請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87793完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇偉儁 | zh_TW |
| dc.contributor.advisor | Wei-Jiun Su | en |
| dc.contributor.author | 劉添祥 | zh_TW |
| dc.contributor.author | Tian-Xiang Law | en |
| dc.date.accessioned | 2023-07-19T16:31:36Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-19 | - |
| dc.identifier.citation | "The ‘Dernburg-Wagen’." Mercedes-Benz Group AG. https://group-media.mercedes-benz.com/marsMediaSite/en/instance/ko.xhtml?oid=9272027 (accessed Feb 6, 2023).
"Steering Angle Sensing Four-Wheel Steering System (4WS) / 1987." Honda Motor Co., Ltd. https://global.honda/heritage/episodes/19874ws.html (accessed Feb 6, 2023). B. Heißing and M. Ersoy, Chassis Handbook: Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives. Berlin: Springer, 2011. M. Rau, R. Michalski, and B. Spangemacher, "Innovative Rear Axle Steering with Large Angles," in 12th International Munich Chassis Symposium 2021, Berlin, Heidelberg, P. Pfeffer, Ed., 2022: Springer Berlin Heidelberg, pp. 275-291. "Audi A8 – Dynamic all-wheel steering." Audi Technology Portal. https://www.audi-technology-portal.de/en/chassis/wheel-suspension-steering/audi-a8-dynamic-all-wheel-steering (accessed Apr 1, 2022). V. Radu. "Mercedes-Benz Revolutionizes Rear-wheel Steering in the 2021." Auto Evolution. https://www.autoevolution.com/news/mercedes-benz-revolutionizes-rear-wheel-steering-in-the-2021-s-class-149535.html (accessed Feb 9, 2022). R. Cotta. "What Is the GMC Hummer EV's CrabWalk Feature?" cars.com. https://www.cars.com/articles/what-is-the-gmc-hummer-evs-crabwalk-feature-443574/ (accessed May 3, 2022). C. Csere. "Tested: The Four-Wheel-Steering Systems of 1988." Car and Driver. https://www.caranddriver.com/reviews/a35287962/tested-1988-four-wheel-steering-benefits/ (accessed Feb 8, 2022). "The comprehensive HICAS thread." Skyline Owners. https://www.skylineowners.com/threads/the-comprehensive-hicas-thread.162409/ (accessed Feb 8, 2022). T. Taylor. "GM Quadrasteer: The Great Invention No One Wanted." Motor Biscuit. https://www.motorbiscuit.com/gm-quadrasteer-the-great-invention-no-one-wanted/ (accessed Feb 8, 2022). B. Hunting. "Why Did Gm'S Excellent Quadrasteer Full-Size Pickup Four-Wheel Steering System Simply Disappear?" Driving Line.https://www.drivingline.com/articles/why-did-gms-excellent-quadrasteer-full-size-pickup-four-wheel-steering-system-simply-disappear/ (accessed Feb 8, 2022). "Audi A8 features new dynamic all-wheel steering, AI active suspension." Green Car Congress. https://www.greencarcongress.com/2017/07/20170717-a8.html (accessed Feb 8, 2022). "Taycan Rear Wheel Steering Explained." Taycan EV Forum. https://www.taycanevforum.com/threads/taycan-rear-wheel-steering-explained.343/ (accessed Feb 8, 2022). "The chassis: Committed to driving dynamics." Porsche Newsroom. https://newsroom.porsche.com/en/products/taycan/chassis-18561.html (accessed Feb 8, 2022). R. Horncastle. "Renault Megane R.S. 300 Trophy – long-term review." Top Gear. https://www.topgear.com/long-term-car-reviews/renault/megane-rs/18-300-trophy-5dr/report-2 (accessed Feb 8, 2022). G. Gastelu. "Test drive: The 2021 Mercedes-Benz S-Class with 4-wheel-steering runs circles around the competition." Fox News. https://www.foxnews.com/auto/test-drive-the-2021-mercedes-benz-s580s (accessed Feb 8, 2022). P. Hang and X. Chen, "Towards Autonomous Driving: Review and Perspectives on Configuration and Control of Four-Wheel Independent Drive/Steering Electric Vehicles," Actuators, vol. 10, no. 8, p. 184, 2021, doi: 10.3390/act10080184. H.-K. Moon et al., "The Development of 4-Wheel Independent Steering and Driving Mode," SAE Technical Paper, 2022-01-0919, 2022, doi: 10.4271/2022-01-0919. S. Sano, Y. Furukawa, and S. Shiraishi, "Four Wheel Steering System with Rear Wheel Steer Angle Controlled as a Function of Steering Wheel Angle," SAE Transactions, vol. 95, pp. 880-893, 1986, doi: 10.4271/860625. R. Marino, S. Scalzi, and F. Cinili, "Nonlinear PI front and rear steering control in four wheel steering vehicles," Vehicle System Dynamics, vol. 45, no. 12, pp. 1149-1168, 2007, doi: 10.1080/00423110701214450. N. Hamzah, M. K. Aripin, Y. M. Sam, H. Selamat, and M. F. Ismail, "Yaw stability improvement for four-wheel active steering vehicle using sliding mode control,"in 2012 IEEE 8th International Colloquium on Signal Processing and its Applications, 2012, pp. 127-132, doi: 10.1109/CSPA.2012.6194704. J. Zhang, H. Zheng, and M. Zhao, "Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control," SAE Technical Paper, 2018-01-1593, 2018, doi: 10.4271/2018-01-1593. S. Kasliwal, "Development of Active Rear Wheel Steering and Evaluation of Steering Feel," M.S. thesis, Dept. Aeronaut. and Veh. Eng., KTH Royal Institute of Technology, Stockholm, Sweden, 2019. Y. H. Cho and J. Kim, "Design of Optimal Four-Wheel Steering System," Vehicle System Dynamics, vol. 24, no. 9, pp. 661-682, 1995, doi: 10.1080/00423119508969112. P. Raksincharoensak, H. Mouri, and M. Nagai, "Evaluation Of Four-Wheel-Steering System From The Viewpoint Of Lane-Keeping Control," International Journal of Automotive Technology, vol. 5, pp. 69-76, 2004. M. H. M. Ariff, H. Zamzuri, M. A. M. Nordin, J. B. Y. Wira, S. A. Mazlan, and M. A. A. Rahman, "Optimal Control Strategy for Low Speed and High Speed Four-wheel-active Steering Vehicle," Journal of Mechanical Engineering and Sciences, vol. 8, pp. 1516-1528, 2015, doi: 10.15282/JMES.8.2015.26.0148. G. Yin, N. Chen, and P. Li, "Improving Handling Stability Performance of Four-Wheel Steering Vehicle via μ-Synthesis Robust Control," IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2432-2439, 2007, doi: 10.1109/TVT.2007.899941. W. Zhao, X. Qin, and C. Wang, "Yaw and Lateral Stability Control for Four-Wheel Steer-by-Wire System," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6, pp. 2628-2637, 2018, doi: 10.1109/TMECH.2018.2812220. T. Takiguchi, N. Yasuda, S. Furutani, H. Kanazawa, and H. Inoue, "Improvement of Vehicle Dynamics by Vehicle-Speed-Sensing Four-Wheel Steering System," SAE Transactions, vol. 95, pp. 870-879, 1986, doi: 10.4271/860624. T. Eguchi, Y. Sakita, K. Kawagoe, S. Kaneko, K. Mori, and T. Matsumoto, "Development of "Super Hicas", a New Rear Wheel Steering System with Phasereversal Control," SAE Transactions, vol. 98, pp. 1495-1504, 1989, doi: 10.4271/891978. N. Irie and J. Kuroki, "4WS Technology and the Prospects for Improvement of Vehicle Dynamics," SAE Technical Paper, 901167, 1990, doi: 10.4271/901167. T. Katayama et al., "Development of 4 Wheel Active Steer," SAE Technical Paper, 2008-01-0495, 2008, doi: 10.4271/2008-01-0495. L. Bredthauer and D. Lynch, "Use of Active Rear Steering to Achieve Desired Vehicle Transient Lateral Dynamics," SAE Technical Paper, 2018-01-0565, 2018, doi: 10.4271/2018-01-0565. J. Ni, J. Hu, and C. Xiang, "Robust Control in Diagonal Move Steer Mode and Experiment on an X-by-Wire UGV," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 572-584, 2019, doi: 10.1109/TMECH.2019.2892489. Y. Zhang, J. Ni, H. Tian, W. Wu, and J. Hu, "Integrated robust dynamics control of all-wheel-independently-actuated unmanned ground vehicle in diagonal steering," Mechanical Systems and Signal Processing, vol. 164, p. 108263, 2022, doi: 10.1016/j.ymssp.2021.108263. "Hyundai Mobis’ e-Corner System Featuring Crab Walking and Zero Turn Becomes the First in the World to Drive on Public Roads." Hyundai Mobis. (accessed Jun 1, 2023). H. Yang, C. Liu, J. Shi, and G. Zheng, "Development and Control of Four-Wheel Independent Driving and Modular Steering Electric Vehicles for Improved Maneuverability Limits," SAE Technical Paper, 2019-01-0459, 2019, doi: 10.4271/2019-01-0459. M. Galvani, F. Biral, B. M. Nguyen, and H. Fujimoto, "Four Wheel Optimal Autonomous Steering for Improving Safety in Emergency Collision Avoidance Manoeuvres," in 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC), 2014, pp. 362-367, doi: 10.1109/AMC.2014.6823309. D. Hawley. "What Is The Hummer EV Crab Walk Feature?" https://www.jdpower.com/cars/shopping-guides/what-is-the-hummer-ev-crab-walk-feature?make=Hummer&model= (accessed 2, 2023). "[MOBIS TECH] e-Corner System." HYUNDAI MOBIS I 현대모비스. https://youtu.be/Bbw_smfOgVA (accessed Jun 1, 2023). R. N. Jazar, Vehicle Dynamics: Theory and Application. New York: Springer, 2008. D. Lu, K. Guo, H. Wu, N. Moshchuk, X. P. Lu, and S. K. Chen, "Modelling of Tire Overturning Moment and Loaded Radius," Vehicle System Dynamics, vol. 44, no. sup1, pp. 104-114, 2006, doi: 10.1080/00423110600869297. J. Balkwill, Performance Vehicle Dynamics : Engineering and Applications. Oxford, United Kingdom: Elsevier, 2018. ISO 8855:2011, I. S. O. (ISO), 2011. [Online]. Available: https://www.sis.se/api/document/preview/914200/ M. Abe, Vehicle Handling Dynamics, 2 ed. Oxford, United Kingdom: Elsevier, 2015. J. Tian, J. Ding, Y. Tai, and N. Chen, "Hierarchical Control of Nonlinear Active Four-Wheel-Steering Vehicles," Energies, vol. 11, no. 11, 2018, doi: 10.3390/en11112930. K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River, N.J.: Prentice Hall, 2010. J.-S. Zhao, X. Liu, Z.-J. Feng, and J. S. Dai, "Design of an Ackermann-type steering mechanism," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 227, no. 11, pp. 2549-2562, 2013, doi: 10.1177/0954406213475980. M. W. Choi, J. S. Park, B. S. Lee, and M. H. Lee, "The performance of independent wheels steering vehicle(4WS) applied Ackerman geometry," in 2008 International Conference on Control, Automation and Systems, 2008, pp. 197-202, doi: 10.1109/ICCAS.2008.4694549. H. B. Pacejka and E. Bakker, "The Magic Formula Tyre Model," Vehicle System Dynamics, vol. 21, no. sup001, pp. 1-18, 1992, doi: 10.1080/00423119208969994. H. B. Pacejka, Tyre and Vehicle Dynamics, Second ed. Oxford: Butterworth-Heinemann, 2006. J. Y. Wong, Theory of Ground Vehicles. Hoboken, N.J.: Wiley, 2008. "CarSim Overview." https://www.carsim.com/products/carsim/index.php (accessed Mar 26, 2023). ISO 3888-1:2018, I. S. O. (ISO), 2018. [Online]. Available: https://www.iso.org/standard/67973.html ISO 3888-2:2011, I. S. O. (ISO), 2011. [Online]. Available: https://www.iso.org/standard/57253.html#:~:text=ISO%203888%2D2%3A2011%20defines,dynamics%20and%20road%2Dholding%20ability. P. P. Em, K. Hudha, and H. Jamaluddin, "Hardware-In-The-Loop Simulation of automatic steering control for Double Lane Change and sine steer manoeuvres,"Int. J. of Vehicle Autonomous Systems, vol. 10, pp. 67-104, 2012, doi: 10.1504/IJVAS.2012.047695. Contributors. "Suzuka International Racing Course." Wikipedia. (accessed Mar 30, 2023). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87793 | - |
| dc.description.abstract | 本研究旨在針對四輪轉向車輛進行高速工況之策略開發,以補充既有四輪轉向系統研究針對高速行駛控制策略之不足,並於改善車輛高速避讓能力之餘同時維持高速穩定性。首先,本研究定義兩種不同之轉向模式,使讓車輛能以斜移式或傳統四輪轉向車輛之形式進行移動。為了確保車輛於低速時之轉向穩定性,控制策略中亦使用阿克曼轉向幾何定義各輪轉角。同時,因車輛行駛過程中可能遭遇許多不確定性,故控制策略加入了以橫擺率作為回授之控制器,確保車輛動態與理想狀態相似。其次,本研究針對兩種轉向模式進行整合,並建立了模式切換之判斷基準。針對模式轉換可能造成車輛出現指向錯誤之情況,本研究開發了一套運用各輪煞車作為作動方式之車頭回正算法,並加入了煞車壓力分配功能以避免各輪胎出現鎖死之情況。最後,本研究將控制策略建立於MATLAB/Simulink環境下,並配合CarSim車輛模擬軟件進行模型在環 (MiL)驗證,以確認所建立控制策略之可行性及其對車輛動態之影響。模擬結果顯示,使用所開發之策略能改善車輛進行高速避讓能力,並同時維持現有四輪轉向車輛之高速穩定性。 | zh_TW |
| dc.description.abstract | In this research, a four-wheel steering control (4WS) algorithm is developed, targeting high-speed driving scenarios to enhance the vehicle’s obstacle avoidance ability and stability. First, tire and vehicle models used in this research are defined. Two steering modes were developed, with one mode determining the steering direction and magnitude of rear wheels similar to the current 4WS, while the other enables diagonal movement of the vehicle. Ackermann Steering Geometry (ASG) is considered in the algorithm. A yaw rate feedback controller is also constructed to ensure proper vehicle motion. Both steering modes are then integrated into a comprehensive control strategy, allowing diagonal moving in lane change maneuvers while maintaining stability in existing 4WS vehicles during high-speed cornering. Additionally, a heading error correction algorithm is constructed to prevent errors during the mode switching process by applying brakes to the required wheel. To prevent lockup on the braking wheel, a brake pressure allocation function is included in the algorithm. Lastly, model-in-the-loop (MiL) validation is performed using joint simulation of MATLAB/Simulink with CarSim software. The results showed that significant improvement was achieved during lane change maneuvers by using the combined strategy. At the same time, stability enhancement on existing 4WS vehicles is retained with the proposed strategy, and heading errors can be rapidly eliminated. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:31:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:31:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
誌謝 II Abstract III 摘要 IV List of Contents V List of Figures VII List of Tables X List of Symbols XI List of Abbreviations XIII Chapter 1. Introduction 1 1.1. Brief History of 4WS Systems 1 1.2. Literature Review 5 1.2.1. 4WS System Design 5 1.2.2. Diagonal Moving 8 1.2.3. Literature Review Conclusions 10 1.3. Research Motivation and Methodology 12 Chapter 2. Theory of Vehicle Dynamics 14 2.1. Tire Modelling 14 2.1.1. Tire Coordinate System 14 2.1.2. Tire Forces 16 2.2. Vehicle Modelling 19 2.2.1. Vehicle Coordinate System 19 2.2.2. 3-DOF Vehicle Model 20 Chapter 3. Four-Wheel Steering Controller 26 3.1. Steering Control 28 3.1.1. Steering Mode 28 3.1.2. Yaw Rate Feedback Controller 33 3.1.3. Ackermann Steering Geometry 37 3.2. Heading Correction 41 3.2.1. Brake Pressure Generation 42 3.2.2. Brake Pressure Allocation 43 3.2.3. Tire Force Calculation 45 3.3. Mode Switching Algorithm 51 Chapter 4. MiL Simulations and Results 54 4.1. CarSim Software 54 4.2. Double Lane Change (ISO 3888-1) 56 4.2.1. 80 KPH 58 4.2.2. 100 KPH 63 4.2.3. 120 KPH 65 4.3. Heading Error 68 4.3.1. 80 KPH 69 4.3.2. 100 KPH & 120 KPH 73 4.4. Combined High-Speed Driving 77 Chapter 5. Conclusions and Future Works 82 5.1. Conclusions 82 5.2. Future Works 84 References 85 | - |
| dc.language.iso | en | - |
| dc.subject | 車輛指向回正 | zh_TW |
| dc.subject | 模型在環 | zh_TW |
| dc.subject | 高速穩定性 | zh_TW |
| dc.subject | 障礙物避讓 | zh_TW |
| dc.subject | 四輪轉向 | zh_TW |
| dc.subject | 斜移式移動 | zh_TW |
| dc.subject | 煞車壓力分配 | zh_TW |
| dc.subject | Four-wheel steering | en |
| dc.subject | Heading correction | en |
| dc.subject | Brake pressure allocation | en |
| dc.subject | Obstacle avoidance | en |
| dc.subject | Model-in-the-loop (MiL) | en |
| dc.subject | High-speed stability | en |
| dc.subject | Diagonal moving | en |
| dc.title | 針對四輪轉向車輛高速工況之控制策略開發 | zh_TW |
| dc.title | Development of Four-Wheel-Steering Control Algorithms under High-Speed Scenarios | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉霆;詹魁元;傅增棣 | zh_TW |
| dc.contributor.oralexamcommittee | Tyng Liu;Kuei-Yuan Chan;Tseng-Ti Fu | en |
| dc.subject.keyword | 四輪轉向,斜移式移動,車輛指向回正,煞車壓力分配,障礙物避讓,高速穩定性,模型在環, | zh_TW |
| dc.subject.keyword | Four-wheel steering,Diagonal moving,Heading correction,Brake pressure allocation,Obstacle avoidance,High-speed stability,Model-in-the-loop (MiL), | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202300930 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-06-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2028-06-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
