Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87825
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor澤大衛zh_TW
dc.contributor.advisorDavid Zelenýen
dc.contributor.author魏碩zh_TW
dc.contributor.authorShuo Weien
dc.date.accessioned2023-07-19T16:42:39Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-03-02-
dc.identifier.citationAh-Peng, C., Cardoso, A. W., Flores, O., West, A., Wilding, N., Strasberg, D., and Hedderson, T. A. (2017). The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. Journal of Hydrology, 548, 665–673.
Altman, D. G., and Bland, J. M. (1995). Statistics notes: the normal distribution. BMJ, 310, 298.
Aprile, I., Ferrarin, M., Padua, L., Di Sipio, E., Simbolotti, C., Petroni, S., ... and Dickmann, A. (2014). Walking strategies in subjects with congenital or early onset strabismus. Frontiers in Human Neuroscience, 8, 484.
Barlow, W. E. (1994). Robust variance estimation for the case-cohort design. Biometrics, 50(4), 1064–1072.
Bates, D., Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.
Battaglia, M. (1996). Effects of seed dormancy and emergence time on the survival and early growth of Eucalyptus delegatensis and E. amygdalina. Australian Journal of Botany, 44(2), 123–137.
Benner, J., Vitousek, P., and Ostertag, R. (2011). Nutrient cycling and nutrient limitation in tropical montane cloud forests. In L. Bruijnzeel, F. Scatena, and L. Hamilton (Eds.), Tropical Montane Cloud Forests: Science for Conservation and Management (International Hydrology Series) (pp. 90–100). Cambridge: Cambridge University Press.
Benoist, A., Houle, D., Bradley, R. L., and Bellenger, J. P. (2022). Evaluation of biological nitrogen fixation in coarse woody debris from Eastern Canadian boreal forests. Soil Biology and Biochemistry, 165, 108531.
Bergmann, J., Ryo, M., Prati, D., Hempel, S., and Rillig, M. C. (2017). Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytologist, 216(4), 1130–1139.
Bloom, A. J., Chapin, F. S., and Mooney, H. A. (1985). Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics, 16, 363–392.
Bohnert, H. J., and Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14(3), 89–97.
Breslow, N. E. (1982). Covariance adjustment of relative-risk estimates in matched studies. Biometrics, 38(3), 661–672.
Breslow, N. E. and Day, N. E. (1980). Conditional logistic regression for matched sets. In N. E. Breslow, and N. E. Day (Eds.), Statistical Methods in Cancer Research Volume 1: The Analysis of Case-control Studies (IARC Scientific Publications No. 32, pp. 248–279). Lyon: WHO.
Bruijnzeel, L., Scatena, F., & Hamilton, L. (Eds.). (2011). Tropical Montane Cloud Forests: Science for Conservation and Management (International Hydrology Series). Cambridge: Cambridge University Press.
Brunner, A., and Kimmins, J. P. (2003). Nitrogen fixation in coarse woody debris of Thuja plicata and Tsuga heterophylla forests on northern Vancouver Island. Canadian Journal of Forest Research, 33(9), 1670–1682.
Canham, C. D., Denslow, J. S., Platt, W. J., Runkle, J. R., Spies, T. A., and White, P. S. (1990). Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Canadian Journal of Forest Research, 20(5), 620–631.
Carleton, T. J., and Read, D. J. (1991). Ectomycorrhizas and nutrient transfer in conifer–feather moss ecosystems. Canadian Journal of Botany, 69(4), 778–785.
Central Geological Survey, MOEA. https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm [Access at 12 Oct 2022]
Chang, F. J., and Duh, M. H. (1988). A fundamental study of the composition of major woods grown in Taiwan (II). Composition and fiber dimensions of ten species(台灣產重要樹種化學性質之研究(II)十樹種之化學性質). Quarterly Journal of Chinese Forestry, 21(4), 101–109. [in Chinese with English abstract].
Chang, N. H., Hsui, Y. R., Horng, F. W., Yu, H. M., and Ma, F. C. (2001). Natural seeding and seedling occurrence in the Chamaecyparis forest at Chilan Mt. area. Taiwan Journal of Forest Science, 16(4), 321–326.
Chang, S. C., Lai, I. L., and Wu, J. T. (2002). Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64(1–4), 159–167.
Chang, H. H. (2006). Performance of Seedling Growth, Photosynthesis, and Chlorophyll Fluorescence of Chamaecyparis formosensis and Chamaecyparis obtusa var. formosana Acclimated under Various Combinations of Light Intensities and Nutrient Levels(紅檜及台灣扁柏苗木在不同光度及養分級下馴化之生長、光合作用及葉綠素螢光表現) [Master’s thesis, National Taiwan University] [in Chinese with English abstract].
Chang, S. C., Yeh, C. F., Wu, M. J., Hsia, Y. J., and Wu, J. T. (2006). Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in Taiwan. Forest Ecology and Management, 224(1–2), 11–18.
Chang, L. M. (1961). Ecological studies on vegetation of Mt. Ta-Yuan(大元山植物生態之研究). Bulletin of Taiwan Forestry Research Institute, 70, 1–59. [in Chinese with English abstract].
Chang, L. M. (1963). Ecological studies of Chamaecyparis formensis and Chamaecyparis taiwanensis mixed forest in Taiwan(紅檜臺灣扁柏混交林生態之研究). Bulletin of Taiwan Forestry Research Institute, 91, 1–23. [in Chinese with English abstract].
Chapin III, F. S., Autumn, K., and Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. The American Naturalist, 142, S78–S92.
Chen, C. S., and Chen, Y. L. (2003). The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), 1323–1341.
Chen, G. T. J. (1994). Large-scale circulations associated with the East Asian summer monsoon and the Mei-Yu over South China and Taiwan. Journal of the Meteorological Society of Japan, 72(6), 959–983.
Chen, Z. S., Hseu, Z. Y., and Tsai, C. C. (2015). The Soils of Taiwan. Netherlands: Springer.
Chen, K. H., and Nelson, J. (2022). A scoping review of bryophyte microbiota: diverse microbial communities in small plant packages. Journal of Experimental Botany, 73(13), 4496-4513.
Cheng, S., Lin, C., Chung, N., and Chang, S. (2018). Evaluation of wood essential oils from five indigenous conifers in Taiwan against plant pathogenic fungi(臺灣針葉五木材部精油應用於植物病原菌防治之評估). Journal of the Experimental Forest of National Taiwan University, 32(2), 75–88. [in Chinese with English abstract].
Chu, H. S., Chang, S. C., Klemm, O., Lai, C. W., Lin, Y. Z., Wu, C. C., ... and Hsia, Y. J. (2014). Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrological Processes, 28(3), 1190–1214.
Chung, K. F., and Shao, K. T. (2021): Taiwanese IUCN species list (version 7.4). Taiwan Biodiversity Information Facility (TaiBIF). https://ipt.taibif.tw/resource?r=taibnet_iucnandamp;v=7.4
Clark, K. L., Nadkarni, N. M., and Gholz, H. L. (1998). Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica, 30(1), 12–23.
Clark, K. L., Nadkarni, N. M., and Gholz, H. L. (2005). Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica, 37(3), 328–336.
Commisso, M., Guarino, F., Marchi, L., Muto, A., Piro, A., and Degola, F. (2021). Bryo-activities: a review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants, 10(2), 203.
Cornett, M. W., Reich, P. B., Puettmann, K. J., and Frelich, L. E. (2000). Seedbed and moisture availability determine safe sites for early Thuja occidentalis (Cupressaceae) regeneration. American Journal of Botany, 87(12), 1807–1814.
Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B, 34(2), 187–220.
Cusack, D. F., Silver, W., and McDowell, W. H. (2009). Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems, 12(8), 1299–1315.
Deora, G. S., Deepti, S., and Gunjan, V. (2010). Antifungal potential of Philonotis revoluta–a moss against certain phytopathogenic fungi. Journal of Pure and Applied Microbiology, 4(1), 425–428.
Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., ... and Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167–171.
Eissenstat, D. M., & Yanai, R. D. (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1–60.
Elff, M. (2022). mclogit: Multinomial Logit Models, with or without Random Effects or Overdispersion in R (version 0.9.4.2.) https://CRAN.R-project.org/package=mclogit
Espeleta, J. F., and Donovan, L. A. (2002). Fine root demography and morphology in response to soil resources availability among xeric and mesic sandhill tree species. Functional Ecology, 16(1), 113–121.
Fan, X., Yuan, G., and Liu, W. (2022). Response strategies of N-fixation by epiphytic bryophytes to water change in a subtropical montane cloud forest. Ecological Indicators, 135, 108527.
Fang, Y. K., Liao, T. S., Chiu, L. Y., and Lin, H. C. (1991). Effects of various light intensities on the growth of seedlings of three coniferous tree species(不同光度對於三種針葉樹苗木生長之影響). Bulletin Experimental Forest of National Chung Hsing University, 13, 29–56. [in Chinese with English abstract].
Fox, J. and Weisberg, S. (2019). An R Companion to Applied Regression (3rd ed). CA: Sage.
Fox, J., and Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87(417), 178–183.
Fukasawa, Y., Takahashi, K., Arikawa, T., Hattori, T., & Maekawa, N. (2015). Fungal wood decomposer activities influence community structures of myxomycetes and bryophytes on coarse woody debris. Fungal Ecology, 14, 44-52.
Fukasawa, Y. (2018). Pine stumps act as hotspots for seedling regeneration after pine dieback in a mixed natural forest dominated by Chamaecyparis obtusa. Ecological Research, 33(6), 1169–1179.
Fukasawa, Y., and Ando, Y. (2018). Species effects of bryophyte colonies on tree seeding regeneration on coarse woody debris. Ecological Research, 33(1), 191–197.
Fukasawa, Y., Ando, Y., and Song, Z. (2017). Comparison of fungal communities associated with spruce seedling roots and bryophyte carpets on logs in an old-growth subalpine coniferous forest in Japan. Fungal Ecology, 30, 122–131.
Gillman, L. N. (2016). Seedling mortality from litterfall increases with decreasing latitude. Ecology, 97(2), 530–535.
Glime, J. M. (2017). Adaptive strategies: growth and life forms. In J. M. Glime, Bryophyte Ecology (Vol. 1). The Hague: Springer Dordrecht.
Goldsmith, G. R., Matzke, N. J., and Dawson, T. E. (2013). The incidence and implications of clouds for cloud forest plant water relations. Ecology Letters, 16(3), 307–314.
Gray, A. N., and Spies, T. A. (1997). Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology, 78(8), 2458–2473.
Griffin, D. M. (1977). Water potential and wood-decay fungi. Annual Review of Phytopathology, 15(1), 319–329.
Grubb, P. J. (1977). The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Review, 52(1), 107–145.
Hagge, J., Müller, J., Bässler, C., Biebl, S. S., Brandl, R., Drexler, M., ... and Mysterud, A. (2019). Deadwood retention in forests lowers short-term browsing pressure on silver fir saplings by overabundant deer. Forest Ecology and Management, 451, 117531.
Han, A. R., Kim, H. J., Jung, J. B., and Park, P. S. (2018). Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. Forest Ecology and Management, 429, 579–588.
Harmon, M. E., and Franklin, J. F. (1989). Tree seedlings on logs in Picea‐Tsuga forests of Oregon and Washington. Ecology, 70(1), 48–59.
Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., ... and Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133–302.
Harper, J. L., Clatworthy, J. N., McNaughton, I. H., and Sagar, G. R. (1961). The evolution of closely related species living in the same area. Evolution, 15(2), 209–227.
Harper, J. L. (1977). Population Biology of Plants. London: Academic Press.
Harrell, F. E. (2001). Regression Modeling Strategies. New York, NY: Springer.
Harrell, F. E. (2022). rms: Regression modeling strategies in R (version 6.3-0.) https://CRAN.R-project.org/package=rms
Harrell, F. E., Lee, K. L., and Mark, D. B. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15(4), 361–387.
Hawk, G. M. (1977). Comparative Study of Temperate Chamaecyparis Forests [Doctoral dissertation, Oregon State University].
Helsen, K., Shen, Y. C., Lin, T. Y., Chen, C. F., Huang, C. M., Li, C. F., and Zelený, D. (2022). Climate and soil differentially affect species, trait and diversity patterns of woody overstorey and fern understory in a subtropical forest along an elevation gradient in Taiwan. Journal of Vegetation Science, 33(3), e13130.
Hertz-Picciotto, I., and Rockhill, B. (1997). Validity and efficiency of approximation methods for tied survival times in Cox regression. Biometrics, 53(3), 1151–1156.
Holder, C. D. (2007). Leaf water repellency as an adaptation to tropical montane cloud forest environments. Biotropica, 39(6), 767–770.
Horng, F. W., Ma, F. C., Yu, H. M., Hsui, Y. R., and Chang, H. M. (2000). An estimation of original Chamaecyparis forest area in Taiwan and its implication for conservation. Quarterly Journal of Chinese Forestry, 17, 143–153. [in Chinese with English abstract].
Hu, H. T. (1981). Endotrophic mycorrhizal studies on the important needle tree species at high altitude in Taiwan(台灣高海拔重要針葉樹種內生菌根之研究). Memoirs of the College of Agriculture National Taiwan University, 21(2), 113–134. [in Chinese with English abstract].
Huang, C. Y., Liu, H. C., Hu, K. T., Chung, C. H., and Wang, J. (2022). Variation of seasonal litterfall in subtropical montane cloud forests to typhoon severity and environmental factors. Biotropica, 55(1), 132– 144.
Iijima, H., Shibuya, M., Saito, H., and Takahashi, K. (2006). The water relation of seedlings of Picea jezoensis on fallen logs. Canadian Journal of Forest Research, 36(3), 664–670.
Jen, I. A. (1995). Expectation and historical review of cypress (Chamaecyparis spp.) timber production in Taiwan(台灣檜木生產的回顧與展望). Bulletin of Taiwan Forestry Research Institute (New Series), 10(2), 227–234. [in Chinese with English abstract]
Ježek, K. (2004). Contribution of regeneration on dead wood to the spontaneous regeneration of a mountain forest. Journal of Forest Science, 50(9), 405–414.
Keating K. A. and Cherry S. (2004) Use and interpretation of logistic regression in habitat-selection studies. Journal of Wildlife Management, 68(4), 774–89
Knapp, A. K., and Smith, W. K. (1982). Factors influencing understory seedling establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in southeast Wyoming. Canadian Journal of Botany, 60(12), 2753–2761.
Knief, U., and Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590.
Kramer‐Walter, K. R., Bellingham, P. J., Millar, T. R., Smissen, R. D., Richardson, S. J., and Laughlin, D. C. (2016). Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104(5), 1299–1310.
Kuo, B. C (Ed.) (1995) Five Important Coniferous Trees in Taiwan(台灣貴重針葉五木). Taipei: The Chinese Forestry Association. [in Chinese].
Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). Applied Linear Statistical Models. New York, NY: McGraw Hill Irwin.
Lai, I. L., Chang, S. C., Lin, P. H., Chou, C. H., and Wu, J. T. (2006). Climatic characteristics of the subtropical mountainous cloud forest at the Yuanyang Lake long-term ecological research site, Taiwan. Taiwania, 51(4), 317–329.
Lai, I. L., Scharr, H., Chavarria‐Krauser, A., Kusters, R., Wu, J. T., Chou, C. H., ... and Walter, A. (2005). Leaf growth dynamics of two congener gymnosperm tree species reflect the heterogeneity of light intensities given in their natural ecological niche. Plant, Cell and Environment, 28(12), 1496–1505.
Lai, I. L., Schroeder, W. H., Wu, J. T., Kuo-Huang, L. L., Mohl, C., and Chou, C. H. (2007). Can fog contribute to the nutrition of Chamaecyparis obtusa var. formosana? Uptake of a fog solute tracer into foliage and transport to roots. Tree Physiology, 27(7), 1001–1009.
Larson, J. E., and Funk, J. L. (2016). Regeneration: an overlooked aspect of trait‐based plant community assembly models. Journal of Ecology, 104(5), 1284–1298.
Lau, B., Cole, S. R., and Gange, S. J. (2009). Competing risk regression models for epidemiologic data. American Journal of Epidemiology, 170(2), 244–256.
Lee, P. C., Crites, S., Nietfeld, M., Nguyen, H. V., and Stelfox, J. B. (1997). Characteristics and origins of deadwood material in aspen‐dominated boreal forests. Ecological Applications, 7(2), 691–701.
Lee, S. C. (1962). Taiwan red-and yellow-cypress and their conservation. Taiwania, 8(1), 1–15.
Li, C. F., Chytrý, M., Zelený, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., ... and Hsieh, C. F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16(4), 698–719.
Li, C. F., Zelený, D., Chytrý, M., Chen, M. Y., Chen, T. Y., Chiou, C. R., ... and Hsieh, C. F. (2015). Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 30(5), 771–791.
Li, H. L., and Keng, H. (1954). Icones gymnospermum formosanarum. Taiwania, 5(1), 25–83.
Liao, C. C., Chou, C. H., Wu, J. T. (2003a). Population structure and substrates of Taiwan yellow false cypress (Chamaecyparis obtusa var. formosana) in Yuanyang Lake Nature Reserve and nearby Szumakuszu, Taiwan. Taiwania, 48(1), 6–21.
Liao, C. C., Chou, C. H., Wu, J. T. (2003b). Regeneration patterns of yellow cypress on down logs in mixed coniferous-broadleaf forest of Yuanyang Lake Nature Preserve, Taiwan. Botanical Bulletin of Academia Sinica, 44(3), 229–238.
Lin, H. L., Kuo, S. R. (2002). Germination of Chamaecyparis formosensis and C. obtusa var. formosana seeds in various water stress regimes(紅檜與臺灣扁柏種子在不同水逆境模式下之發芽). Taiwan Journal of Forest Science, 18(1), 13–23. [in Chinese with English abstract]
Lin, H. Y, Hu, J. M., Chen, T. Y., Hsieh, C. F., Wang, G. Y., and Wang, T. L. (2018). A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania, 63(3), 251–266.
Lin, H. Y., Li, C. F., Chen, T. Y., Hsieh, C. F., Wang, G., Wang, T., and Hu, J. M. (2020). Climate‐based approach for modeling the distribution of montane forest vegetation in Taiwan. Applied Vegetation Science, 23(2), 239–253.
Liu, T., Koh, C. C., and Yang, B. Y. (1961). Ecological survey on Taiwan important forest types(臺灣主要林型生態之調查). Bulletin of Taiwan Forestry Research Institute, 72, 1–65. [in Chinese with English abstract]
Liu, V. T. 1975. Ecological study on Chamaecyparis forests in Taiwan. Journal of Agriculture Association of China (New Series), 92, 143–178.
Liu, X., and Rousk, K. (2022). The moss traits that rule cyanobacterial colonization. Annals of Botany, 129(2), 147–160.
Lo-Cho, C. N., Chung, H. H., Chiu, C. M., and Chou, C. F. (1989). Natural Regeneration of Cypress Old Growth by Selective Cutting and Intensive Site Preparation(天然檜木林擇伐更新之研究). Bulletin of Taiwan Forestry Research Institute (New Series), 4(4), 197–217. [in Chinese with English abstract]
Louis, W., and Buckman, S. J. (1938). Moisture movement in wood above the fiber-saturation point. Journal of Agricultural Research, 57(3), 161–187.
Lu, S. W., and Liu, C. P. (2012). Patterns of litterfall and nutrient return at different altitudes in evergreen hardwood forests of Central Taiwan. Annals of Forest Science, 69(8), 877–886.
Lue, K. Y. (1987). A preliminary study on the ecology of Formosan serow Capricornis crispus swinhoei. In H. Soma (Ed.), The Biology and Management of Capricornis and Related Mountain Antelopes (pp. 125–133). Amsterdam: Springer.
Luzuriaga, A. L., and Escudero, A. (2008). What determines emergence and net recruitment in an early succession plant community? Disentangling biotic and abiotic effects. Journal of Vegetation Science, 19(4), 445–456.
Mallik, A., and Kayes, I. (2018). Lichen matted seedbeds inhibit while moss dominated seedbeds facilitate black spruce (Picea mariana) seedling regeneration in post-fire boreal forest. Forest Ecology and Management, 427, 260–274.
Mann, C. J. (2003). Observational research methods. Research design II: cohort, cross sectional, and case-control studies. Emergency Medicine Journal, 20, 54–60.
Maser, C., Trappe, J. M., Cline, P. C., Cromack, J. K., Blaschke, H., Sedell, J. R., and Swansan, F. J. (1984). The seen and unseen world of the fallen tree. (General Technical Report PNW-GTR-164). Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station.
Matuura, S. (1942). Beeinflussung der standortspaktoren auf dide fortenwicklung oder das absterben der anfluge von Taiwan-hinoki (Chamaecyparis taiwanensis Masamune et Suzuki) und Beniki (Chamaecyparis formosensis Matsumura). Bulletin of Forest Experimental Station. No. 5. [in Japanese with German abstract]
McCullough, D. R., Pei, K. C., and Wang, Y. (2000). Home range, activity patterns, and habitat relations of Reeves' muntjacs in Taiwan. Journal of Wildlife Management, 64(2), 430–441.
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in Econometrics (pp. 105–142). New York, NY: Academic Press.
Moles, A. T., and Westoby, M. (2004). What do seedlings die from and what are the implications for evolution of seed size? Oikos, 106(1), 193–199.
Mori, A., Mizumachi, E., Osono, T., and Doi, Y. (2004). Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. Forest Ecology and Management, 196(2–3), 287–297.
Motta, R., Berretti, R., Lingua, E., and Piussi, P. (2006). Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. Forest Ecology and Management, 235(1–3), 155–163.
Nad’o, L., and Kaňuch, P. (2018). Why sampling ratio matters: logistic regression and studies of habitat use. PLoS One, 13(7), e0200742.
Nakamura, T. (1992). Effect of bryophytes on survival of conifer seedlings in subalpine forests of central Japan. Ecological Research, 7(2), 155–162.
Niinemets, Ü. (2010). Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management, 260(10), 1623–1639.
Noss, R. F. (2001). Beyond Kyoto: forest management in a time of rapid climate change. Conservation Biology, 15(3), 578–590.
Oksanen, J., Gavin, L., Simpson, F., Blanchet, G., Kindt, R., Legendre, P., … and Weedon, J. (2022). vegan: Community Ecology Package in R (version 2.6–4). https://CRAN.R-project.org/package=vegan
Oliveira, R. S., Eller, C. B., Bittencourt, P. R., and Mulligan, M. (2014). The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany, 113(6), 909–920.
O'Quigley, J., and Stare, J. (2002). Proportional hazards models with frailties and random effects. Statistics in Medicine, 21(21), 3219–3233.
O'Quigley, J., Xu, R., and Stare, J. (2005). Explained randomness in proportional hazards models. Statistics in Medicine, 24(3), 479–489.
Pariyar, S., Chang, S. C., Zinsmeister, D., Zhou, H., Grantz, D. A., Hunsche, M., and Burkhardt, J. (2017). Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest. Oecologia, 184(3), 609–621.
Pearce, J. L., and Boyce, M. S. (2006). Modelling distribution and abundance with presence‐only data. Journal of Applied Ecology, 43(3), 405–412.
Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ... and Cornelissen, J. H. C. (2016). Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(8), 715–716.
Pichler, V., Homolak, M., Skierucha, W., Pichlerova, M., Ramirez, D., Gregor, J., and Jaloviar, P. (2012). Variability of moisture in coarse woody debris from several ecologically important tree species of the Temperate Zone of Europe. Ecohydrology, 5(4), 424–434.
Poorter, H., 1989. Interspecific variation in relative growth rate: on ecological causes and physiological consequences. In: H. Lambers, M. L. Cambridge, H. Konings, and T. L. Pons (Eds.), Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants (pp. 45–68). The Hague: SPB Academic Publishing.
Prentice, R. L., and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika, 66(3), 403–411.
Prentice, R. L., Kalbfleisch, J. D., Peterson Jr, A. V., Flournoy, N., Farewell, V. T., and Breslow, N. E. (1978). The analysis of failure times in the presence of competing risks. Biometrics, 34(4), 541–554.
Proctor, M. C., Oliver, M. J., Wood, A. J., Alpert, P., Stark, L. R., Cleavitt, N. L., and Mishler, B. D. (2007). Desiccation-tolerance in bryophytes: a review. The Bryologist, 110(4), 595–621.
R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rajala, T., Tuomivirta, T., Pennanen, T., and Mäkipää, R. (2015). Habitat models of wood-inhabiting fungi along a decay gradient of Norway spruce logs. Fungal Ecology, 18, 48–55.
Revelt, D. and Train, K. (1998) Mixed logit with repeated choices: households’ choices of appliance efficiency level. Review of Economics and Statistics, 80(4), 647–657.
Rinne, K. T., Rajala, T., Peltoniemi, K., Chen, J., Smolander, A., and Mäkipää, R. (2017). Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Functional Ecology, 31(2), 530–541.
Rousk, K. (2022). Biotic and abiotic controls of nitrogen fixation in cyanobacteria–moss associations. New Phytologist, 235(4), 1330–1335.
Sakai, Y., Ugawa, S., Ishizuka, S., Takahashi, M., and Takenaka, C. (2012). Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica. Soil Science and Plant Nutrition, 58(4), 526–537.
Santiago, L. S. (2000). Use of Coarse Woody Debris by the Plant Community of a Hawaiian Montane Cloud Forest. Biotropica, 32(4), 633–641.
Schulz, H. M., Li, C. F., Thies, B., Chang, S. C., and Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLoS One, 12(2), e0172663.
Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., and York, L. M. (2021). RhizoVision Explorer: open-source software for root image analysis and measurement standardization. AoB Plants, 13(6), plab056.
Sharma, S., Andrus, R., Bergeron, Y., Bogdziewicz, M., Bragg, D. C., Brockway, D., ... and Clark, J. S. (2022). North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences, 119(3), e2116691118.
Sheh, C. S. and Wang, M. K. (1991). An Atlas of Major Soils of Taiwan. Taichung: Soil Survey and Testing Center, National Chung Hsing University [in Chinese].
Simard, M. J., Bergeron, Y., and Sirois, L. (1998). Conifer seedling recruitment in a southeastern Canadian boreal forest: the importance of substrate. Journal of Vegetation Science, 9(4), 575–582.
Simard, M. J., Bergeron, Y., and Sirois, L. (2003). Substrate and litterfall effects on conifer seedling survivorship in southern boreal stands of Canada. Canadian Journal of Forest Research, 33(4), 672–681.
Stapleton, J. P., Ikin, K., and Freudenberger, D. (2017). Coarse woody debris can reduce mammalian browsing damage of woody plant saplings in box‐gum grassy woodlands. Ecological Management and Restoration, 18(3), 223–230.
Steijlen, I., Nilsson, M. C., and Zackrisson, O. (1995). Seed regeneration of Scots pine in boreal forest stands dominated by lichen and feather moss. Canadian Journal of Forest Research, 25(5), 713–723.
Stuiver, B. M., Wardle, D. A., Gundale, M. J., and Nilsson, M. C. (2014). The impact of moss species and biomass on the growth of Pinus sylvestris tree seedlings at different precipitation frequencies. Forests, 5(8), 1931–1951.
Su, H. J. (1984). Studies on the climate and vegetation types of the natural forest in Taiwan (II): Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 17(4), 57–73.
Su, H. J. (1985). Study on the climate and vegetation types of the natural forests in Taiwan (III) A scheme of geographical climatic regions. Quarterly Journal of Chinese Forestry, 18(3), 33–44.
Su, S. H., Chiu, C. M. and Peng, P. H. 2018. Impacts of forest management regimes on the ground vegetation diversity and natural regeneration of Chamaecyparis forests. Taiwan Journal of Forest Science, 33(2), 125–40.
Tadesse, M., Steiner, U., Hindorf, H., and Dehne, H. W. (2003). Bryophyte extracts with activity against plant pathogenic fungi. SINET: Ethiopian Journal of Science, 26(1), 55–62.
Taiwan Forestry Bureau. (2011). Actual Vegetation Maps for the National Forest Lands of Taiwan. Taipei: Taiwan Forestry Bureau, Council of Agriculture.
Takahashi, M., Sakai, Y., Ootomo, R., and Shiozaki, M. (2000). Establishment of tree seedlings and water-soluble nutrients in coarse woody debris in an old-growth Picea-Abies forest in Hokkaido, northern Japan. Canadian Journal of Forest Research, 30(7), 1148–1155.
Therneau, T. (2015). survival: A Package for Survival Analysis in R (version 2.38). https://CRAN.R-project.org/package=survival
Therneau, T. (2022). coxme: Mixed Effects Cox Models in R (version 2.2-18.1). https://CRAN.R-project.org/package=coxme
Thybring, E. E., and Fredriksson, M. (2021). Wood modification as a tool to understand moisture in wood. Forests, 12(3), 372.
Tseng, M. H., Lai, W. R., Hsieh, C. L., and Kuo, Y. H. (2007). Allelopathy on bark of downed logs of Chamaecyparis obtusa Sieb. and Zucc. var. formosana (Hayata) Rehder. Journal of Chemical Ecology, 33(6), 1283–1296.
Wang, L. J. (2004). The Growth and Physiological Characteristics of Chamaecyparis formosensis and C. obtusa var. formosana Seedlings Grown under Different Water Potential and Nutrient Regimes(紅檜及台灣扁柏苗木於不同水勢及養分條件下之生長與生理性狀) [Master’s thesis, National Taiwan University] [in Chinese with English abstract].
Wang, S. Y., Chiu, C. M., and Chen, Z. C. (1980). Studies on the properties of wood deterioration (II) The decay resistance of eighteen different Taiwan native wood species tested by accelerated decay resistance method (木材劣化性質之研究(第二報)—十八種省產木材之人工促進耐腐性試驗). Quarterly Journal of Chinese Forestry, 13(1), 55–93. [in Chinese with English abstract].
Wang, Z., Wang, D., Liu, Q., Xing, X., Liu, B., Jin, S., and Tigabu, M. (2022). Meta-Analysis of Effects of Forest Litter on Seedling Establishment. Forests, 13(5), 644.
Weemstra, M., Kiorapostolou, N., van Ruijven, J., Mommer, L., de Vries, J., and Sterck, F. (2020). The role of fine‐root mass, specific root length and life span in tree performance: a whole‐tree exploration. Functional Ecology, 34(3), 575–585.
Weemstra, M., Mommer, L., Visser, E. J., van Ruijven, J., Kuyper, T. W., Mohren, G. M., and Sterck, F. J. (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211(4), 1159–1169.
Weemstra, M., Sterck, F. J., Visser, E. J., Kuyper, T. W., Goudzwaard, L., and Mommer, L. (2017). Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils. Plant and Soil, 415(1), 175–188.
Westhoff, V. and van der Maarel, E. (1978): The Braun-Blanquet approach. In R. H. Whittaker (Ed.), Classification of Plant Communities (pp. 289–399). The Hague: Springer Dordrecht.
Willis, J. L., and Walters, M. B. (2018). Nutrition and mycorrhizae affect interspecific patterns of seedling growth on coarse wood and mineral soil substrates. Ecosphere, 9(7), e02350.
Woodward, M. (2013). Epidemiology: Study Design and Data Analysis (3rd ed.). Florida: CRC press.
Worthy, S. J., Laughlin, D. C., Zambrano, J., Umaña, M. N., Zhang, C., Lin, L., ... and Swenson, N. G. (2020). Alternative designs and tropical tree seedling growth performance landscapes. Ecology, 101(6), e03007.
Yamamoto, S. I. (1988). Seedling recruitment of Chamaecyparis obtusa and Sciadopitys verticillata in different microenvironments in an old-growth Sciadopitys verticillata forest. Botanical Magazine, 101(1), 61–71.
Yamamoto, S. I. (1993). Seedling establishment of Chamaecyparis obtusa in different microenvironments in the Akasawa Forest Reserve, central Japan. Journal of the Japanese Forestry Society, 75(6), 519–527.
Yamamoto, S. I. (1998). Regeneration ecology of Chamaecyparis obtusa and Chamaecyparis pisifera (Hinoki and Sawara Cypress), Japan. In A. D. Laderman (Ed.), Coastally Restricted Forests (pp. 101–111). Oxford: Oxford University Press.
Zhang, J., and Kai, F. Y. (1998). What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. Jama, 280(19), 1690–1691.
Zhang, Y. L., Moser, B., Li, M. H., Wohlgemuth, T., Lei, J. P., and Bachofen, C. (2020). Contrasting leaf trait responses of conifer and broadleaved seedlings to altered resource availability are linked to resource strategies. Plants, 9(5), 621.
Zobel, D. B., Lin, T. P., and Liu, V. T. (1978). Stomatal distribution on leaves of three species of Chamaecyparis. Taiwania, 23(1), 1–6.
Zobel, D. B. (1980). Effect of forest floor disturbance on seedling establishment of Chamaecyparis lawsoniana. Canadian Journal of Forest Research, 10(4), 441–446.
Zobel, D. B. 1998. Chamaecyparis forests: A comparative analysis. In A. D. Laderman (Ed.), Coastally Restricted Forests (pp. 39–53). Oxford: Oxford University Press.
Zobel, D. B., and Liu, V. T. (1979). Foliar nutrient concentrations of small Chamaecyparis in Taiwan. Plant and Soil, 53(3), 373–384.
Zobel, D. B., and Liu, V. T. (1980). Effects of environment, seedling age, and seed source on leaf resistance of three species of Chamaecyparis and Tsuga chinensis. Oecologia, 46(3), 412–419.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87825-
dc.description.abstract臺灣扁柏為臺灣重要之珍貴樹種,具有生態與經濟上的重要價值。本研究利用三種不同的取樣方法與分析方式,探討扁柏小苗的建立、存活與生長表現在大尺度氣候因子、小尺度的微棲地因子與生物間交互作用中如何形塑扁柏小苗早期建立的安全域(safe sites),並透過串連野外調查的結果與溫室實驗,進一步建立野外觀察中的重要因子(短期乾旱逆境、基質類型與蘚苔覆蓋)與小苗早期建立之間的因果關係。
野外調查結果顯示,環境選汰與草食獸取食為小苗早期建立的主要死亡原因。區域性氣候因子在研究區域間的變異度較小,對小苗的建立與存活影響有限,但皆呈現類似的季節性趨勢。研究推論,環境選汰的死亡原因可能為梅雨過渡到颱風季前的短期乾旱逆境所造成;另一方面,腐朽程度較高的粗木質殘體因有較高的蘚苔覆蓋與較少枯落物覆蓋等因素,因此可以促進小苗的建立。溫室實驗證實短期乾旱逆境對於小苗有負面影響,而蘚苔可透過腐植層的積聚提供較好的養分環境,因此在小苗建立與存活上扮演重要角色。同時,枯落物會阻礙小苗的根系生長與覆蓋小苗個體,對小苗的建立與存活有負面影響。此外,我們發現小苗可能需要權衡不同死亡原因所造成的影響來最大化其生長。
綜上所述,本研究證實林業界對於扁柏小苗可在倒木上建立的觀察,並指出此現象可能為粗木質殘體相較於其他基質類型有不同的微環境,尤其是透過不同程度的蘚苔與枯落物累積的影響,並發現小苗的早期建立不僅受到環境選汰,也同時受到草食壓力的影響。
zh_TW
dc.description.abstractChamaecyparis obtusa var. formosana is an ecologically and economically important species in Taiwan, with a high affinity for fog immersion. Our study aims to investigate how different ecological factors influence the early-stage establishment and survival of the seedlings, focusing primarily on the effect of large-scale climatic variables, small-scale microhabitat conditions, and biotic interactions. Also, we linked the field observation to a controlled experiment to identify the causal relationship between seedlings’ performance and key ecological factors, namely short-duration drought, substrates, and bryophyte cover.
We utilized three sampling and analysis schemas to quantify seedlings’ early-stage establishment, survival, and performance, respectively. Our field survey identified two primary causes of death for seedlings: environmental filtering and herbivory. On a regional scale, we observed limited variation in regional climatic variables, demonstrating no effect on seedlings’ establishment and survival. However, we noted a similar seasonal survival pattern among regions and hypothesized that short-duration droughts occurring during the transition from Mei-yu to typhoon season might be the stress factor. On a local scale, we found that decayed coarse wood debris (CWD) can facilitate seedling establishment by providing a “safe site” for the seedlings, likely due to increased bryophytes colonization and decreased litterfall accumulation. Our controlled experiment showed that short-duration drought could stress the seedlings and that bryophyte carpets could be beneficial by providing additional nutrient input via humus accumulation. We also found that litter dynamics significantly hindered seedling establishment and survival. Additionally, we found that seedlings might need to optimize their growing conditions by compensating for risks posed by both causes of death.
Our study verified the common belief of foresters in Taiwan that seedlings of Chamaecyparis obtusa var. formosana can establish on CWD in forests in their early-stage. We suggest that this phenomenon might be due to different microhabitat conditions between CWD and other substrates, particularly thanks to the effect of bryophytes and litter. Also, not only environmental filtering but also herbivore stress influences the final fate of the seedlings.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:42:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:42:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgment .................................................................................. I
中文摘要 ........................................................................................ II
Abstract ...................................................................................... III
Table of Contents ............................................................................... V
List of Figures ................................................................................ VI
List of Tables ................................................................................ VII
Introduction .................................................................................... 1
Chapter 1 ....................................................................................... 8
1.1 Materials and Methods ....................................................................... 8
1.1.1 Study area ................................................................................ 8
1.1.2 Sampling schema .......................................................................... 12
1.1.3 Statistical analysis ..................................................................... 17
1.2 Results .................................................................................... 24
1.2.1 Case-control survey ...................................................................... 24
1.2.2 Survival monitoring ...................................................................... 27
1.3 Discussion ................................................................................. 33
Chapter 2 ...................................................................................... 41
2.1 Materials and methods ...................................................................... 41
2.1.1 Experimental design ...................................................................... 41
2.1.2 Statistical analysis ..................................................................... 46
2.2 Results .................................................................................... 48
2.3 Discussion ................................................................................. 59
Conclusions .................................................................................... 66
References ..................................................................................... 68
Appendices ..................................................................................... 82
Appendix 1 Supplementary results ............................................................... 82
Appendix 2 R code .............................................................................. 89
-
dc.language.isoen-
dc.title影響臺灣扁柏小苗早期更新之生態因子研究zh_TW
dc.titleThe ecological characteristics of the safe sites for early-stage regeneration of Chamaecyparis obtusa var. formosana seedlings in Taiwanen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee關秉宗;廖啟政;陳可萱zh_TW
dc.contributor.oralexamcommitteeBiing-Tzung Guan;Chi-Cheng Liao;Ko-Hsuan Chenen
dc.subject.keyword粗木質殘體,苔蘚,案例對照研究,競爭風險模型,裂區實驗,溫室實驗,小苗存活,zh_TW
dc.subject.keywordBryophytes,case-control study,coarse wood debris,competing-risk Cox proportion hazard (PH) model,greenhouse experiment,seedlings survival,split-plot design,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202300650-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-03-02-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved