 59, 56–63.
[50] Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-Life Anode Material for Rechargeable Sodium-Ion Batteries. J. Mater. Chem. 2013, 1, 10662–10666.
[51] Mu, X.; Pan, H.; He, P.; Zhou, H. Li–CO2 and Na–CO2 Batteries: Toward Greener and Sustainable Electrical Energy Storage. Adv. Mater. 2020, 32, 1903790.
[52] Hartmann, P.; Bender, C. L.; Vračar, M.; Dürr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A Rechargeable Room-Temperature Sodium Superoxide (NaO2) Battery. Nat. Mater. 2013, 12, 228–232.
[53] Khan, Z.; Vagin, M.; Crispin, X. Can Hybrid Na–Air Batteries Outperform Nonaqueous Na–O2 Batteries? Adv. Sci. 2020, 7, 1902866.
[54] Yin, W. W.; Fu, Z. W. The Potential of Na–Air Batteries. ChemCatChem 2017, 9, 1545–1553.
[55] Peled, E.; Golodnitsky, D.; Mazor, H.; Goor, M.; Avshalomov, S. Parameter Analysis of a Practical Lithium–and Sodium–Air Electric Vehicle Battery. J. Power Sources 2011, 196, 6835–6840.
[56] Wu, F.; Xing, Y.; Lai, J.; Zhang, X.; Ye, Y.; Qian, J.; Li, L.; Chen, R. Micrometer‐Sized RuO2 Catalysts Contributing to Formation of Amorphous Na‐Deficient Sodium Peroxide in Na–O2 Batteries. Adv. Funct. Mater. 2017, 27, 1700632.
[57] Lin, X.; Sun, Q.; Doyle Davis, K.; Li, R.; Sun, X. The Application of Carbon Materials in Nonaqueous Na–O2 Batteries. Carbon Energy 2019, 1, 141–164.
[58] Yadegari, H.; Sun, Q.; Sun, X. Sodium–Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective. Adv. Mater. 2016, 28, 7065–7093.
[59] Wu, C.; Yang, Q.; Zheng, Z.; Jia, L.; Fan, Q.; Gu, Q.; Li, J.; Sharma, S.; Liu, H. K.; Yang, W. Boosting Na–O2 Battery Performance by Regulating the Morphology of NaO2. Energy Stor. Mater. 2023, 54, 1–9.
[60] Bender, C. L.; Schröder, D.; Pinedo, R.; Adelhelm, P.; Janek, J. One‐or Two‐Electron Transfer? The Ambiguous Nature of the Discharge Products in Sodium–Oxygen Batteries. Angew. Chem. Int. Ed. 2016, 55, 4640–4649.
[61] Hartmann, P.; Bender, C. L.; Sann, J.; Dürr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P. A Comprehensive Study on the Cell Chemistry of the Sodium Superoxide (NaO2) Battery. Phys. Chem. Chem. Phys. 2013, 15, 11661–11672.
[62] Hartmann, P.; Heinemann, M.; Bender, C. L.; Graf, K.; Baumann, R. P.; Adelhelm, P.; Heiliger, C.; Janek, J. Discharge and Charge Reaction Paths in Sodium–Oxygen Batteries: Does NaO2 form by Direct Electrochemical Growth or by Precipitation from Solution? J. Phys. Chem. C. 2015, 119, 22778–22786.
[63] Ma, L.; Zhang, D.; Lei, Y.; Yuan, Y.; Wu, T.; Lu, J.; Amine, K. High-Capacity Sodium Peroxide Based Na–O2 Batteries with Low Charge Overpotential via a Nanostructured Catalytic Cathode. ACS Energy Lett. 2018, 3, 276–277.
[64] Xia, C.; Black, R.; Fernandes, R.; Adams, B.; Nazar, L. F. The Critical Role of Phase-Transfer Catalysis in Aprotic Sodium Oxygen Batteries. Nat. Chem. 2015, 7, 496–501.
[65] Zhao, S.; Qin, B.; Chan, K. Y.; Li, C. Y. V.; Li, F. Recent Development of Aprotic Na−O2 Batteries. Batte. Supercaps 2019, 2, 725−742.
[66] Sun, B.; Pompe, C.; Dongmo, S.; Zhang, J.; Kretschmer, K.; Schröder, D.; Janek, J.; Wang, G. Challenges for Developing Rechargeable Room‐Temperature Sodium Oxygen Batteries. Adv. Mater. Technol. 2018, 3, 1800110.
[67] Das, S. K.; Xu, S.; Archer, L. A. Carbon Dioxide Assist for Non-Aqueous Sodium–Oxygen Batteries. Electrochem. Commun. 2013, 27, 59–62.
[68] Hu, X.; Sun, J.; Li, Z.; Zhao, Q.; Chen, C.; Chen, J. Rechargeable Room‐Temperature Na–CO2 Batteries. Angew. Chem. Int. Ed. 2016, 55, 6482–6486.
[69] Guo, L.; Li, B.; Thirumal, V.; Song, J. Advanced Rechargeable Na–CO2 Batteries Enabled by a Ruthenium@Porous Carbon Composite Cathode with Enhanced Na2CO3 Reversibility. Chem. Comm. 2019, 55, 7946–7949.
[70] Zhao, Z.; Pang, L.; Su, Y.; Liu, T.; Wang, G.; Liu, C.; Wang, J.; Peng, Z. Deciphering CO2 Reduction Reaction Mechanism in Aprotic Li–CO2 Batteries Using In Situ Vibrational Spectroscopy Coupled with Theoretical Calculations. ACS Energy Lett. 2022, 7, 624–631.
[71] Zheng, Z.; Wu, C.; Gu, Q.; Konstantinov, K.; Wang, J. Research Progress and Future Perspectives on Rechargeable Na–O2 and Na–CO2 Batteries. Energy Environ. Mater. 2021, 4, 158–177.
[72] Xu, B.; Zhang, D.; Chang, S.; Hou, M.; Peng, C.; Xue, D.; Yang, B.; Lei, Y.; Liang, F. Fabrication of Long-Life Quasi-Solid-State Na–CO2 Battery by Formation of Na2C2O4 Discharge Product. Cell Rep. Phys. Sci. 2022, 3, 100973.
[73] Tan, C.; Wang, A.; Cao, D.; Yu, F.; Wu, Y.; He, X.; Chen, Y. Unravelling the Complex Na2CO3 Electrochemical Process in Rechargeable Na–CO2 Batteries. Adv. Energy Mater. 2023, 1, 2204191.
[74] Wadhawan, J. D.; Welford, P. J.; Maisonhaute, E.; Climent, V.; Lawrence, N. S.; Compton, R. G.; McPeak, H. B.; Hahn, C. E. Microelectrode Studies of the Reaction of Superoxide with Carbon Dioxide in Dimethyl Sulfoxide. J. Phys. Chem. B. 2001, 105, 10659–10668.
[75] Sakamoto, R.; Yamashita, M.; Nakamoto, K.; Zhou, Y.; Yoshimoto, N.; Fujii, K.; Yamaguchi, T.; Kitajou, A.; Okada, S. Local Structure of a Highly Concentrated NaClO4 Aqueous Solution-Type Electrolyte for Sodium Ion Batteries. Phys. Chem. Chem. Phys. 2020, 22, 26452−26458.
[76] Olabi, A. G.; Sayed, E. T.; Wilberforce, T.; Jamal, A.; Alami, A. H.; Elsaid, K.; Rahman, S. M. A.; Shah, S. K.; Abdelkareem, M. A. Metal–Air Batteries—A Review. Energies 2021, 14, 7373.
[77] Xu, S.; Lu, Y.; Wang, H.; Abruña, H. D.; Archer, L. A. A Rechargeable Na–CO2/O2 Battery Enabled by Stable Nanoparticle Hybrid Electrolytes. J. Mater. Chem. 2014, 2, 17723–17729.
[78] Kim, C.; Kim, J.; Joo, S.; Bu, Y.; Liu, M.; Cho, J.; Kim, G. Efficient CO2 Utilization via A Hybrid Na–CO2 System Based on CO2 Dissolution. iScience 2018, 9, 278–285.
[79] Hu, X.; Li, Z.; Zhao, Y.; Sun, J.; Zhao, Q.; Wang, J.; Tao, Z.; Chen, J. Quasi-Solid-State Rechargeable Na–CO2 Batteries with Reduced Graphene Oxide Na Anodes. Sci. Adv. 2017, 3, e1602396.
[80] Wang, X.; Zhang, X.; Lu, Y.; Yan, Z.; Tao, Z.; Jia, D.; Chen, J. Flexible and Tailorable Na−CO2 Batteries Based on an All‐Solid‐State Polymer Electrolyte. ChemElectroChem 2018, 5, 3628−3632.
[81] Im, E.; Ryu, J. H.; Baek, K.; Moon, G. D.; Kang, S. J. “Water-in-Salt” and NASICON Electrolyte-Based Na–CO2 Battery. Energy Storage Mater. 2021, 37, 424–432.
[82] Tong, Z.; Wang, S. B.; Fang, M. H.; Lin, Y. T.; Tsai, K. T.; Tsai, S. Y.; Yin, L. C.; Hu, S. F.; Liu, R. S. Na–CO2 Battery with NASICON-Structured Solid-State Electrolyte. Nano Energy 2021, 85, 105972.
[83] Mao, Y.; Chen, X.; Cheng, H.; Lu, Y.; Xie, J.; Zhang, T.; Tu, J.; Xu, X.; Zhu, T.; Zhao, X. Forging Inspired Processing of Sodium‐Fluorinated Graphene Composite as Dendrite‐Free Anode for Long‐Life Na–CO2 Cells. Energy Environ. Mater. 2022, 5, 572–581.
[84] Liu, W.; Sun, Q.; Yang, Y.; Xie, J. Y.; Fu, Z. W. An Enhanced Electrochemical Performance of a Sodium–Air Battery with Graphene Nanosheets as Air Electrode Catalysts. Chem. Comm. 2013, 49, 1951–1953.
[85] Jian, Z.; Chen, Y.; Li, F.; Zhang, T.; Liu, C.; Zhou, H. High Capacity Na–O2 Batteries with Carbon Nanotube Paper as Binder-Free Air Cathode. J. Power Sources 2014, 251, 466–469.
[86] Jeong, Y. S.; Park, J. B.; Jung, H. G.; Kim, J.; Luo, X.; Lu, J.; Curtiss, L.; Amine, K.; Sun, Y. K.; Scrosati, B. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium–Air Batteries. Nano Lett. 2015, 15, 4261–4268.
[87] Thoka, S.; Tsai, C. M.; Tong, Z.; Jena, A.; Wang, F. M.; Hsu, C. C.; Chang, H.; Hu, S. F.; Liu, R. S. Comparative Study of Li–CO2 and Na–CO2 Batteries with Ru@CNT as a Cathode Catalyst. ACS Appl. Mater. Interfaces 2020, 13, 480–490.
[88] Ma, J. L.; Li, N.; Zhang, Q.; Zhang, X. B.; Wang, J.; Li, K.; Hao, X. F.; Yan, J. M. Synthesis of Porous and Metallic CoB Nanosheets Towards a Highly Efficient Electrocatalyst for Rechargeable Na–O2 Batteries. Energy Environ. Sci. 2018, 11, 2833–2838.
[89] Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016, 116, 140–162.
[90] Wang, Y.; Song, S.; Xu, C.; Hu, N.; Molenda, J.; Lu, L. Development of Solid-State Electrolytes for Sodium-Ion Battery–A Short Review. Nano Mater. Sci. 2019, 1, 91–100.
[91] Chu, I. H.; Kompella, C. S.; Nguyen, H.; Zhu, Z.; Hy, S.; Deng, Z.; Meng, Y. S.; Ong, S. P. Room-Temperature All-Solid-State Rechargeable Sodium-Ion Batteries with a Cl-Doped Na3PS4 Superionic Conductor. Sci. Rep. 2016, 6, 33733.
[92] Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic Glass-Ceramic Electrolytes for Room-Temperature Rechargeable Sodium Batteries. Nat. Commun. 2012, 3, 856.
[93] Chong, M. K.; Zainuddin, Z.; Omar, F. S.; Jumali, M. H. H. Na3Zr2(SiO4)2PO4 NASICON-Type Solid Electrolyte: Influence of Milling Duration on Microstructure and Ionic Conductivity Mechanism. Ceram. Int. 2022, 48, 22147–22154.
[94] Goodenough, J. B.; Hong, H. P.; Kafalas, J. Fast Na+-Ion Transport in Skeleton Structures. Mater. Res. Bull. 1976, 11, 203–220.
[95] Oh, J. A. S.; He, L.; Plewa, A.; Morita, M.; Zhao, Y.; Sakamoto, T.; Song, X.; Zhai, W.; Zeng, K.; Lu, L. Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering. ACS Appl. Mater. Interfaces 2019, 11, 40125−40133.
[96] Bui, K. M.; Dinh, V. A.; Okada, S.; Ohno, T. Na-Ion Diffusion in a NASICON-Type Solid Electrolyte: A Density Functional Study. Phys. Chem. Chem. Phys. 2016, 18, 27226–27231.
[97] Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. Interface Issues and Challenges in All‐Solid‐State Batteries: Lithium, Sodium, and Beyond. Adv. Mater. 2021, 33, 2000721.
[98] Horstmann, B.; Single, F.; Latz, A. Review on Multi-Scale Models of Solid-Electrolyte Interphase Formation. Curr. Opin. Electrochem. 2019, 13, 61–69.
[99] Tong, Z.; Wang, S. B.; Wang, Y. C.; Yi, C. H.; Wu, C. C.; Chang, W. S.; Tsai, K. T.; Tsai, S. Y.; Hu, S. F.; Liu, R. S. Na@C Composite Anode for a Stable Na|NZSP Interface in Solid-State Na–CO2 Battery. J. Alloys Compd. 2022, 922, 166123.
[100] Sun, Q.; Dai, L.; Luo, T.; Wang, L.; Liang, F.; Liu, S. Recent Advances in Solid‐State Metal–Air Batteries. Carbon Energy 2023, 5, e276.
[101] Wang, J.; Ni, Y.; Liu, J.; Lu, Y.; Zhang, K.; Niu, Z.; Chen, J. Room-Temperature Flexible Quasi-Solid-State Rechargeable Na–O2 Batteries. ACS Cent. Sci. 2020, 6, 1955–1963.
[102] Chang, S.; Hou, M.; Xu, B.; Liang, F.; Qiu, X.; Yao, Y.; Qu, T.; Ma, W.; Yang, B.; Dai, Y. High‐Performance Quasi‐Solid‐State Na–Air Battery via Gel Cathode by Confining Moisture. Adv. Funct. Mater. 2021, 31, 2011151.
[103] Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J. J.; Zhou, H. A Reversible Lithium–CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972–978.
[104] Arndt, U.; Crowther, R.; Mallett, J. A Computer-Linked Cathode-Ray Tube Microdensitometer for X-Ray Crystallography. J. phys. E. 1968, 1, 510.
[105] Ling, T. C.; Poon, C. S.; Lam, W. S.; Chan, T. P.; Fung, K. K. L. Utilization of Recycled Cathode Ray Tubes Glass in Cement Mortar for X-Ray Radiation-Shielding Applications. J. Hazard. Mater. 2012, 199, 321–327.
[106] Elton, L.; Jackson, D. F. X-Ray Diffraction and the Bragg Law. Am. J. Phys. 1966, 34, 1036–1038.
[107] Humphreys, C. The Significance of Bragg's Law in Electron Diffraction and Microscopy, and Bragg's Second Law. Acta Crystallogr. A 2013, 69, 45–50.
[108] Seiler, H. Secondary Electron Emission in the Scanning Electron Microscope. J. Appl. Phys. 1983, 54, 1–18.
[109] Fletcher, A.; Thiel, B.; Donald, A. Signal Components in the Environmental Scanning Electron Microscope. J. Microsc. 1999, 196, 26–34.
[110] Lau, J. W.; Schliep, K. B.; Katz, M. B.; Gokhale, V. J.; Gorman, J. J.; Jing, C.; Liu, A.; Zhao, Y.; Montgomery, E.; Choe, H. Laser-Free GHz Stroboscopic Transmission Electron Microscope: Components, System Integration, and Practical Considerations for Pump–Probe Measurements. Rev. Sci. Instrum. 2020, 91, 021301.
[111] Wu, J.; Kim, A.; Bleher, R.; Myers, B.; Marvin, R.; Inada, H.; Nakamura, K.; Zhang, X.; Roth, E.; Li, S. Imaging and Elemental Mapping of Biological Specimens with a Dual-EDS Dedicated Scanning Transmission Electron Microscope. Ultramicroscopy 2013, 128, 24–31.
[112] Barron, L.; Buckingham, A. Rayleigh and Raman Scattering from Optically Active Molecules. Mol. Phys. 1971, 20, 1111–1119.
[113] Bagchi, B.; Oxtoby, D. W.; Fleming, G. R. Theory of the Time Development of the Stokes Shift in Polar Media. Chem. Phys. 1984, 86, 257–267.
[114] Campion, A.; Kambhampati, P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241–250.
[115] Gao, Y.; Zhao, X.; Yin, P.; Gao, F. Size-Dependent Raman Shifts for Nanocrystals. Sci. Rep. 2016, 6, 20539.
[116] McKagan, S.; Handley, W.; Perkins, K.; Wieman, C. A Research-Based Curriculum for Teaching the Photoelectric Effect. Am. J. Phys. 2009, 77, 87–94.
[117] Fadley, C. S. X-Ray Photoelectron Spectroscopy: Progress and Perspectives. J. Electron Spectrosc. Relat. Phenom. 2010, 178, 2–32.
[118] Wang, Y.; Wang, W.; Xie, J.; Wang, C. H.; Yang, Y. W.; Lu, Y. C. Electrochemical Reduction of CO2 in Ionic Liquid: Mechanistic Study of Li–CO2 Batteries via In Situ Ambient Pressure X-Ray Photoelectron Spectroscopy. Nano Energy 2021, 83, 105830.
[119] Suortti, P.; Thomlinson, W. Medical Applications of Synchrotron Radiation. Phys. Med. Biol. 2003, 48, 1.
[120] De Groot, F. High-Resolution X-Ray Emission and X-Ray Absorption Spectroscopy. Chem. Rev. 2001, 101, 1779–1808.
[121] Rehr, J.; Ankudinov, A. Progress in the Theory and Interpretation of XANES. Coord. Chem. Rev. 2005, 249, 131–140.
[122] Greaves, G. EXAFS and the Structure of Glass. J. Non Cryst. Solids 1985, 71, 203–217.
[123] Kissinger, P. T.; Heineman, W. R. Cyclic Voltammetry. J. Chem. Educ. 1983, 60, 702.
[124] Weber, B.; Mahapatra, S.; Ryu, H.; Lee, S.; Fuhrer, A.; Reusch, T.; Thompson, D.; Lee, W.; Klimeck, G.; Hollenberg, L. C. Ohm’s Law Survives to the Atomic Scale. Science 2012, 335, 64–67.
[125] Kavasoglu, A. S.; Kavasoglu, N.; Oktik, S. Simulation for Capacitance Correction from Nyquist Plot of Complex Impedance–Voltage Characteristics. Solid State Electron. 2008, 52, 990–996.
[126] Bruins, A. P. Mechanistic Aspects of Electrospray Ionization. J. Chromatogr. A 1998, 794, 345–357.
[127] Venkatesan Savunthari, K.; Yi, C. H.; Huang, J. Y.; Iputera, K.; Hu, S. F.; Liu, R. S. All-Solid-State Na–O2 Batteries with Long Cycle Performance. ACS Appl. Energy Mater. 2022, 5, 14280–14289.
[128] Lu, Y.; Cai, Y.; Zhang, Q.; Liu, L.; Niu, Z.; Chen, J. A Compatible Anode/Succinonitrile-Based Electrolyte Interface in All-Solid-State Na–CO2 Batteries. Chem. Sci. 2019, 10, 4306–4312.
[129] Wadhawan, J. D.; Welford, P. J.; McPeak, H. B.; Hahn, C. E.; Compton, R. G. The Simultaneous Voltammetric Determination and Detection of Oxygen and Carbon Dioxide: A Study of the Kinetics of the Reaction Between Superoxide and Carbon Dioxide in Non-Aqueous Media Using Membrane-Free Gold Disc microelectrodes. Sens. Actuators B Chem. 2003, 88, 40–52.
[130] Xu, C.; Dong, Y.; Shen, Y.; Zhao, H.; Li, L.; Shao, G.; Lei, Y. Fundamental Understanding of Nonaqueous and Hybrid Na–CO2 Batteries: Challenges and Perspectives. Small 2023, 2206445.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87856-
dc.description.abstract近年來電動汽車市場日益蓬勃發展,科學家開始將目光投向發展高能量密度電池。可充電鈉空氣(Na–Air)電池具較高能量密度、低充電電位與鈉地殼含量豐富,已成為替代傳統鋰離子電池最有希望之候選者。
本研究第一部分探討鈉氧氣(Na–O2)電池反應機制,藉鈉超離子導體型(NASICON)固態電解質(Na3Zr2Si2PO12; NZSP),釕奈米粒子修飾之多壁碳奈米管(Ru/CNT),塑化晶體丁二腈(succinonitrile; SN)與過氯酸鈉(NaClO4)鈉鹽組成之中間層,組裝全固態Na–O2電池。過氧化鈉(Na2O2)為Na–O2電池最終氧還原反應(oxygen reduction reaction; ORR)產物,其均勻沉積於陰極表面。揭示Na–O2電池反應機制為2Na+ + O2 + 2e- → Na2O2, E° = 2.33 V vs. Na+/Na。
研究第二部分探討鈉二氧化碳(Na–CO2)電池反應機制。常見之Na–CO2電池反應機制以碳與碳酸鈉(Na2CO3)為放電產物(4Na+ + 3CO2 + 4e- → 2Na2CO3 + C, E° = 2.35 V vs. Na+/Na)。於先前研究中鮮見Na–CO2電池放電產物之碳形成證據,故藉原位環境壓力X射線光電子能譜儀(In situ APXPS)研究Na–CO2電池之氧化還原反應,並揭示Na–CO2電池之新反應機制(2Na+ + 2CO2 + 2e- → Na2CO3 + CO, E°= 2.05 V vs. Na+/Na)。
本研究之新穎性為以無機固態電解質取代有機電解質提升電池之安全性,並揭示Na–O2電池與Na–CO2電池反應機制,此將可為未來Na–Air電池之研究奠定重要基礎。
zh_TW
dc.description.abstractThe electric vehicle market has been increasing year by year. However, high-energy-density batteries have become an important research topic. Rechargeable sodium air (Na–Air) battery has become the most promising candidates to replace Li-ion batteries because of their high energy density, which is about 5–10 times compared with Li-ion batteries, and extensive research interest due to their low charging potential and abundant sodium content.
The first part of this study explores the reaction mechanism of sodium oxygen (Na–O2) batteries. Using Na superionic conductor (NASICON)-type solid electrolyte Na3Zr2Si2PO12 (NZSP), ruthenium nanoparticle modified multi-wall carbon nanotubes (Ru/CNT), and plastic crystalline succinonitrile (SN) with NaClO4 interlayer to assemble all solid-state Na–O2 battery. Na2O2 is the final oxygen reduction reaction (ORR) product of the Na–O2 battery and evenly covers the cathode surface. The reaction mechanism would be 2Na+ + O2 + 2e- → Na2O2, E° = 2.33 V vs. Na+/Na.
The second part of this study explores the reaction mechanism of sodium carbon dioxide (Na–CO2) batteries. Common Na–CO2 battery reaction mechanism uses carbon and Na2CO3 as discharge products (4Na+ + 3CO2 + 4e- → 2Na2CO3 + C, E° = 2.35 V vs. Na+/Na). However, there is seldom evidence of carbon formation in previous studies. We investigate the reduction-oxidation reaction by in situ ambient pressure X-ray photoelectron spectroscopy (In situ APXPS) and propose the new reaction mechanism of Na–CO2 battery (2Na+ + 2CO2 + 2e- → Na2CO3 + CO, E° = 2.05 V vs. Na+/Na).
The novelty of this study is using inorganic solid electrolytes to improve the safety of the battery and to reveal the reaction mechanism of the Na–O2 battery and Na–CO2 battery. They also lay an essential foundation for future research on Na–Air batteries.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-24T16:07:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-24T16:07:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1電池之發展 2
1.1.1一次電池 3
1.1.2二次電池 4
1.2二次電池之概述 5
1.2.1鋰離子電池 6
1.2.2鋰空氣電池 9
1.2.3鋰氧氣電池 10
1.2.3.1鋰氧氣電池之反應機制 11
1.2.4鋰二氧化碳電池 13
1.2.4.1鋰二氧化碳電池之反應機制 14
1.2.5鈉離子電池 16
1.2.6鈉空氣電池 18
1.2.7鈉氧氣電池 20
1.2.7.1鈉氧氣電池之反應機制 21
1.2.8鈉二氧化碳電池 23
1.2.8.1鈉二氧化碳電池之反應機制 24
1.3鈉空氣電池之體系 26
1.3.1有機溶劑體系 26
1.3.2混合式溶劑體系 28
1.3.3聚合物電解質體系 30
1.3.4無機固態電解質體系 32
1.4常見之鈉空氣電池陰極觸媒 33
1.4.1碳材料 34
1.4.2貴金屬 35
1.4.3金屬氧化物 36
1.5無機固態電解質簡介 37
1.5.1硫化物電解質 38
1.5.2鈉離子超導體型電解質 39
1.6固態電解質界面 40
1.7固態鈉空氣電池發展 41
1.8研究動機與目的 42
第二章 實驗步驟與儀器分析原理 44
2.1化學藥品 44
2.2實驗步驟 45
2.2.1釕奈米粒子/奈米碳管複合材料之合成 45
2.2.2陰極觸媒與電極配置 46
2.2.3全固態鈉氧氣電池之組裝 47
2.2.4臨場X射線光電子能譜儀之鈉二氧化碳電池組裝 49
2.3儀器分析 51
2.3.1粉末X光繞射儀(powder X-ray diffractometer; XRD) 51
2.3.2掃描式電子顯微鏡(scanning electron microscope; SEM) 54
2.3.3穿透式電子顯微鏡(transmission electron microscopy; TEM) 56
2.3.4拉曼光譜儀(Raman spectrometer) 58
2.3.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 60
2.3.6 X光吸收光譜(X-ray absorption spectroscopy; XAS) 62
2.3.7循環伏安法(cyclic voltammetry; CV) 65
2.3.8充放電測試儀(cycling machine) 67
2.3.9電化學阻抗譜(electrochemical impedance spectroscopy; EIS) 67
2.3.10氣相層析質譜儀(gas chromatography-mass spectrometry; GC–MS) 69
第三章 結果與討論 71
3.1全固態鈉氧氣電池之鑑定與分析 71
3.1.1釕奈米粒子/奈米碳管複合材料之鑑定 71
3.1.2 NZSP之鑑定與電性分析 76
3.1.3界面材料丁二腈之鑑定 80
3.1.4穩定性循環充放電與最大放電測試 83
3.1.5放電產物之鑑定 85
3.1.6陽極與固態電解質界面穩定性之鑑定 88
3.2鈉二氧化碳電池反應機制 91
3.2.1不同氣體之反應電位分析 91
3.2.2放電產物之鑑定 95
3.2.3 Na–CO2電池臨場X射線光電子能譜儀鑑定 100
3.2.4 Na–CO2/O2電池臨場X射線光電子能譜儀鑑定 102
3.2.5 Na–CO2/H2O電池臨場X射線光電子能譜儀鑑定 106
第四章 結論 109
參考文獻 110
-
dc.language.isozh_TW-
dc.subject原位研究zh_TW
dc.subjectRu/CNTzh_TW
dc.subjectNZSPzh_TW
dc.subjectNa–Air電池zh_TW
dc.subject反應機制zh_TW
dc.subjectNZSPen
dc.subjectRu/CNTen
dc.subjectIn situ studyen
dc.subjectReaction mechanismen
dc.subjectNa–Air batteryen
dc.title全固態鈉氧氣與二氧化碳電池反應機制研究zh_TW
dc.titleReaction Mechanism of All-Solid-State Sodium Oxygen and Carbon Dioxide Batteryen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁文傑;張家欽;陳金銘;何麗貞zh_TW
dc.contributor.oralexamcommitteeMan-kit Leung;Chia-Chin Chang;Jin-Ming Chen;Li-Jane Heren
dc.subject.keywordRu/CNT,NZSP,Na–Air電池,反應機制,原位研究,zh_TW
dc.subject.keywordRu/CNT,NZSP,Na–Air battery,Reaction mechanism,In situ study,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202301012-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-06-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved