Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87824
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣zh_TW
dc.contributor.advisorJiun-Yun Lien
dc.contributor.author劉家佑zh_TW
dc.contributor.authorChia-You Liuen
dc.date.accessioned2023-07-19T16:42:17Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-03-02-
dc.identifier.citation[1] O. Moutanabbir, S. Assali, X. Gong, E. O’Reilly, C. A. Broderick, B. Marzban, J. Witzens, W. Du, S-Q. Yu, A. Chelnokov, D. Buca, and D. Nam, “Monolithic infrared silicon photonics: The rise of (Si)GeSn semiconductors,” Applied Physics Letters, vol. 118, no. 11, pp. 110502, 2021.
[2] L. Liu, R. Liang, J.Wang, and J. Xu, “Investigation on the effective mass of Ge1-xSnx alloys and the transferred-electron effect,” Applied Physics Express, vol. 8, no. 3, pp. 031301, 2015
[3] H. S. Lan, S. T. Chang, and C. W. Liu, “Semiconductor, topological semimetal, indirect semimetal, and topological Dirac semimetal phases of Ge1−xSnx alloys,” Physical Review B, vol. 95, no. 20, pp. 201201, 2017.
[4] G. E. Chang, S. Q. Yu, J. Liu, H. H. Cheng, R. A. Soref, and G, Sun, “Achievable Performance of Uncooled Homojunction GeSn Mid-Infrared Photodetectors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-11, 2021.
[5] R. Pillarisetty, "Academic and Industry Research Progress in Germanium Nanodevices," Nature, vol. 479, no. 7373, pp. 324-328, 2011.
[6] K. L. Low, Y. Yang, G. Han, W. Fan, and Y. C. Yeo, "Electronic Band Structure and Effective Mass Parameters of Ge1-xSnx Alloys," Journal of Applied Physics, vol. 112, no. 10, pp. 103715, 2012.
[7] S. Gupta, Y. C. Huang, Y. Kim, E. Sanchez, and K. C. Saraswat, “Hole Mobility Enhancement in Compressively Strained Ge0.93Sn0.07 pMOSFETs,” IEEE Electron Device Letters, vol. 34, no. 7, pp. 831-833, 2013.
[8] S. Mukhopadhyay, B. Mukhopadhyay, G. Sen, and P. K. Basu, “Maximum theoretical electron mobility in n-type Ge1−xSnx due to minimum doping requirement set by intrinsic carrier density,” Journal of Computational Electronics, vol. 20, no. 1, pp. 274-279, 2021.
[9] J. D. Sau and M. L. Cohen, “Possibility of increased mobility in Ge-Sn alloy system,” Physical Review B, vol. 75, no. 4, pp. 045208, 2007.
[10] Y. Yang, G. Han, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, and Y. C. Yeo, “Germanium–Tin P-Channel Tunneling Field-Effect Transistor: Device Design and Technology Demonstration,” IEEE Transactions on Electron Devices, vol. 60, no. 12, pp. 4048-4056, 2013.
[11] A. Marchionni, C. Zucchetti, F. Ciccacci, M. Finazzi, H. S. Funk, D. Schwarz, M. Oehme, J. Schulze, and F. Bottegoni, “Inverse spin-Hall effect in GeSn,” Applied Physics Letters, vol. 118, no. 21, pp. 212402, 2021.
[12] G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn Quantum Well P-Channel Tunneling FETs Fabricated on Si(001) and (111) With Improved Subthreshold Swing,” IEEE Electron Device Letters, vol. 37, no. 6, pp. 701-704, 2016.
[13] L. Jin, H. Zhu, D. Zhang, B. Liu, H. Meng, X. Tang, M. Li, Z. Zhong, and H. Zhang, “Spin pumping and laser modulated inverse spin Hall effect in yttrium iron garnet/germanium heterojunctions,” Applied Physics Letters, vol. 116, no. 12, pp. 122405, 2020.
[14] C. Kloeffel and D. Loss, “Prospects for Spin-Based Quantum Computing in Quantum Dots,” Annual Review of Condensed Matter Physics, vol. 4, no. 1, pp. 51-81, 2013.
[15] C. T. Tai, P. Y. Chiu, C. Y. Liu, H. S. Kao, C. T. Harris, T. M. Lu, C. T. Hsieh, S. W. Chang, and J. Y. Li, “Strain effects on Rashba spin-orbit coupling of two-dimensional hole gases in GeSn/Ge heterostructures,” Advanced Materials, vol. 33, no. 26, p. 2007862, 2021.
[16] Y. Gul, S. N. Holmes, P. J. Newton, D. J. P. Ellis, C. Morrison, M. Pepper, C. H. W. Barnes, and M. Myronov, “Quantum ballistic transport in strained epitaxial germanium,” Applied Physics Letters, vol. 111, no. 23, pp. 233512, 2017.
[17] E. J. Connors , JJ Nelson, and J. M. Nichol, “Rapid High-Fidelity Spin-State Readout in Si/Si-Ge Quantum Dots via rf Reflectometry,” Physical Review Applied, vol. 13, no. 2, pp. 024019, 2020.
[18] S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, "Achieving Direct Band Gap in Germanium Through Integration of Sn Alloying and External Strain," Journal of Applied Physics, vol. 113, no. 7, pp. 073707, 2013.
[19] H. S. Lan, and C. W. Liu, “Band alignments at strained Ge1−xSnx /relaxed Ge1−ySny heterointerfaces,” Journal of Physics D: Applied Physics, vol. 50, no. 13, pp. 13LT02, 2017
[20] R. W. Olesinski and G. J. Abbaschian, "The Ge−Sn (Germanium−Tin) System," Bulletin of Alloy Phase Diagrams, vol. 5, no. 3, pp. 265-271, 1984.
[21] H. Groiss M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge1−xSnx epilayers,” Scientific Reports, vol. 7, no. 1, pp. 16114, 2017.
[22] C. Schulte-Braucks, N. Driesch, S. Glass, A. T. Tiedemann, U. Breuer, A. Besmehn, J. M. Hartmann, Z. Ikonic, Q. T. Zhao, S. Mantl, and D. Buca, “Low Temperature Deposition of High-k/Metal Gate Stacks on HighSn Content (Si)GeSn-Alloys,” ACS Applied Materials & Interfaces, vol. 8, no. 20, pp. 13133-13139, 2016.
[23] W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y. Ch. Yeo, “Critical thickness for strain relaxation of Ge1−xSnx (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001),” Applied Physics Letters, vol. 106, no. 23, pp. 232106, 2015.
[24] R. Khazaka , E. Nolot, J. Aubin, and J. M. Hartmann, “Growth and characterization of SiGeSn pseudomorphic layers on 200mm Ge virtual substrates,” Semiconductor Science and Technology, vol. 33, no. 12, pp. 124011, 2018.
[25] A. Elbaz, D. Buca , N. Driesch, K. Pantzas, G. Patriarche, N. Zerounian, E. Herth, X. Checoury, S. Sauvage, I. Sagnes, A. Foti, R. Ossikovski, J. M. Hartmann, F. Boeuf, Z. Ikonic, P. Boucaud , D. Grützmacher, and M. E. Kurdi, “Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys,” Nature Photonics, vol. 14, no. 6, pp. 375-382, 2020.
[26] J. Chretien, N. Pauc, F. A. Pilon, M. Bertrand, Q. M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J. M. Hartmann, and V. Calvo “GeSn Lasers Covering a Wide Wavelength Range Thanks to Uniaxial Tensile Strain,” ACS Photonics, vol. 6, no. 10, pp. 2462-2469, 2019.
[27] Y.-S. Huang, F.-L. Lu, Y.-J. Tsou, C.-E. Tsai, C.-Y. Lin, C.-H. Huang, and C. W. Liu, "First Vertically Stacked GeSn Nanowire pGAAFETs with Ion=1850 μA/μm (Vov = Vds=-1V) on Si by GeSn/Ge CVD Epitaxial Growth and Optimum Selective Etching," 2017 IEEE International Electron Devices Meeting, pp. 37.5.1-37.5.4, 2017.
[28] I. Dascalescu, N. C. Zoita, A. Slav, E. Matei, S. Iftimie, F. Comanescu, A. M. Lepadatu, C. Palade, S. Lazanu, D. Buca, V. S. Teodorescu, M. L. Ciurea, M. Braic, and T. Stoica, “Epitaxial GeSn Obtained by High Power Impulse Magnetron Sputtering and the Heterojunction with Embedded GeSn Nanocrystals for Shortwave Infrared Detection,” ACS Applied Materials & Interfaces, vol. 12, no. 30, pp. 33879-33886, 2020.
[29] F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, M. Heyns, “Low-temperature Ge and GeSn Chemical Vapor Deposition using Ge2H6,” Thin Solid Films, vol. 520, no. 8, pp. 3211-3215, 2012.
[30] W. Wegscheider, J. Olajos, U. Menczigar, W. Dondl, and G. Abstreiter, “Fabrication and properties of epitaxially stabilized Ge/α-Sn heterostructures on Ge(001),” Journal of Crystal Growth, vol. 123, no. 1-2, pp. 75-94, 1992.
[31] H. Wang, G. Zhang, Y. Chen, J. Zhang, K. Han, Y. C. Huang, and X. Gong, “First Monolithic Integration of Group IV Waveguide Photodetectors and Modulators on 300 mm Si Substrates for 2-μm Wavelength Optoelectronic Integrated Circuit,” 2022 IEEE Symposium on VLSI Technology and Circuits, pp. 407-408, 2022.
[32] P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, H. Tran, G. Abernathy, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “UHV-CVD Growth of High Quality GeSn Using SnCl4: From Growth Optimization to Prototype Devices,” Optical Materials Express, vol. 9, no. 8, pp. 3277-3291, 2019.
[33] J. C. Sturm and K. H. Chung, "Chemical vapor deposition epitaxy of silicon-based materials using neopentasilane." ECS Transactions, vol. 16, no. 10, pp. 799-805, 2008.
[34] S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Holländer, P. Bernardy, T. Stoica, D. Grützmacher, and S. Mantl, "Reduced Pressure CVD Growth of Ge and Ge1-xSnx Alloys," ECS Journal of Solid State Science and Technology, vol. 2, no. 5, pp. N99-N102, 2013.
[35] J. Aubin, J. M. Hartmann, M. Bauer, and S. Moffatt, "Very Low Temperature Epitaxy of Ge and Ge Rich SiGe Alloys with Ge2H6 in a Reduced Pressure-Chemical Vapour Deposition Tool," Journal of Crystal Growth, vol. 445, pp. 65-72, 2016.
[36] A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, Perry C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, "Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing," Journal of Electronic Materials, vol. 45, no. 4, p. 2051–2058, 2016.
[37] R. F. Spohn and C. B. Richenburg, "Tin Deuteride (SnD4) Stabilization." ECS Transactions, vol. 50, no. 9, pp. 921-927, 2012
[38] D. R. Stull, "Vapor Pressure of Pure Substances. Organic and Inorganic Compounds," Industrial & Engineering Chemistry, vol. 39, no. 4, pp. 517-540, 1947.
[39] A. Mosleh, M. A. Alhe, L. C. Cousar, W. Du, S. A. Ghetmiri,T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1−xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Frontiers in Materials, vol. 2, no. 30, 2015.
[40] J. Nicolas, S. Assali, S. Mukherjee, A. Lotnyk, and O. Moutanabbir, “Dislocation Pipe Diffusion and Solute Segregation during the Growth of Metastable GeSn,” Crystal Growth & Design, vol. 20, no. 5, pp. 3493–3498, 2020.
[41] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Physical Review Letters, vol. 64, no. 16, pp. 1943-1946, 1990.
[42] S. Kobayashi, Y. Nishi, and K. C. Saraswat, “Effect of isochronal hydrogen annealing on surface roughness and threading dislocation density of epitaxial Ge films grown on Si, ” Thin Solid Films, vol. 518, no. 6, pp. S136-S139, 2010.
[43] V. A. Shah, A. Dobbie, M. Myronov, and D.R. Leadley, “Effect of layer thickness on structural quality of Ge epilayers grown directly on Si(001),” Thin Solid Films, vol. 519, no. 22, pp. 7911-7917, 2011.
[44] M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Applied Physics Letters, vol. 72, no. 14, pp. 1718-1720, 1998.
[45] D. Choi, Y. Ge, J. S. Harris, J. Cagnon, and S. Stemmer, “Low surface roughness and threading dislocation density Ge growth on Si (001),” Journal of Crystal Growth, vol. 310, no. 18, pp. 4273-4279, 2008.
[46] D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang, and S. Liu, “Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD,” Applied Surface Science, vol. 299, pp. 1-5, 2014.
[47] A. Mosleh, S. A. Ghetmiri, B. R. Conley, M.Hawkridge, M. Benamara, A. Nazzal, J. Tolle, S. Q. Yu, and H. A. Naseem, “Material Characterization of Ge1−xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications,” Journal of Electronic Materials, vol 43, no. 4, pp. 938–946, 2014.
[48] H. Cai, K. Qian, Y. An, G. Lin, S. Wu, H. Ding, W. Huang, S.Chen, J. Wang, and C. Li, “Thickness-dependent behavior of strain relaxation and Sn segregation of GeSn epilayer during rapid thermal annealing,” Journal of Alloys and Compounds, vol. 904, pp. 164068, 2022.
[49] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” Journal of Crystal Growth, vol. 27, pp. 118–125, 1974.
[50] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1− x/Si strained‐layer heterostructures,” Applied Physics Letters, vol. 47, no. 3, pp. 322–324, 1985
[51] P. Kidd, D. J. Dunstan, H. G. Colson, M. A. Louren, A. Sacedo, F. G. Sanz, L. Gonzalez, Y. Gonzalez, R. Garcia, D. Gonzalez, F. J. Pacheco, and P. J. Goodhew, “Comparison of the crystalline quality of step-graded and continuously graded InGaAs buffer layers,” Journal of Crystal Growth, vol. 169, no. 4, pp. 649-659, 1996.
[52] M. S. Abrahams, L. R. Weisberg, C. J. Buiocchi, and J. Blanc, “Dislocation morphology in graded heterojunctions: GaAs1−xPx,” Journal of Materials Science, vol. 4, pp. 223–235, 1969.
[53] E. A. Fitzgerald, A.Y. Kim, M.T. Currie, T. A. Langdo, G. Taraschi, and M.T. Bulsara, “Dislocation dynamics in relaxed graded composition semiconductors,” Materials Science and Engineering:B, vol. 67, no. 1-2, pp. 53–64, 1999.
[54] M. Albrecht, S. Christiansen, J. Michler, W. Dorsch, and H. P. Strunk, “Surface ripples, crosshatch pattern, and dislocation formation: Cooperating mechanisms in lattice mismatch relaxation,” Applied Physics Letters, vol. 67, no.9, pp. 1232-1234, 1995.
[55] J. Aubin and J. M. Hartmann, "GeSn Growth Kinetics in Reduced Pressure Chemical Vapor Deposition from Ge2H6 and SnCl4," Journal of Crystal Growth, vol. 482, pp. 30-35, 2018.
[56] K. Tamaru, "The Thermal Decomposition of Tin Hydride." The Journal of Physical Chemistry, vol. 60, no. 5, pp. 610-612, 1956.
[57] W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S. Q. Yu, "Investigation of GeSn Strain Relaxation and Spontaneous Composition Gradient for Low-Defect and High-Sn Alloy Growth," Scientific Reports, vol. 8, no. 1, pp. 1-11, 2018.
[58] S. Assali, J. Nicolas, and O. Moutanabbir, “Enhanced Sn incorporation in GeSn epitaxial semiconductors via strain relaxation,” Journal of Applied Physics, vol. 125, no. 2, pp. 025304, 2019.
[59] M. Nakamura, Y. Shimura, S. Takeuchi, O. Nakatsuka, and S. Zaima, “Growth of Ge1−xSnx heteroepitaxial layers with very high Sn contents on InP(001) substrates,” Thin Solid Films, vol. 520, no. 8, pp. 3201-3205, 2012.
[60] J. A. Nelson, “The Physics of Solar Cells,” World Scientific Publishing Company, 2003.
[61] X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of 𝑛-type tensile-strained Ge-on-Si,” Applied Physics Letters, vol. 95, no.1, pp. 011911, 2009.
[62] S. A. Ghetmiri, W. Du, B. R. Conley, and A. Mosleh, “Shortwave-infrared photoluminescence from Ge1-xSnx thin films on silicon,” Journal of Vacuum Science & Technology B, vol. 32, no. 6, pp. 060601, 2014.
[63] C. Wang, B.Wang, R. I. Made, S. F. Yoon, and J. Michel, “Direct bandgap photoluminescence from n-type indirect GaInP alloys,” Photonics Research, vol. 5, no. 3, pp. 239-244, 2017.
[64] S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Cousar, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, "Direct-Bandgap GeSn Grown on Silicon with 2230 nm Photoluminescence," Applied Physics Letters, vol. 105, no. 15, pp. 151109, 2014.
[65] https://www.edmundoptics.com.tw/f/ig6-ir-aspheric-lenses/14800/
[66] S. Q. Yu, S. A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, Aboozar Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, Richard A. Soref, J. Tolle, B. Li, H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Silicon Photonics X. SPIE, vol. 9367, pp. 146-153, 2015.
[67] S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0–3.5 μm room-temperature optical emission,” Applied Physics Letters, vol. 112, no. 25, pp. 251903, 2018.
[68] M. Kittler, T. Arguirov, M. Oehme, Y. Yamamoto, B. Tillack, and N. V. Abrosimov, “Photoluminescence study of Ge containing crystal defects,” Physica Status Solidi a, vol. 208, no.4, pp. 754-759, 2011.
[69] T. Liu, L. Wang, G. Zhu, X. Hu, Z. Dong, Z. Zhong, Q. Jia, X. Yang, and Z. Jiang, “Dislocation-related photoluminescence of GeSn films grown on Ge (001) substrates by molecular beam epitaxy,” Semiconductor Science and Technology, vol. 33, no. 12, pp. 125022, 2018.
[70] A. Vossier, F. Gualdi, A. Dollet, R. Ares, and V. Aimez, “Approaching the Shockley-Queisser limit: General assessment of the main limiting mechanisms in photovoltaic cells,” Journal of Applied Physics, vol. 117, no. 1, pp. 015102, 2015.
[71] G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” Journal of Applied Physics, vol. 108, no. 3, pp. 033107, 2010.
[72] P. W. Yu, and Y. S. Park, "Temperature dependence of photoluminescence from Mg‐implanted GaAs," Journal of Applied Physics, vol. 48, no. 6, pp. 2434-2441, 1977.
[73] W. S. Yoo, K. Kang, G. Murai, and M. Yoshimoto, “Temperature Dependence of Photoluminescence Spectra from Crystalline Silicon,” ECS Journal of Solid State Science and Technology, vol. 4, no. 12, pp. P456, 2015.
[74] M. E. Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based on a 30 band k⋅ p formalism,” Journal of Applied Physics, vol. 107, no. 1, pp. 013710, 2010.
[75] https://cleanroom.byu.edu/opticalcalc/
[76] D. A. Neaman, “Semiconductor physics and devices 4th edition,” McGraw-Hill, 2011.
[77] D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Applied Optics, vol. 28, no. 9, pp. 1714-1719, 1989.
[78] https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=80#IR-Spec/
[79] K. Gopalakrishnan, P. Griffin, and J. Plummer, “I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q,” Digest. International Electron Devices Meeting, pp. 289-292, 2002.
[80] A. Saeidi, F. Jazaeri, I. Stolichnov, C. C. Enz, and A. M. Ionescu, “Negative Capacitance as Universal Digital and Analog Performance Booster for Complementary MOS Transistors,” Scientific Reports, vol. 9, pp. 9105, 2019.
[81] A. M. Ionescu, and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329-337, 2011.
[82] S. Ahmad, N. Alam, and M. Hasan, “Robust TFET SRAM cell for ultra-low power IoT application,” 2017 International Conference on Electron Devices and Solid-State Circuits, pp. 1-2, 2017.
[83] A. G. Chynoweth, R. A. Logan, and D. E. Thomas, “Phonon-Assisted Tunneling in Silicon and Germanium Esaki Junctions,” Physical Review, vol. 125 , no. 3, pp. 877-881, 1962.
[84] R. A. Logan, J. M. Rowell, and F. A. Trumbore, “Phonon Spectra of Ge-Si Alloys,” Physical Review, vol. 136 , no. 6A, pp. 1751, 1964.
[85] C. Schulte-Braucks, D. Stange, N. Driesch, S. Blaeser, Z. Ikonic, J. M. Hartmann, S. Mantl, and D. Buca, “Negative differential resistance in direct bandgap GeSn p-i-n structures,” Applied Physics Letters, vol. 107 , no. 4, pp. 042101, 2015.
[86] L. Esaki, “New Phenomenon in Narrow Germanium p-n Junctions,” Physical Review, vol. 109, no. 2, pp. 603, 1958.
[87] K. Ismail, B. S. Meyerson, and P. J. Wang, “Electron resonant tunneling in Si/SiGe double barrier diodes,” Applied Physics Letters, vol. 59, no.8 , pp. 973-975, 1991.
[88] N. Jin, S. Y. Chung, A. T. Rice, and P. R. Berger, “151 kA/cm2 peak current densities in Si/SiGe resonant interband tunneling diodes for high-power mixed-signal applications,” Applied Physics Letters, vol. 83, no. 16, pp. 3308-3310, 2003.
[89] Y. Furukawa, “Magnetoresistance in Heavily Doped n-Type Germanium,” Journal of the Physical Society of Japan, vol. 17, no. 4, pp. 630-638, 1962.
[90] E. O. Kane, “Theory of tunneling,” Journal of Applied Physics, vol. 32, pp. 83-91, 1961.
[91] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” Wiley, 2006.
[92] M. Dietrich, G. A. Brown, and H. S. Sommers Jr., “Degenerate germanium. I. Tunnel, excess, and thermal current in tunnel diodes.” Physical Review, vol. 126, no. 4, pp. 1329, 1962.
[93] A. G. Chynoweth, W. L. Feldmann, and R. A. Logan, “Excess tunnel current in silicon Esaki junctions,” Physical Review, vol. 121, no. 3, pp. 684-694, 1961.
[94] R. A. Logan, and A. G. Chynoweth. “Effect of degenerate semiconductor band structure on current-voltage characteristics of silicon tunnel diodes.” Physical Review, vol. 131, no. 1, pp. 89, 1963.
[95] D. K. Roy, “On the Separation of the Phonon-Assisted Current Components in Germanium Tunnel Diodes,” Physica Status Solidi, vol. 8, pp. K75-79, 1968.
[96] K. H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Soree, G. Groeseneken, and K. D. Meyer, “Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs,” IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 292-301, 2012.
[97] C. E. Tsai, F. L. Lu, P. S. Chen, C. W. Liu, “Boron-doping induced Sn loss in GeSn alloys grown by chemical vapor deposition,” Thin Solid Films, vol. 660, pp. 263-266, 2018.
[98] M. Frauenrath, V. Kiyek, N. Driesch, M. Veillerot, E. Nolot, D. Buca, and J. M. Hartmann, “An In-Depth Study of the Boron and Phosphorous Doping of GeSn,” ECS Journal of Solid State Science and Technology, vol. 10, no. 8, pp. 085006, 2021.
[99] Y. Chuang, C. Y. Liu, H. S. Kao, K. Y. Tien, G. L. Luo, and J. Y. Li, “Schottky barrier height modulation of metal/n-GeSn contacts featuring low contact resistivity by in-situ chemical vapor deposition doping and NiGeSn alloy formation,” ACS Applied Electronic Materials, vol. 3, no. 3, pp. 1334-1340, 2021.
[100] C. Schulte-Braucks, N. Driesch, S. Glass, A. T. Tiedemann, U. Breuer, A. Besmehn, J.-M. Hartmann, Z. Ikonic, Q. T. Zhao, S. Mantl, and D. Buca, “Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys,” ACS Applied Materials and Interfaces, vol. 8, no. 220, pp. 13133–13139, 2016.
[101] J. Y. Li and J. C. Sturm, “The Effect of Germanium Fraction on High-Field Band-to-Band Tunneling in p+-SiGe/n+-SiGe Junctions in Forward and Reverse Biases,” IEEE Transactions on Electron Devices, vol. 60, no. 8, pp. 2479-2484, 2013.
[102] M. Bao and K. L. Wang, “Accurately measuring current-voltage characteristics of tunnel diodes,” IEEE Transactions on Electron Devices, vol. 53, pp. 2564 – 2568, 2006.
[103] R. Glicksman, and R. M. Minton, “The effect of p-region carrier concentration on the electrical characteristics of germanium epitaxial tunnel diodes,” Solid-State Electronics ,vol. 8, no. 5, pp. 517-519, 1965.
[104] C. Y. Liu, K. Y. Tian, P. Y. Chiu, Y. J. Wu, Y. Chuang, H. S. Kao, and J. Y. Li, "Room temperature negative differential resistance and high tunneling current density in GeSn Esaki diodes," Advanced Materials, vol. 34, no. 41, p. 2203888, 2022.
[105] L. Liu, R. Liang, J. Wang, and J. Xu, "Enhanced Carrier Mobility and Direct Tunneling Probability of Biaxially Strained Ge1-xSnx Alloys for Field-Effect Transistors Applications," Journal of Applied Physics, vol. 117, no. 18, pp. 184501, 2015.
[106] P. Y. Chiu, “Magneto-Transport and Effective Mass of Two-dimensional Hole Gases in Ge and GeSn Quantum Wells,” Master thesis, National Taiwan University, https://hdl.handle.net/11296/54pa5e.
[107] L. Esaki and Y. Miyahara, “A new device using the tunneling process in narrow p-n junctions,” Solid-State Electronics, vol. 1, no. 1, pp. 13-21, 1960.
[108] N. Holonyak and I. A. Lesk, “Gallium-Arsenide Tunnel Diodes,” Proceedings of the IRE, vol. 48, no. 8, pp. 1405-1409, 1960.
[109] R. T. Payne, “Phonon Energies in Germanium from Phonon-Assisted Tunneling,” Physical Review, vol. 139, no. 2A, pp. A570, 1965.
[110] R. N. Hall, J. H. Racette, and H. Ehrenreich, “Direct Observation of Polarons and Phonons During Tunneling in Group 3-5 Semiconductor Junctions,” Physical Review Letters, vol. 4, no. 9, pp. 456, 1960.
[111] P. W. Chapman, O. N. Tufte, J. David Zook, and Donald Long, “Electrical Properties of Heavily Doped Silicon,” Journal of Applied Physics, vol. 34, no. 11, pp. 3291, 1963.
[112] Y. Furukawa, “Magnetoresistance in Heavily Doped n-Type Germanium,” Journal of the Physical Society of Japan, vol. 17, no. 4, pp. 630-638, 1962.
[113] Y. Chuang, C. Y. Liu, G. L. Luo, and J. Y. Li, “Electron mobility enhancement in GeSn n-channel MOSFETs by tensile strain,” IEEE Electron Device Letters, vol. 42, no. 1, pp. 10-13, 2021.
[114] K. Y. Tian, “Electron Transport and Simulation of Band Structures of GeSn Alloys,” Master thesis, National Taiwan University.
[115] B. Romanczyk, P. Thomas, D. Pawlik, S. L. Rommel, W. Y. Loh, M. H. Wong, K. Majumdar, W. E. Wang, and P. D. Kirsch, “Benchmarking current density in staggered gap In0.53Ga0.47As/GaAs0.5Sb0.5 heterojunction Esaki tunnel diodes,” Applied Physics Letters, vol. 102, no. 21, pp. 213504, 2013.
[116] W. C. Hou, P. C. Shih, H. H. Lin, B. Wu, and Jiun-Yun Li, “High band-to-band tunneling current in InAs/GaSb heterojunction Esaki diodes by the enhancement of electric fields close to the mesa sidewalls,” IEEE Transactions on Electron Devices, vol. 68, no. 8, pp. 3748-3754, 2021.
[117] R. M. Minton and R. Glicksman, “Theoretical and experimental analysis of germanium tunnel diode characteristics,” Solid-State Electronics, vol. 7, no. 7, pp. 491-500, 1964.
[118] M. W. Dashiell, R. T. Troeger, S. L. Rommel, T. N. Adam, P. R. Berger, C. Guedj, J. Kolodzey, A. C. Seabaugh, and R. Lake, “Current–Voltage Characteristics of High Current Density Silicon Esaki Diodes Grown by Molecular Beam Epitaxy and the Influence of Thermal Annealing,” IEEE Transactions on Electron Devices, vol. 47, no. 9, pp. 1707-1714, 2000.
[119] N. Jin, S. Y. Chung, A. T. Rice, and P. R. Berger, “151 kA/cm2 peak current densities in Si/SiGe resonant interband tunneling diodes for high-power mixed-signal applications,” Applied Physics Letters, vol. 83, no. 16, pp. 3308-3310, 2013.
[120] S. Y. Chung, R. Yu, N. Jin, S, Y. Park, P. R. Berger, and P. E. Thompson, “Si/SiGe Resonant Interband Tunnel Diode With fr0 20.2 GHz and Peak Current Density 218 kA/cm2 for K-Band Mixed-Signal Applications,” IEEE Electron Device Letters, vol. 27, no. 5, pp. 364-367, 2017.
[121] H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Al-Kabi, G. Sun, R.A. Soref, J. Tolle, Y. H. Zhang, W. Du, B. Li, M. Mortazavi, and S. Q. Yu, “Si-Based GeSn Photodetectors toward Mid-Infrared Imaging Applications,” ACS Photonics, vol. 6, no. 11, pp. 2807-2815, 2019.
[122] C. Y. Lin, C. H. Huang, S. H. Huang, C. C. Chang, C. W. Liu, Y. C. Huang, H. Chung, and C. P. Chang, “Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells,” Applied Physics Letters, vol. 109, no. 9, pp. 091103, 2016.
[123] J. Lambe and R. C. Jaklevic, “Molecular Vibration Spectra by Inelastic Electron Tunneling,” Physical Review, vol. 165, no. 3, pp. 821, 1968.
[124] H. W. Korb, A. M. Andrews, N. Holonyak Jr., R. D. Burnham, C. B. Duke, and G. G. Kleiman, “Defect and phonon effects in In1−xGaxP p-n tunnel junctions,” Solid State Communications, vol. 9, no. 17, pp. 1531-1536, 1971.
[125] F. Steinrisser, L. C. Davis, and C. B. Duke, “Electron and Phonon Tunneling Spectroscopy in Metal-Germanium Contacts,” Physical Review, ,vol. 176, no. 3, pp. 912, 1968.
[126] D. E. Cullen, E. L. Wolf, and W. Dale Compton, “Tunneling Spectroscopy in Degenerate p-Type Silicon,” Physical Review B, vol. 2, no. 8, pp. 3157, 1970.
[127] M. Bao and K. L. Wang, “Accurately Measuring Current–Voltage Characteristics of Tunnel Diodes,” IEEE Transactions on Electron Devices, vol. 53, no. 10, pp. 2564-2568, 2006.
[128] L. C. Davis and C. B. Duke, “Analysis of the tunneling measurement of electronic self-energies due to interactions of electrons and holes with optical phonons in semiconductors,” Physical Review, vol. 184, no. 3, pp. 764, 1969.
[129] H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Al-Kabi, G. Sun, R. A. Soref, J. Tolle, Y. Zhang, W. Du, B. Li, M. Mortazavi, and S. Q. Yu, “Si-Based GeSn Photodetectors toward Mid-Infrared Imaging Applications,” ACS Photonics, vol. 6, no. 11, pp. 2807-2815, 2019.
[130] T. H. Liu, Y. Chuang, P. Y. Chiu, C. Y. Liu, C. H. Shen, G. L. Lou, and J. Y. Li, “High-mobility GeSn n-channel MOSFETs by low-temperature chemical vapor deposition and microwave annealing,” IEEE Electron Device Letters, vol. 39, no. 4, pp. 468-471, 2018.
[131] Mark Lundstrom, “Fundamentals of Carrier Transport,” Cambridge University Press, 2010.
[132] C. Schulte-Braucks, S. Glass, E. Hofmann, D. Stange, N. von den Driesch, J. M. Hartmann, Z. Ikonic, Q. T. Zhao, D.Buca, and S. Mantl, "Process Modules for GeSn Nanoelectronics with High Sn-contents," Solid-State Electronics, vol. 128, pp. 54-59, 2017.
[133] B. Mukhopadhyay, G. Sen, R. Basu, S. Mukhopadhyay, and P. K. Basu, “Prediction of Large Enhancement of Electron Mobility in Direct Gap Ge1-xSnx Alloy,” Physica Status Solidi (b), vol. 254, no.11, pp. 1700244, 2017.
[134] M. G. Craford, “Properties and electroluminescence of the GaAs1−xPx ternary system,” Progress in Solid State Chemistry, vol. 8, pp. 127-134, 1973.
[135] C. Schulte-Braucks, “Investigation of GeSn as Novel Group IV Semiconductor for Electronic Applications,” Ph.D. dissertation, RWTH Aachen University, 2018.
[136] D. K. Schroder, “Semiconductor Material and Device Characterization,” Wiley, 2006.
[137] A. Zemel, Ariel Sher, and D. Eger, “Anomalous Hall effect in p‐type Hg1−xCdxTe liquid‐phase‐epitaxial layers,” Journal of Applied Physics, vol. 62, no. 5, pp. 1861-1868, 1987.
[138] L. Wei, Y. Miao, Y. Ding, C. Li, H. Lu, and Y. F. Chen, “Ultra high hole mobility in Ge films grown directly on Si (100) through interface modulation,” Journal of Crystal Growth, vol. 548, pp. 125838, 2020.
[139] L. Seidel, D. Schwarz, M. Oehme, A. Causevic, H. S. Funk, D. Weißhaupt, F. Berkmann, and J. Schulze, “Electrical Characterization of SiGeSn/Ge/GeSn-pin-Heterodiodes at Low Temperatures,” International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 55-59, 2021.
[140] V. I. Fistul, M. I. Iglitsyn, and E. M. Omelyanovskii, “Mobility of electrons in germanium strongly doped with arsenic,” Soviet Phys. Solid State, vol.9, no. 4, pp. 784-785, 1962.
[141] Y. Fu, K. B. Joelsson, K. J. Grahn, W.-X. Ni, G. V. Hansson, and M. Willander, “Hall factor in strained p-type doped Si1-xGex alloy,” Physical Review B, vol. 54, no. 16, pp. 11317, 1996.
[142] Victor I. Fistul, “Heavily Doped Semiconductors,” Springer New York, 1969.
[143] D. M. Szmyd, M. C. Hanna, and A. Majerfeld, “Heavily doped GaAs:Se. II. Electron mobility,” Journal of Applied Physics, vol. 68, no. 5, pp. 2376-2381, 1990.
[144] K. Kumar, Y. F. Hsieh, J. H. Liao, K. H. Kao, and Y. H. Wang, “Significance of Multivalley and Nonparabolic Band Structure for GeSn TFET Simulation,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4709-4715, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87824-
dc.description.abstract鍺錫(GeSn)材料因具有直接能隙和兼容於傳統矽製程的特性, 而在許多研究應用上受到廣大的矚目。由於在其直接能谷(Γ)的電子擁有小的等效質量,因此可利用直接能隙的鍺錫材料來製作高性能的光電子元件,而得到高電子遷移率和高穿隧機率等優點。本篇論文利用化學氣相沉積法磊晶高品質的鍺錫薄膜,並使用許多材料分析技術來觀測其材料性質,包含穿透式電子顯微鏡、原子力顯微術、二次離子質譜法、X光繞射與倒置空間圖譜技術。在鍺錫材料中,藉由增加其錫比例或施加拉伸應力來達到鍺錫直接能隙的條件。
直接能隙的鍺錫在許多材料特性上有顯著的進步與表現,例如量子穿隧、載子傳輸、與光學性質。本篇論文利用化學氣相沉積法磊晶高品質的鍺錫薄膜,並製作相關的鍺錫元件來探討上述的材料特性,並研究鍺錫中間接-直接能隙的轉換在材料性上的表現。為了增加鍺錫薄膜中的錫比例,我們探討磊晶成長過程中的各種條件,如氣體先驅物流量、磊晶溫度、和鬆弛緩衝層。在鍺錫完全應變於鍺虛擬基板的結構中,可磊晶錫比例高達18%的鍺錫薄膜,其薄膜受到相當大的壓縮應變達-2.4%。藉由成長與利用鍺錫鬆弛緩衝層,可使鍺錫薄膜的錫比例增加至最高24%。
接下來,利用光致發光頻譜量測鍺錫磊晶薄膜中直接能隙與相關的光學性質。根據室溫下光致發光頻譜的結果,鍺錫直接能隙的大小會隨著錫比例增加而持續減少。在錫比例24%的鍺錫薄膜中,其最窄的能隙達到只有0.295 eV,此對應的發光波長為4.2 微米。另外,量測低溫變溫(最低溫約15 K)光致發光頻譜的結果顯示,鍺錫間接-直接能隙轉換發生在錫比例8%附近。
為了研究鍺錫量子穿隧的特性,我們製作鍺錫穿隧二極體並具有良好的負微分電阻特性,藉由量測其峰值穿隧電流來探討鍺錫的能帶間穿隧效應特性。我們首次在室溫下在鍺錫穿隧二極體中展現負微分電阻特性。並且在應變鬆弛Ge0.925Sn0.075元件中,分別在室溫與4 K低溫下,得到極高的峰谷電流比例達到15倍與219倍。比較各種應變條件的Ge0.925Sn0.075的元件,藉由壓縮應變的鬆弛或更加施以拉伸應變,隨著直接能隙的穿隧效應逐漸的主導,其穿隧電流會隨之有顯著的增加。在拉伸應變鍺錫穿隧二極體中,分別在室溫與4 K低溫下達到325和545 kA/cm2的峰值穿隧電流密度,此數值為所有四族穿隧二極體中最高的紀錄。藉由分析峰值穿隧電流隨溫度的變化,以及聲子輔助穿隧頻譜的量測,分析得到隨著施加拉伸拉伸應力,愈來越多電子於處在直接能谷(Γ)中並擁有較小的等校質量,導致較高的能帶間的穿隧機率。
論文最後的部分,以霍爾量測來探討鍺錫薄中電子傳輸性質。其中在N型Ge0.82Sn0.18薄膜中,於75 K低溫下量到最高9,500 cm2/Vs的電子遷移率。藉由比較所有樣品在4K低溫下的電子遷移率,可以清楚地發現在錫比例8%以上的樣品中,電子遷移率會隨著錫比例增加而明顯的增高,並在錫比例18%的鍺錫薄膜中達到最高值。電子遷移率隨著錫比例的變化也可以利用鍺錫的間接-直接能隙轉換所解釋,因為在電子在直接能谷(Γ)比在間接能谷(L) 擁有較小的等效質量,所以隨著直接能谷的電子數量變多,鍺錫整體的電子遷移率也隨之增高。此外,此章節也包含完整的理論計算來模擬鍺錫電子遷移率隨許多因素的變化趨勢,並可以清楚地解釋電子遷移率因為間接-直接能隙轉換而增加的過程。
zh_TW
dc.description.abstractGeSn has drawn great attention due to its direct-bandgap characteristic and the compatibility with Si VLSI technology. While high-performance optoelectronic devices were fabricated using direct-bandgap GeSn, high carrier mobility and tunneling probability have been demonstrated owing to its small electron effective mass in the direct Γ valley. In this work, high-quality epitaxial GeSn films were grown by chemical vapor deposition (CVD), and characterized by various material metrology tools, such as transmission electron microscopy (TEM), atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS), X-ray diffraction (XRD), and reciprocal space mapping (RSM). Increasing its Sn fraction or applying tensile stresses is used to achieve a direct bandgap in GeSn. In order to achieve a high Sn fraction in GeSn, the effects of the flow rates of precursors, growth temperature, and relaxed buffer are investigated. For compressive-strained GeSn films on a Ge virtual substrate (VS), the Sn fraction up to 18 % was demonstrated with a large compressive strain of -2.4 %. Using a GeSn relaxed buffer, the highest Sn fraction of ~ 24 % is achieved in compressive-strained GeSn films.
Photoluminescence (PL) measurements were performed to characterize the bandgap energy in GeSn epitaxial films. At room temperature, the direct-bandgap energy of GeSn monotonically decreases with the Sn fraction. The smallest bandgap energy of 0.295 eV is demonstrated in the Ge0.76Sn0.24 film, corresponding to the wavelength of ~ 4.2 μm. The cryogenic (~ 15 K) PL spectra suggest that the indirect-to-direct bandgap transition in GeSn occurs at a Sn fraction around 8 %.
Esaki tunnel diodes with negative differential resistance (NDR) were used to characterize the band-to-band tunneling (BTBT) properties in GeSn. The GeSn Esaki diodes with clear NDR at room temperature are presented for the first. In the strain-relaxed Ge0.925Sn0.075 Esaki diodes, extremely high peak-to-valley ratios (PVCRs) of 15 and 219 are achieved at RT and 4 K, respectively. The tunneling current is increased by strain relaxation and further enhanced as the GeSn epitaxial film is under tensile stresses since the direct BTBT dominates. High peak current densities of 325 and 545 kA/cm2 are demonstrated in the tensile-strained Ge0.925Sn0.075 diodes at RT and 4 K, respectively, which is the highest reported among group-IV Esaki diodes. Both temperature-dependence of the peak current density and phonon-assisted tunneling spectra suggest that by applying tensile stresses on GeSn, more electrons populate in the Γ valley, leading to a higher BTBT rate owing to its small electron effective mass.
Last, electron transport in GeSn is investigated by Hall measurements. The highest Hall mobility is 9,500 cm2/Vs at 75 K in a n-type Ge0.82Sn0.18 film. At 4 K, the electron mobility increases with the Sn fraction as the Sn fraction is above 8 %. The mobility enhancement results from more electrons in the direct Γ valley, where electrons have a smaller effective mass than that in the L valley. The theoretical calculation on the GeSn electron mobility is also presented and suggests that the mobility enhancement is attributed to the indirect-to-direct bandgap transition.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:42:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:42:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
Contents vi
List of Figures xi
List of Tables xxi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Direct Bandgap in GeSn 3
1.2.1 Band Structure of GeSn 3
1.2.2 Electron Effective Mass in GeSn 4
1.3 Challenges in Material Growth of GeSn 5
1.3.1 Low Solid Solubility of Sn (~ 1.1 %) in Ge 5
1.3.2 High-Quality GeSn Epitaxial Films and Strain Engineering 7
1.4 Dissertation Organization 7
Chapter 2 GeSn Epitaxy by Chemical Vapor Deposition 9
2.1 Introduction 9
2.2 GeSn Epitaxial Layers on Si Substrates 15
2.2.1 CVD Processes of GeSn Epitaxy 16
2.2.2 Ge Virtual Substrate 17
2.2.3 Compressive-Strained GeSn on Ge Virtual Substrate 19
2.2.4 Strain-Relaxed GeSn and GeSn Relaxed Buffers 23
2.2.5 Compressive-Strained and Tensile-Strained GeSn on GeSn Relaxed Buffers 28
2.3 Growth Mechanism and Approaches of GeSn Epitaxy with A High Sn Fraction 30
2.3.1 Effects of Gas Ratio 31
2.3.2 Effects of Growth Temperature 33
2.3.3 Effects of Buffer Layers 34
2.3.4 Discussion 36
Chapter 3 Photoluminescence (PL) of Epitaxial GeSn Films 37
3.1 Introduction to Photoluminescence 37
3.2 Measurement of Infrared PL Spectra 39
3.3 Room-Temperature PL Spectra of Epitaxial GeSn Films 42
3.3.1 PL of Compressive-Strained GeSn on a Ge VS 42
3.3.2 PL Spectra of Compressive-Strained GeSn on GeSn Relaxed Buffers 43
3.3.3 PL Spectra of Strain-Relaxed GeSn Layers and GeSn Quantum Wells 45
3.4 Low-Temperature PL Spectra of GeSn 45
3.4.1 PL Spectra of Compressive-Strained GeSn on Ge VS at Low Temperatures 46
3.4.2 LT-PL of Strain-Relaxed GeSn 50
3.4.3 LT-PL of Tensile-Strained Ge and GeSn 50
3.4.4 LT-PL of GeSn ([Sn] ~ 24 %) on GeSn Relaxed Buffers 53
3.5 IR Absorption Effects on GeSn PL Spectra 54
3.5.1 IR Absorption in the Lab Environment 54
3.5.2 Calibration of PL Spectra 55
Chapter 4 Room-Temperature Characteristics of GeSn Esaki Tunnel Diodes 58
4.1 Motivation 58
4.2 Introduction to Esaki Diodes (TDs) 59
4.2.1 Band-to-Band Tunneling (BTBT) and Negative Differential Resistance (NDR) 59
4.2.2 Band-to-Band Tunneling Rate and Tunneling Current 62
4.2.3 Defect-Assisted Tunneling (DAT) 64
4.2.4 Direct and Indirect Tunneling in GeSn Esaki Diodes 66
4.3 Epitaxial Structures and Material Characterization of GeSn Esaki Diodes 67
4.4 Device Fabrication of GeSn Esaki Diodes 72
4.5 Room-Temperature I-V Characteristics of GeSn Esaki Diodes 74
4.5.1 Effects of Device Sizes and Series Resistance 74
4.5.2 Doping Effects on BTBT Current 76
4.5.3 Bandgap Effects on BTBT Current in Ge(Sn) Esaki Diodes 77
4.5.4 Strain Effects on BTBT Current in GeSn Esaki Diodes 78
4.6 Direct and Indirect Tunneling in GeSn Esaki Diodes 80
4.6.1 Simulation of GeSn Band Structures 80
4.6.2 Band Alignment of GeSn Esaki Diodes 81
Chapter 5 Temperature-Dependence and Phonon Spectra in GeSn Esaki Diodes 83
5.1 Introduction 83
5.1.1 Reviews on Temperature-Dependent I-V Characteristics of Esaki Diodes 83
5.1.2 Review on Phonon Spectra in Esaki Tunnel Diodes (Si, Ge, III-V) 85
5.2 I-V Characteristics of GeSn Esaki Diodes at Temperatures of 4 K ~ 300 K 86
5.2.1 Temperature-Dependent I-V curves of Compressive-Strained GeSn Esaki Diodes 86
5.2.2 Temperature-Dependent I-V of Strain-relaxed and Tensile-strained GeSn Esaki Diodes 90
5.3 Electron Populations in GeSn at Different Temperatures 92
5.3.1 Electron Populations in Direct and Indirect Valleys of GeSn 92
5.3.2 Electron Mobility Enhancement in GeSn by Strain Engineering 95
5.4 Phonon Spectra of GeSn Esaki Diodes 98
5.4.1 Phonon Spectrum of A Commercial Ge Esaki Diode 98
5.4.2 Phonon Spectra of Epi-Ge and GeSn Esaki Diodes 99
Chapter 6 Electron Transport in GeSn Epitaxial Films with High Sn Fractions 102
6.1 Hall Measurements of n-GeSn Epitaxial Films 102
6.1.1 Electron Transport in GeSn 102
6.1.2 Hall Effects 104
6.2 Hall Measurement on Electron Mobility in GeSn 106
6.2.1 Epitaxial Structures of GeSn Films 106
6.2.2 Device Fabrication of Hall-Bar Devices 108
6.3 Electron Mobility in GeSn with High Sn Fractions 109
6.3.1 Hall Measurements of n-type Ge0.82Sn0.18 under Different Strains 109
6.3.2 Hall Measurements of n-GeSn with Different Sn fractions (14 % ~ 21 %) 111
6.3.3 Effects of GeSn Relaxed Buffers 113
6.3.4 Comparison and Analysis 115
6.4 Theoretical Calculation of Electron Mobility in GeSn 119
6.4.1 Carrier Scattering Mechanisms 119
6.4.2 Validity of the Transport Equation and Adjustment on Impurity Scattering 122
6.4.3 Parameters for Mobility Calculation 123
6.4.4 Calculation of Electron Mobility in GeSn 124
Chapter 7 Conclusion and Future Work 128
7.1 Conclusion 128
7.2 Future Work 130
Appendix A 132
Reference 133
Publication List 151
-
dc.language.isoen-
dc.title鍺錫磊晶薄膜之光學、穿隧與載子傳輸特性zh_TW
dc.titleOptical, Tunneling, and Carrier Transport Properties in GeSn Epitaxial Filmsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林浩雄;吳肇欣;羅廣禮;林建中;張書維;張子璿zh_TW
dc.contributor.oralexamcommitteeHao-Hsiung Lin;Chao-Hsin Wu;Guang-Li Luo;Chien-Chung Lin;Shu-Wei Chang;Tzu-Hsuan Changen
dc.subject.keyword鍺錫磊晶,化學氣相沉積,直接能隙,光致發光,能帶間穿隧效應,電子遷移率,穿隧(江崎)二極體,zh_TW
dc.subject.keywordGeSn epitaxy,chemical vapor deposition,direct bandgap,photoluminescence,band-to-band tunneling,electron mobility,Esaki diodes,en
dc.relation.page156-
dc.identifier.doi10.6342/NTU202300648-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-03-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf14.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved