Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87837
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor澤大衛zh_TW
dc.contributor.advisorDavid Zelenyen
dc.contributor.author吳奕媺zh_TW
dc.contributor.authorYi-Mei Wuen
dc.date.accessioned2023-07-19T16:46:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-03-29-
dc.identifier.citationAhlroth, P., Alatalo, R.V., Holopainen, A., Kumpulainen, T., & Suhonen, J. (2003). Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia, 137, 617–620.
Alexander, J.M., Kueffer, C., Daehler, C.C., Edwards, P.J., Pauchard, A., Seipel, T., & MIREN Consortium. (2011). Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences, 108, 656–661.
Alston, K.P. & Richardson, D.M. (2006). The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biological Conservation, 132, 183–198.
Atwater, D.Z., Ervine, C., & Barney, J.N. (2018). Climatic niche shifts are common in introduced plants. Nature Ecology & Evolution, 2, 34–43.
Becker, T., Dietz, H., Billeter, R., Buschmann, H., & Edwards, P.J. (2005). Altitudinal distribution of alien plant species in the Swiss Alps. Perspectives in Plant Ecology, Evolution and Systematics, 7, 173–183.
Bellard, C., Leroy, B., Thuiller, W., Rysman, J.F., & Courchamp, F. (2016). Major drivers of invasion risks throughout the world. Ecosphere, 7, e01241.
Brummitt, R. K. (2001). World Geographic Scheme for Recording Plant Distributions, Edition 2. Hunt Institute for Botanical Documentation, Carnegie Mellon University (Pittsburgh). http://rs.tdwg.org/wgsrpd/doc/data/GBIF.org
Chang, C-Y. (2007). Invasiveness Assessment System of Naturalized Plants for Taiwan [Master’s thesis, National Chung Hsing University, Department of Forestry]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/j6squk [In Chinese]
Chang-Yang, C.-H., Su, M.-H., Chiang, P.-H., & Hsieh, C.-F. (2022). Updating the checklist of the naturalized flora in Taiwan. Taiwania, 67, 1–8.
Chao, A., Gotelli, N.J., Hsieh, T.-C., Sander, E.L., Ma, K.H., Colwell, R.K., & Ellison, A.M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45–67.
Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533–2547.
Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L., Ram, K. (2022). rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.7.2, https://CRAN.R-project.org/package=rgbif.
Chiou, C.-R., Hsieh, C.-F., Wang, J.-C., Chen, M.-Y., Liu, H.-Y., Yeh, C.-L., … & Song, G.-Z. M. (2009). The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science, 24, 295–302.
Christen, D.C., & Matlack, G.R. (2009). The habitat and conduit functions of roads in the spread of three invasive plant species. Biological Invasions, 11, 453–465.
D'Antonio, C.M. (1993). Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology, 74, 83–95.
Dawson, W., Moser, D., van Kleunen, M., Kreft., H., Pergl, J., Pyšek, P., ... & Essl, F. (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution, 1, 0186.
Davis, M.A., Grime, J.P., & Thompson, K. (2000). Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88, 528–534.
Essl, F., Dullinger, S., Rabitsch, W., Hulme, P.E., Hülber, K., Jarošík, V., ... & Pyšek, P. (2010). Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences, 108, 203–207.
Essl, F., Mang, T., Dullinger, S., Moser, D., & Hulme, P.E. (2011). Macroecological drivers of alien conifer naturalizations worldwide. Ecography, 34, 1076–1084.
Fick, S.E., & Hijmans, R.J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
GBIF.org. (2022). Filtered export of GBIF occurrence data. https://doi.org/10.15468/dd.4t77dy
Guo, Q., Fei, S., Shen, Z., Iannone III, B.V., Knott, J., & Chown, S.L. (2018). A global analysis of elevational distribution of non‐native versus native plants. Journal of Biogeography, 45, 793–803.
Hayes, K.R., & Barry, S.C. (2008). Are there any consistent predictors of invasion success? Biological Invasions, 10, 483–506.
Hsieh, C.-F. (2002). Composition, endemism and phytogeographical affinities of the Taiwan Flora. Taiwania, 47, 298–310.
Hsieh, T.-C., Ma, K.-H., & Chao, A. (2016). iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456.
Huang, T.-C. & Hsieh, C.-F. (Eds.) 1994. Flora of Taiwan, Vol. 1, 2nd edition. Taipei, TW: National Taiwan University.
Huey, R.B., Carlson, M., Crozier, L., Frazier, M., Hamilton, H., Harley, C., ... & Kingsolver, J.G. (2002). Plants versus animals: do they deal with stress in different ways? Integrative and Comparative Biology, 42, 415–423.
Hulme, P.E. (2011). Addressing the threat to biodiversity from botanic gardens. Trends in Ecology & Evolution, 26, 168–174.
Janzen, D.H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233–249.
Kessler, M., Kluge, J., Hemp, A., & Ohlemüller, R. (2011). A global comparative analysis of elevational species richness patterns of ferns. Global Ecology and Biogeography, 20, 868–880.
Kessler, M., Karger, D.N., & Kluge, J. (2016). Elevational diversity patterns as an example for evolutionary and ecological dynamics in ferns and lycophytes. Journal of Systematics and Evolution, 54, 617–625.
Kluge, J., Kessler, M., & Dunn, R.R. (2006). What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography, 15, 358–371.
Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22, 569–574.
Levine, J.M., Adler, P.B., & Yelenik, S.G. (2004). A meta‐analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975–989.
Liu, Y.-P. (2011). Inventory and Niches Management of Naturalized Plants in Kanting National Park [Master’s thesis, National Pingtung University of Science and Technology, Department of Forestry]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/7gah27 [In Chinese]
Lockwood, J.L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution, 20, 223–228.
Lonsdale, W.M. (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80, 1522–1536.
Lu, Y.-E. (2021). Study on the Naturalized Plants in Guanwu Area of Shei-Pa National Park [Master’s thesis, National Chiayi University, Department of Forestry and Natural Resources]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/qg5b34 [In Chinese]
Mack, R.N. (2004). Global plant dispersal, naturalization, and invasion: pathways, modes and circumstances. In: Ruiz, G.M. and Carlton, J.T. (Eds.), Invasive species: vectors and management strategies. Washington, D.C.: Island Press, pp. 3¬–30.
Mack, R.N. (2005). Predicting the identity of plant invaders: future contributions from horticulture. HortScience, 40, 1168–1174.
Mattingly, W.B., & Orrock, J.L. (2013). Historic land use influences contemporary establishment of invasive plant species. Oecologia, 172, 1147–1157.
McCain, C.M., & Grytnes, J.A. (2010). Elevational gradients in species richness. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons.
Mortensen, D.A., Rauschert, E.S., Nord, A.N., & Jones, B.P. (2009). Forest roads facilitate the spread of invasive plants. Invasive Plant Science and Management, 2, 191–199.
O'Loughlin, L.S., & Green, P.T. (2017). Secondary invasion: When invasion success is contingent on other invaders altering the properties of recipient ecosystems. Ecology and Evolution, 7, 7628–7637.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., … & Kassem, K.R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience, 51, 933–938.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., …, & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
Paiaro, V., Cabido, M., & Pucheta, E. (2011). Altitudinal distribution of native and alien plant species in roadside communities from central Argentina. Austral Ecology, 36, 176–184.
Panetta, F.D., & Mitchell, N.D. (1991). Homoclime analysis and the prediction of weediness. Weed Research, 31, 273–284.
Parendes, L.A., & Jones, J.A. (2000). Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. Conservation Biology, 14, 64–75.
Pauchard, A., & Alaback, P.B. (2004). Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South‐Central Chile. Conservation Biology, 18, 238–248.
Pauchard, A., Kueffer, C., Dietz, H., Daehler, C.C., Alexander, J., Edwards, P.J., ... & Seipel, T. (2009). Ain't no mountain high enough: plant invasions reaching new elevations. Frontiers in Ecology and the Environment, 7, 479–486.
POWO. (2022). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 02 May 2022.
Pyšek, P., & Jarošík, V. (2005). Residence time determines the distribution of alien plants. In Inderjit (Eds.), Invasive plants: ecological and agricultural aspects. Basel: Birkhäuser, pp. 77–96.
Pyšek, P., Jarošík, V., Hulme, P.E., Kühn, I., Wild, J., Arianoutsou, M., ... & Winter, M. (2010). Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences, 107, 12157–12162.
Pyšek, P., & Richardson, D.M. (2008). Traits associated with invasiveness in alien plants: Where do we stand?. In: Nentwig, W. (Eds.), Biological Invasions. Berlin, Heidelberg: Springer, pp. 97–125.
Pyšek, P., Richardson, D.M., Pergl, J., Jarošík, V., Sixtová, Z., & Weber, E. (2008). Geographical and taxonomic biases in invasion ecology. Trends in Ecology & Evolution, 23, 237–244.
QGIS.org. (2022). QGIS Geographic Information System. QGIS Association. http://www.qgis.org
Rahbek, C. (2005). The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology Letters, 8, 224–239.
Rejmánek, M., Richardson, D.M., & Pyšek, P. (2012). Plant invasions and invasibility of plant communities. In: van der Maarel, E., & Franklin, J. (Eds.), Vegetation Ecology, 2nd edition. Chichester: John Wiley & Sons, pp. 387–424.
Richardson, D.M., Allsopp, N., D'Antonio, C.M., Milton, S.J., & Rejmánek, M. (2000a). Plant invasions–the role of mutualisms. Biological Reviews, 75, 65–93.
Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D., & West, C.J. (2000b). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 6, 93–107.
Richardson, D.M., & Pyšek, P. (2012). Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytologist, 196, 383–396.
Romdal, T.S., & Grytnes, J.A. (2007). An indirect area effect on elevational species richness patterns. Ecography, 30, 440–448.
Rosenzweig, M.L. (1995). Species Diversity in Space and Time. Cambridge, UK: Cambridge University Press.
Shen, G.-W. (1774). Taiwan Fu [In Chinese, original manuscript was not preserved, only citation in secondary sources].
Spear, D., Foxcroft, L.C., Bezuidenhout, H., & McGeoch, M.A. (2013). Human population density explains alien species richness in protected areas. Biological Conservation, 159, 137–147.
Spellerberg, I.F. (1998). Ecological effects of roads and traffic: a literature review. Global Ecology and Biogeography, 7, 317–333
Sun, H.-T. (2009). The effects of anthropogenic activities and environmental factors on naturalized flora in the Northern Taiwan [Master’s thesis, National Taiwan Normal University, Department of Life Science]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/kx8gnv
Tanaka, T., & Sato, T. (2016). Contemporary patterns and temporal changes in alien plant species richness along an elevational gradient in central Japan. Plant Ecology and Evolution, 149, 177–188.
Thakur, P., Kumar, S., Malik, J.A., Berger, J.D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany, 67, 429–443.
Thuiller, W., Richardson, D.M., Pyšek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. (2005). Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234–2250.
Tikka P.M., Högmander H., & Koski P.S. (2001). Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecology, 16, 659–66.
Timmins, S.M., & Williams, P.A. (1991). Weed numbers in New Zealand's forest and scrub reserves. New Zealand Journal of Ecology, 15, 153–162.
van Kleunen, M., Essl, F., Pergl, J., Brundu, G., Carboni, M., Dullinger, S., ... & Dehnen‐Schmutz, K. (2018). The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 93, 1421–1437.
van Kleunen, M., Xu, X., Yang, Q., Maurel, N., Zhang, Z., Dawson, W., ... & Fristoe, T.S. (2020). Economic use of plants is key to their naturalization success. Nature Communications, 11, 3201.
Vilà, M., & Pujadas, J. (2001). Land-use and socio-economic correlates of plant invasions in European and North African countries. Biological Conservation, 100, 397–401.
Went, F.W. (1953). The effect of temperature on plant growth. Annual Review of Plant Physiology, 4, 347–362.
Williamson, M. (1996). Biological invasions. London: Chapman & Hall.
Wu, S.-H., Yang, T.-A., Teng, Y.-C., Chang, C.-Y., Yang, K.-C., & Hsieh, C.-F. (2010). Insights of the latest naturalized flora of Taiwan: change in the past eight years. Taiwania, 55, 139–159.
Wu, S.-H. (2012). Survey of Invasive Alien Plants in Taiwan (Project number: 101-林發-07.1-保-02). [In Chinese]
Wu, Y.-H. (2006). Study on invasions of naturalized alien plants in Lan-Yang plain [Master’s thesis, National Ilan University, Department of Forestry and Natural Resources]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/u5xc2z [In Chinese]
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87837-
dc.description.abstract  外來種指的是由人類帶入原生地以外地區的物種。世界各地的研究大多指出外來植物物種豐富度沿海拔上升而下降,然而其背後機制尚未明瞭,因此我們提出兩個假說來解釋這個模式,其一為物種溫度偏好假說,外來種物種豐富度與其在引入地的外來種物種庫大小相關,而外來種物種在其原生地的溫度偏好決定引入地的物種庫大小。另一為人類活動假說,我們假設外來種物種豐富度與人類活動的強度成正比,因為人類活動產生的拓殖體壓力以及干擾有助於外來種成功入侵引入地。我們使用全國外來入侵植物調查的樣區資料檢視外來植物物種豐富度沿海拔變化模式,並量化比較兩個假說對這個模式的貢獻,為物種溫度偏好假說提供更多的證據支持。
  我們以現有的系統性調查樣區資料,使用標準化樣格內努力量的物種豐富度繪製臺灣外來植物物種豐富度沿海拔變化模式。為確保不同海拔梯度有足夠的樣本數分布,我們分析的範圍限制在路邊和農業用地這兩種棲地。使用潛在物種庫和樣格周邊的土地利用比例分別代表物種偏好假說與人為活動假說,對標準化物種豐富度進行多重線性迴歸和變異分配,比較兩假說的貢獻。在物種層級的分析中,我們比較每種外來植物其在原生地和臺灣的偏好溫度,將兩地之溫度差與物種特質(例:生物氣候起源、經濟用途)做迴歸分析,尋找在原生地及引入地較大溫度差的物種擁有的特質。
  結果發現臺灣的外來植物物種豐富度沿海拔是單調遞減的模式。相較於人類活動假說,物種溫度偏好假說對此模式解釋較多的變量。外來種在其原生地與臺灣的物種偏好溫度成高度相關(r = 0.67),本研究的396種植物中,有257種在兩地的溫度偏好相符。來自於溫帶和非園藝用途的外來種在臺灣傾向生長較原生地溫暖的地方。外來種在臺灣的分布上,大多是由低海拔地區至某個海拔,而分布在海拔較高的大都是溫度上的廣適應物種,可以在高或低溫生活,並來自溫帶地區。這些證據顯示臺灣的外來種物種豐富度沿海拔模式受物種原生地的溫度偏好影響。外來種由低海拔向上擴散,並逐漸根據外來種原生地的溫度偏好一一被溫度梯度過濾,導致單調遞減的外來種物種豐富度沿海拔變化模式。
zh_TW
dc.description.abstractAlien are those species that were brought from their native ranges to the introduced ranges by humans. Studies around the world described decreasing species richness-elevation patterns of alien plants. However, the mechanisms behind these patterns remain unclear. Hence, we proposed two hypotheses to explain this pattern. The first is the species preference temperature hypothesis, stating that alien species richness results from the size of the species pool determined by temperature preferences of these species in their native range. The second is the human activity hypothesis, assuming that the intensity of human activities, serving as the source of propagule pressure and disturbance, is positively related to alien species richness. We used the survey data from the Survey of Invasive Alien Plants in Taiwan (led by Dr. Shan-Hua Wu) to describe the species richness-elevation pattern in Taiwan, to quantify the relative importance of these two hypotheses, and to further find evidence for both hypotheses.
For describing the alien species richness-elevation pattern in Taiwan, we used existing systematical sampling survey data and standardized sampling effort in each 1 km × 1 km cell by plot-based rarefaction. We confined the analysis to two habitat types, roadside and agricultural land, which have enough sample size and are distributed widely along the elevation gradient. For quantifying the relative importance of these two hypotheses, we used potential species pool size and the proportion of land-use in the surrounding area of cells to represent species temperature preference hypothesis and human activity hypothesis, respectively. Multiple linear regression with variation partitioning was performed on standardized species richness with explanatory variables which represent two hypotheses. In species-level analysis, we compared the preference temperature of individual species between Taiwan and their native ranges. We regressed temperature deviation between Taiwan and their native ranges on several species attributes, such as bioclimatic origin and economic usage, to identify a possible reason for the larger temperature deviation of some species.
The results showed that the alien species richness-elevation pattern is monotonically decreasing in Taiwan. The species temperature preference hypothesis explained more variation in alien species richness than the human activity hypothesis. Species-level analyses showed that species preference temperatures in the native range and Taiwan are well correlated (r = 0.67), and species preference temperatures in Taiwan match their native range in the case of 257 out of 396 species. However, temperate-origin and non-ornamental alien species in Taiwan tend to occur in habitats warmer than in their native ranges. The elevation distribution of alien species in Taiwan is from lowland to certain elevations. Many alien species occurring in higher elevations are temperature generalists, adapting to both lower and higher temperatures, and most of them are of temperate origin. We conclude that alien species mainly spread from the lowland and are gradually being filtered out along the elevation gradient based on their native temperature preference (bioclimatic origin), resulting in the decreasing alien species richness-elevation pattern in Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:46:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:46:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgment I
Abstract III
中文摘要 V
Contents VI
List of figures VII
List of Tables VIII
Introduction 1
Materials and methods 8
Study area and sampling design 8
Alien species occurrences 10
Environmental factors and species attributes 11
Statistical analyses 15
Results 17
Cell-level analyses 17
Species-level analyses 18
Discussion 29
Conclusions 37
References 38
Appendices 48
Appendix 1: Supplementary results 48
Appendix 2: Species name list for each analysis 54
Appendix 3-1: R code for plot-level analysis 70
Appendix 3-2: R code for species-level analysis 82
-
dc.language.isoen-
dc.title探討臺灣外來植物豐富度沿海拔變化的模式:物種溫度偏好或人類活動強度的影響?zh_TW
dc.titleIs decreasing richness of alien plant species along elevation in Taiwan caused by species temperature preference or intensity of human activities?en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡哲明;宋國彰;江智民zh_TW
dc.contributor.oralexamcommitteeJer-Ming Hu;Guo-Zhang Song;Jyh-Min Chiangen
dc.subject.keyword農業活動,外來植物,生物氣候起源,人為活動,引入地,原生地,土地利用,路邊,物種豐富度海拔模式,物種溫度偏好,外來入侵植物全國現狀調查,變異分配,zh_TW
dc.subject.keywordagriculture,alien plant species,bioclimatic origin,human activity,introduced range,land-use,native range,roadside,species richness-elevation pattern,species preference temperature,Survey of Invasive Alien Plants in Taiwan,variation partitioning,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202300700-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-03-29-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved