Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭湛東zh_TW
dc.contributor.advisorLawrence Hsiaoen
dc.contributor.author蔡旻頤zh_TW
dc.contributor.authorMin-Yi Tsaien
dc.date.accessioned2023-07-19T16:39:32Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-05-30-
dc.identifier.citation[1] López de Prado, M. (2018). Advances in Financial Machine Learning. John Wiley & Sons.
[2] Grinold, R. C., & Kahn, R. N. (1999). The Information Coefficient. Financial Analysts Journal, 55(6), 70-73. https://doi.org/10.2469/faj.v55.n6.2312
[3] Grinold, R. C., & Kahn, R. N. (1999). Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Selecting Superior Returns and Controlling Risk. McGraw Hill.
[4] Gleiser, I. (2015, December 4). Converting_Scores_Into_Alphas. https://www.slideshare.net/IlanGleiser/convertingscoresintoalphas
[5] W. (2021, January 4). What is the Information Ratio? - Longs-Peak. Longs-Peak. https://longspeakadvisory.com/information-ratio/
[6] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/tnnls.2016.2582924
[7] R. Akita, A. Yoshihara, T. Matsubara and K. Uehara, "Deep learning for stock predic- tion using numerical and textual information," 2016 IEEE/ACIS 15th International Confer- ence on Computer and Information Science (ICIS), Okayama, Japan, 2016, pp. 1-6, doi: 10.1109/ICIS.2016.7550882.
[8] Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European journal of operational research, 270(2), 654-669.
[9] Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015, June). Deep learning for event-driven stock prediction. In Twenty-fourth international joint conference on artificial intelligence.
[10] Fulcher, T., & Liu, Y. (2014). Deep Learning for Volatility Prediction. Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM), 131-140. doi: 10.1109/ICDM.2014.33
[11] Bao, W., Yue, J., & Rao, Y. (2017). High-frequency trading with deep learning. Ap- plied Soft Computing, 62, 56-63. https://doi.org/10.1016/j.asoc.2017.09.014
[12] Understanding LSTM Networks -- colah’s blog. (n.d.). https://co- lah.github.io/posts/2015-08-Understanding-LSTMs/
[13] C. (2021b, July 27). Graphical Introduction Note About GRU. Clay-Technology World. https://clay-atlas.com/us/blog/2021/07/27/gru-en-introduction-note/
[14] Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. ArXiv (Cornell University). https://www.arxiv.org/pdf/1412.6980
[15] TRADING ECONOMICS. (n.d.). Taiwan Government Bond 10y - 2023 Data - 1999- 2022 Historical - 2024 Forecast - Quote. https://tradingeconomics.com/taiwan/govern- ment-bond-yield
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87816-
dc.description.abstract循環神經網路(RNN)由於其分析序列數據和從資料中提取模式以進行預測的能 力,而在量化交易中變得越來越受歡迎。RNN 的模型,例如長短期記憶(LSTM)和 門控循環單元(GRU),已經在金融界被廣泛使用,包括股票價格預測、投資組合優 化和風險管理等等。本文介紹了 RNN 被應用在量化交易中的概念,包括 LSTM 和 GRU 模型的結構和訓練過程,也利用模型對於隔日報酬的預測,建立並回測每日多空 對沖策略的表現;結果顯示 LSTM 在報酬、回撤和其他信息相關的指標方面,均優於 GRU 模型和基準指數。此外,為了控制市場風險,也將 Fama-French 三因子模型應用 至預測報酬,而構建的投資組合在納入因子後,仍表現穩定持續的高報酬。總體而言, 本文提供了在量化交易中使用 RNN 的模擬實例,並突出了 LSTM 和 GRU 模型在實 現盈利交易策略方面的潛力。zh_TW
dc.description.abstractRecurrent Neural Networks (RNNs) have gained popularity in quantitative trading due to their ability to analyze sequential data and extract patterns to make predictions. RNN- based models, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have been applied to various financial applications, including stock price prediction, portfolio optimization, and risk management. This paper provides an overview of RNNs in quantitative trading, including the architecture and training process of LSTM and GRU models. Daily long-short hedging strategies are built according to model predictions on next-day returns, with LSTM outperforming GRU models and benchmark indicators in terms of return, draw- down, and other information-related metrics. In addition, Fama-French three-factor model is applied to predicted returns to account for market risk, and the constructed portfolios demon- strate consistent high returns after the factor inclusion. Overall, this paper provides valuable insights into the use of RNNs in quantitative trading and highlights the potential of LSTM and GRU models for achieving profitable trading strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:39:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:39:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書
摘要 i
Abstract ii
Chapter 1 Introduction 1
Chapter 2 Background and Literature Review 4
2.1 Basic Concept of Quantitative Trading
2.2 Portfolio Construction and Optimization
2.3 Portfolio Performance Evaluation
2.4 RNN in Quantitative Trading
2.5 Literature Review
Chapter 3 Data 10
3.1 Data and Variables
3.2 High-frequency Factor Calculation
Chapter 4 Methodology 14
4.1 Long Short-Term Memory (LSTM)
4.2 Gated Recurrent Unit (GRU)
4.3 Hyperparameter Setup
Chapter 5 Portfolio Performance: Backtesting 19
5.1 LSTM vs GRU vs Benchmark
5.2 Key Performance Metrics
5.3 Robustness Check
Chapter 6 Conclusion 30
References 31
Appendix 33
-
dc.language.isoen-
dc.subject量化交易zh_TW
dc.subject多空對沖策略zh_TW
dc.subject門控循環單元zh_TW
dc.subject循環神經網路zh_TW
dc.subject長短期記憶zh_TW
dc.subject股價預測zh_TW
dc.subjectLong Short-Term Memoryen
dc.subjectstock predictionen
dc.subjectlong-short hedging strategyen
dc.subjectGated Recurrent Uniten
dc.subjectRecurrent Neural Networken
dc.subjectquantitative tradingen
dc.title多空對沖策略:應用循環神經網路於量化交易zh_TW
dc.titleLong-short Hedging Strategy: Using RNN in Quantitative Tradingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王衍智;林嘉薇zh_TW
dc.contributor.oralexamcommitteeYanzhi Wang;Joy Linen
dc.subject.keyword循環神經網路,長短期記憶,門控循環單元,股價預測,多空對沖策略,量化交易,zh_TW
dc.subject.keywordRecurrent Neural Network,Long Short-Term Memory,Gated Recurrent Unit,stock prediction,long-short hedging strategy,quantitative trading,en
dc.relation.page33-
dc.identifier.doi10.6342/NTU202300884-
dc.rights.note未授權-
dc.date.accepted2023-05-30-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved