Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87852
Title: 使用機器學習演算法加入市場變數來預測財務危機
Using machine learning algorithms to predict financial distress by adding marketing variables
Authors: 黃靖雯
Ching-Wen Huang
Advisor: 石百達
Pai-Ta Shih
Keyword: 財務危機,機器學習,市場變數,邏輯斯迴歸,支持向量機,隨機森林,K-近鄰演算法,
Financial distress,Machine learning,Marketing variables,Logistic regression,Support vector machines,Random forest,K-Nearest Neighbor,
Publication Year : 2022
Degree: 碩士
Abstract: 過去文獻較多只用財務變數的組合來探討企業危機預測的機率,較少對於市場變數的組合有著墨,且考慮到全年度財報發佈時間在三月底前,若企業發生危機是在財報發布前,則沒有前一年度的財報可參考。本研究探討運用前兩年度財務變數再加上市場變數,是否能提高財務危機預測模型的準確率。

研究結果顯示,在決大多數的情況下,加入特定市場變數所訓練出的模型能有效提高預測力,且在眾多機器學習模型中,RF的預測能力最穩定,預測能力最準確。
Previous studies usually only use financial variables to establish financial distress forecasting models. However, if companies have financial crises before the financial reports are revealed, investors can’t use them to establish the models. This study will use the financial data of the previous two years and add market variables to build financial distress prediction models.

The results show that adding marketing variables improve the performance of the models in the majority time. Compared to other machine learning algorithms, random forest is the best model in out-of-sample tests.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87852
DOI: 10.6342/NTU202300872
Fulltext Rights: 未授權
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
1.07 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved