Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87852| Title: | 使用機器學習演算法加入市場變數來預測財務危機 Using machine learning algorithms to predict financial distress by adding marketing variables |
| Authors: | 黃靖雯 Ching-Wen Huang |
| Advisor: | 石百達 Pai-Ta Shih |
| Keyword: | 財務危機,機器學習,市場變數,邏輯斯迴歸,支持向量機,隨機森林,K-近鄰演算法, Financial distress,Machine learning,Marketing variables,Logistic regression,Support vector machines,Random forest,K-Nearest Neighbor, |
| Publication Year : | 2022 |
| Degree: | 碩士 |
| Abstract: | 過去文獻較多只用財務變數的組合來探討企業危機預測的機率,較少對於市場變數的組合有著墨,且考慮到全年度財報發佈時間在三月底前,若企業發生危機是在財報發布前,則沒有前一年度的財報可參考。本研究探討運用前兩年度財務變數再加上市場變數,是否能提高財務危機預測模型的準確率。
研究結果顯示,在決大多數的情況下,加入特定市場變數所訓練出的模型能有效提高預測力,且在眾多機器學習模型中,RF的預測能力最穩定,預測能力最準確。 Previous studies usually only use financial variables to establish financial distress forecasting models. However, if companies have financial crises before the financial reports are revealed, investors can’t use them to establish the models. This study will use the financial data of the previous two years and add market variables to build financial distress prediction models. The results show that adding marketing variables improve the performance of the models in the majority time. Compared to other machine learning algorithms, random forest is the best model in out-of-sample tests. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87852 |
| DOI: | 10.6342/NTU202300872 |
| Fulltext Rights: | 未授權 |
| Appears in Collections: | 財務金融學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 1.07 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
