請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87831完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬 | zh_TW |
| dc.contributor.advisor | Yu-Pin Lin | en |
| dc.contributor.author | 王馨儀 | zh_TW |
| dc.contributor.author | Sing-Yi Wang | en |
| dc.date.accessioned | 2023-07-19T16:44:41Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-03-03 | - |
| dc.identifier.citation | Ahmed, S. J., Bramley, G., & Verburg, P. H. (2014). Key Driving Factors Influencing Urban Growth: Spatial-Statistical Modelling with CLUE-s. In Dhaka Megacity (pp. 123-145). Springer Netherlands. https://doi.org/10.1007/978-94-007-6735-5_7
Ay, J.-S., Chakir, R., & Gallo, J. L. (2017). Aggregated Versus Individual Land-Use Models: Modeling Spatial Autocorrelation to Increase Predictive Accuracy. Environmental Modeling & Assessment, 22(2), 129-145. https://doi.org/10.1007/s10666-016-9523-5 Chakir, R., & Le Gallo, J. (2021). Spatial Autocorrelation in Econometric Land Use Models: An Overview. In A. Daouia & A. Ruiz-Gazen (Eds.), Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan (pp. 339-362). Springer International Publishing. https://doi.org/10.1007/978-3-030-73249-3_18 Cheng, J., & Masser, I. (2003). Modelling Urban Growth Patterns: A Multiscale Perspective. Environment and Planning A: Economy and Space, 35(4), 679-704. https://doi.org/10.1068/a35118 Dörfler, V., & Stierand, M. (2019). Extraordinary: Reflections on Sample Representativeness. In I. Lebuda & V. P. Glăveanu (Eds.), The Palgrave Handbook of Social Creativity Research (pp. 569-584). Springer International Publishing. https://doi.org/10.1007/978-3-319-95498-1_36 Eastman, J. R. (2020). TerrSet 2020 Geospatial Monitoring and Modeling Software Manual. In C. U. Clark Labs (Ed.). Clark Labs, Clark University. Fitzpatrick-Lins, K. (1981). Comparison of Sampling Procedures and Data Analysis for a Land-Use and Land-Cover Map. Photogrammetric Engineering and Remote Sensing, 47(3), 343-351. Ghojogh, B., & Crowley, M. (2019). The Theory Behind Overfitting, Cross Validation, Regularization,Bagging, and Boosting: Tutorial. Li, Y., & Huang, S. (2015). Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China. Sustainability, 7(12), 16631-16652. https://doi.org/10.3390/su71215835 Lin, Y.-P., Chu, H.-J., Wu, C.-F., & Verburg, P. H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling – a case study. International Journal of Geographical Information Science, 25(1), 65-87. https://doi.org/10.1080/13658811003752332 Mazloum, B., Pourmanafi, S., Soffianian, A., Salmanmahiny, A., & Prishchepov, A. V. (2021). The fate of rangelands: Revealing past and predicting future land-cover transitions from 1985 to 2036 in the drylands of Central Iran [https://doi.org/10.1002/ldr.3865]. Land Degradation & Development, 32(14), 4004-4017. https://doi.org/https://doi.org/10.1002/ldr.3865 Overmars, K. P., De Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164(2-3), 257-270. https://doi.org/10.1016/s0304-3800(03)00070-x Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10, 439-446, Article 1. https://doi.org/10.32614/RJ-2018-009 Peng, K., Jiang, W., & Deng, Y. (2021, 3-5 Nov. 2021). Simulating urban land-use changes by incorporating logistic regression and CLUE-S model: a case study of Wuhan city. 2021 28th International Conference on Geoinformatics, Peng, K., Jiang, W., Deng, Y., Liu, Y., Wu, Z., & Chen, Z. (2020). Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecological Indicators, 117, 106671. https://doi.org/10.1016/j.ecolind.2020.106671 Pontius Jr, R. G., & Si, K. (2014). The total operating characteristic to measure diagnostic ability for multiple thresholds. International Journal of Geographical Information Science, 28(3), 570-583. https://doi.org/10.1080/13658816.2013.862623 Pontius, R. G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923 Pontius, R. G., Peethambaram, S., & Castella, J.-C. (2011). Comparison of Three Maps at Multiple Resolutions: A Case Study of Land Change Simulation in Cho Don District, Vietnam. Annals of the Association of American Geographers, 101(1), 45-62. https://doi.org/10.1080/00045608.2010.517742 Puertas, O. L., Henríquez, C., & Meza, F. J. (2014). Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy, 38, 415-425. https://doi.org/https://doi.org/10.1016/j.landusepol.2013.11.024 Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A., & Taleai, M. (2017). Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Computers, Environment and Urban Systems, 64, 297-308. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2017.04.002 Strand, G.-H. (2017). A study of variance estimation methods for systematic spatial sampling. Spatial Statistics, 21, 226-240. https://doi.org/10.1016/j.spasta.2017.06.008 Turner, R., & Baddeley, A. (2005). SPATSTAT: an R package for analyzing spatial point patterns. Journal of Statistical Software, 12. https://doi.org/10.18637/jss.v012.i06 Varga, O. G., Pontius, R. G., Singh, S. K., & Szabó, S. (2019). Intensity Analysis and the Figure of Merit’s components for assessment of a Cellular Automata – Markov simulation model. Ecological Indicators, 101, 933-942. https://doi.org/10.1016/j.ecolind.2019.01.057 Veldkamp, A., & Fresco, L. O. (1996). CLUE: a conceptual model to study the Conversion of Land Use and its Effects. Ecological Modelling, 85(2), 253-270. https://doi.org/https://doi.org/10.1016/0304-3800(94)00151-0 Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. A. (2002). Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environmental Management, 30(3), 391-405. https://doi.org/10.1007/s00267-002-2630-x Wagner, P. D., & Waske, B. (2016). Importance of spatially distributed hydrologic variables for land use change modeling. Environmental Modelling & Software, 83, 245-254. https://doi.org/https://doi.org/10.1016/j.envsoft.2016.06.005 Waiyasusri, K., Yumuang, S., & Chotpantarat, S. (2016). Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environmental Earth Sciences, 75(6), 533. https://doi.org/10.1007/s12665-016-5322-1 Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1 - 17. https://doi.org/10.18637/jss.v077.i01 內政部國土測繪中心. (2000-2020). 國土利用現況調查. https://www.nlsc.gov.tw/cl.aspx?n=13705 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87831 | - |
| dc.description.abstract | 土地利用變遷的動態過程中具有多重複雜性與不確定性。在眾多領域中皆為重要的研究議題,如:地理學、生態學及社會科學領域。隨著資料科學的進步,土地利用研究目前可處理的網格資料精度日趨精細,亦使得演算時間大幅增加。然而由於土地利用資料相較於一般二維資料具有空間自相關性,容易使得分類模型產生偏誤以至於無法準確代表該研究區的土地利用分布情形。因此如何有效控制資料間的空間自相關性以降低模擬及預測模型中的偏誤(bias)是建立模型中的首要課題。
本研究以桃園地區為研究區比較系統抽樣(systematic sampling)、隨機抽樣(random sampling)與分層隨機抽樣(stratified random sampling,)在不同抽樣比例下應用邏輯斯迴歸(logistic regression)、廣義可加性模型(general Additive Model)、隨機森林(random forest)三種演算法對於CLUE-s模式的土地利用驗證結果之影響。推論結合各土地利用類別之最佳演算法的混合演算模式對於CLUE-s模式是否有過度擬合(overfitted)的問題。此外,本研究亦針對僅使用兩時期土地利用地圖之情形提出可完整校正及驗證模型之方法。 研究結果顯示,抽樣方式差異對於CLUE-s模式之模擬結果並無顯著影響,然而抽樣比例差異對於模型驗證則有顯著影響,且在3種演算法中皆以100%抽樣模型為最佳;若採取90%樣本於邏輯斯迴歸,60%於廣義可加性模型或是90%於隨機森林之CLUE-s模式則為最具效率之抽樣比例。結合各土地利用AUC值最佳演算法之混合模型並無法提升CLUE-s模式土地利用配置精確度,反而影響其他土地利用配置產生誤差。此外,本研究之結果可適用僅有1~2時期之土地利用圖資情形,先以網格抽樣方式切割時期1資料集建立土地利用變遷模型,再以時期2圖資驗證,以確保模型預測結果與實際利用情形相符。 | zh_TW |
| dc.description.abstract | The process of land use change contains multiple complexities and uncertainties. Therefore, it is viewed as an important issue for global environmental change. As data science has advanced, the resolution of raster data has become higher, but this also makes the workload heavier. Additionally, land use data have spatial autocorrelation, which can cause bias in classification algorithms and prevent the model from representing the real land use. Thus, it is crucial to efficiently control the autocorrelation in land use and land change research.
This study used Taoyuan as the research area to compare the differences between three sampling methods (systematic sampling, random sampling, and stratified random sampling) in different sampling ratios (100%, 90%, 80%, 70%, 60%, and 50%) with three classification algorithms (logistic regression, general additive model, and random forest) in CLUE-s model performance. Furthermore, it explored the overfitting problem in the mixed model which combined the best suitability of each land use type. Additionally, the research proposed a method that can completely calibrate and validate the model for the situation where only two periods of land use maps are used. First, the results show that there is no significant difference between the sampling methods. It shows a significant difference in sampling ratios, with the 100% sampling model having the highest accuracy in all three algorithms. However, the 90% sample rate in logistic regression, the 60% sample rate in GAM, and the 90% sample rate in random forest are the most efficient modeling methods in the Taoyuan area. Second, the mixed model could not improve the accuracy of the CLUE-s model; instead, the mixed model reduces the allocation of other land use types. Lastly, this research shows a stable and solid method of validating a LULC model by separating the period 1 land use data into a training dataset and a testing dataset with spatial sampling methods and validating the LULC model with the period 2 land use data. The procedure can ensure that the LULC model conforms to the real land use situation. The results of this research could provide a viewpoint on the effect of grid sampling in land-use modeling and land-use land-change research. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:44:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:44:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 壹、 緒論 1 第一節、 研究背景與動機 1 第二節、 研究目的與問題 4 貳、 文獻回顧 5 第一節、 抽樣與土地利用變遷模式 5 第二節、 CLUE-s模式 8 第三節、 模型校正與驗證Calibration and Validation 9 參、 研究方法與架構流程 11 第一節、 研究區域 11 第二節、 研究方法 14 (一) 抽樣設計 14 (二) 重複抽樣(permutation) 17 第三節、 研究架構流程 18 (一) CLUE-s 模式 20 (二) 二元分類演算法 22 (三) 土地變遷校正與驗證Calibration and Validation 24 肆、 研究結果與討論 28 第一節、 研究結果 28 (一) 抽樣方式對空間自相關性的影響 28 (二) 抽樣方式對分類演算法結果的影響 32 (三) 抽樣方式對CLUE-s變遷模式結果 43 (四) 混合模型 Mix Model 54 第二節、 討論 65 (一) 抽樣方式對於土地利用變遷模式的影響 65 (二) 兩時期土地利用地圖驗證模式比較 69 (三) 混合模型之過度擬合 71 (四) 替換演算法之土地利用配置結果之影響 73 伍、 結論與建議 79 第一節、 結論 79 第二節、 後續應用與研究建議 81 參考文獻 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 土地利用模型驗證 | zh_TW |
| dc.subject | 品質因素 | zh_TW |
| dc.subject | 三圖比較 | zh_TW |
| dc.subject | 土地利用變遷模式 | zh_TW |
| dc.subject | CLUE-s模式 | zh_TW |
| dc.subject | 土地利用抽樣 | zh_TW |
| dc.subject | land use land change | en |
| dc.subject | Three map comparison | en |
| dc.subject | Figure of Merit | en |
| dc.subject | CLUE-s model | en |
| dc.subject | land-use modeling | en |
| dc.subject | LULC model validation | en |
| dc.subject | grid sampling | en |
| dc.title | 抽樣方式及抽樣方法對於土地利用變遷模式之影響—以桃園地區為例 | zh_TW |
| dc.title | The Effect of Sampling Method to Land Use Land Change Modeling— the case study of Taoyuan area | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭克聲;溫在弘;詹士樑 | zh_TW |
| dc.contributor.oralexamcommittee | Ke-Sheng Cheng;Tzai-Hung Wen;Shih-Liang Chan | en |
| dc.subject.keyword | 土地利用變遷模式,CLUE-s模式,土地利用抽樣,三圖比較,品質因素,土地利用模型驗證, | zh_TW |
| dc.subject.keyword | land-use modeling,land use land change,CLUE-s model,grid sampling,Three map comparison,Figure of Merit,LULC model validation, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202300647 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-03-06 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 7.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
