請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭湛東 | zh_TW |
| dc.contributor.advisor | Lawrence Hsiao | en |
| dc.contributor.author | 蔡旻頤 | zh_TW |
| dc.contributor.author | Min-Yi Tsai | en |
| dc.date.accessioned | 2023-07-19T16:39:32Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-05-30 | - |
| dc.identifier.citation | [1] López de Prado, M. (2018). Advances in Financial Machine Learning. John Wiley & Sons.
[2] Grinold, R. C., & Kahn, R. N. (1999). The Information Coefficient. Financial Analysts Journal, 55(6), 70-73. https://doi.org/10.2469/faj.v55.n6.2312 [3] Grinold, R. C., & Kahn, R. N. (1999). Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Selecting Superior Returns and Controlling Risk. McGraw Hill. [4] Gleiser, I. (2015, December 4). Converting_Scores_Into_Alphas. https://www.slideshare.net/IlanGleiser/convertingscoresintoalphas [5] W. (2021, January 4). What is the Information Ratio? - Longs-Peak. Longs-Peak. https://longspeakadvisory.com/information-ratio/ [6] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/tnnls.2016.2582924 [7] R. Akita, A. Yoshihara, T. Matsubara and K. Uehara, "Deep learning for stock predic- tion using numerical and textual information," 2016 IEEE/ACIS 15th International Confer- ence on Computer and Information Science (ICIS), Okayama, Japan, 2016, pp. 1-6, doi: 10.1109/ICIS.2016.7550882. [8] Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European journal of operational research, 270(2), 654-669. [9] Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015, June). Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence. [10] Fulcher, T., & Liu, Y. (2014). Deep Learning for Volatility Prediction. Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM), 131-140. doi: 10.1109/ICDM.2014.33 [11] Bao, W., Yue, J., & Rao, Y. (2017). High-frequency trading with deep learning. Ap- plied Soft Computing, 62, 56-63. https://doi.org/10.1016/j.asoc.2017.09.014 [12] Understanding LSTM Networks -- colah’s blog. (n.d.). https://co- lah.github.io/posts/2015-08-Understanding-LSTMs/ [13] C. (2021b, July 27). Graphical Introduction Note About GRU. Clay-Technology World. https://clay-atlas.com/us/blog/2021/07/27/gru-en-introduction-note/ [14] Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. ArXiv (Cornell University). https://www.arxiv.org/pdf/1412.6980 [15] TRADING ECONOMICS. (n.d.). Taiwan Government Bond 10y - 2023 Data - 1999- 2022 Historical - 2024 Forecast - Quote. https://tradingeconomics.com/taiwan/govern- ment-bond-yield | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87816 | - |
| dc.description.abstract | 循環神經網路(RNN)由於其分析序列數據和從資料中提取模式以進行預測的能 力,而在量化交易中變得越來越受歡迎。RNN 的模型,例如長短期記憶(LSTM)和 門控循環單元(GRU),已經在金融界被廣泛使用,包括股票價格預測、投資組合優 化和風險管理等等。本文介紹了 RNN 被應用在量化交易中的概念,包括 LSTM 和 GRU 模型的結構和訓練過程,也利用模型對於隔日報酬的預測,建立並回測每日多空 對沖策略的表現;結果顯示 LSTM 在報酬、回撤和其他信息相關的指標方面,均優於 GRU 模型和基準指數。此外,為了控制市場風險,也將 Fama-French 三因子模型應用 至預測報酬,而構建的投資組合在納入因子後,仍表現穩定持續的高報酬。總體而言, 本文提供了在量化交易中使用 RNN 的模擬實例,並突出了 LSTM 和 GRU 模型在實 現盈利交易策略方面的潛力。 | zh_TW |
| dc.description.abstract | Recurrent Neural Networks (RNNs) have gained popularity in quantitative trading due to their ability to analyze sequential data and extract patterns to make predictions. RNN- based models, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have been applied to various financial applications, including stock price prediction, portfolio optimization, and risk management. This paper provides an overview of RNNs in quantitative trading, including the architecture and training process of LSTM and GRU models. Daily long-short hedging strategies are built according to model predictions on next-day returns, with LSTM outperforming GRU models and benchmark indicators in terms of return, draw- down, and other information-related metrics. In addition, Fama-French three-factor model is applied to predicted returns to account for market risk, and the constructed portfolios demon- strate consistent high returns after the factor inclusion. Overall, this paper provides valuable insights into the use of RNNs in quantitative trading and highlights the potential of LSTM and GRU models for achieving profitable trading strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:39:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:39:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書
摘要 i Abstract ii Chapter 1 Introduction 1 Chapter 2 Background and Literature Review 4 2.1 Basic Concept of Quantitative Trading 2.2 Portfolio Construction and Optimization 2.3 Portfolio Performance Evaluation 2.4 RNN in Quantitative Trading 2.5 Literature Review Chapter 3 Data 10 3.1 Data and Variables 3.2 High-frequency Factor Calculation Chapter 4 Methodology 14 4.1 Long Short-Term Memory (LSTM) 4.2 Gated Recurrent Unit (GRU) 4.3 Hyperparameter Setup Chapter 5 Portfolio Performance: Backtesting 19 5.1 LSTM vs GRU vs Benchmark 5.2 Key Performance Metrics 5.3 Robustness Check Chapter 6 Conclusion 30 References 31 Appendix 33 | - |
| dc.language.iso | en | - |
| dc.subject | 量化交易 | zh_TW |
| dc.subject | 多空對沖策略 | zh_TW |
| dc.subject | 門控循環單元 | zh_TW |
| dc.subject | 循環神經網路 | zh_TW |
| dc.subject | 長短期記憶 | zh_TW |
| dc.subject | 股價預測 | zh_TW |
| dc.subject | Long Short-Term Memory | en |
| dc.subject | stock prediction | en |
| dc.subject | long-short hedging strategy | en |
| dc.subject | Gated Recurrent Unit | en |
| dc.subject | Recurrent Neural Network | en |
| dc.subject | quantitative trading | en |
| dc.title | 多空對沖策略:應用循環神經網路於量化交易 | zh_TW |
| dc.title | Long-short Hedging Strategy: Using RNN in Quantitative Trading | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王衍智;林嘉薇 | zh_TW |
| dc.contributor.oralexamcommittee | Yanzhi Wang;Joy Lin | en |
| dc.subject.keyword | 循環神經網路,長短期記憶,門控循環單元,股價預測,多空對沖策略,量化交易, | zh_TW |
| dc.subject.keyword | Recurrent Neural Network,Long Short-Term Memory,Gated Recurrent Unit,stock prediction,long-short hedging strategy,quantitative trading, | en |
| dc.relation.page | 33 | - |
| dc.identifier.doi | 10.6342/NTU202300884 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-05-30 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
