請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87792
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建彰 | zh_TW |
dc.contributor.advisor | Jian-Zhang Chen | en |
dc.contributor.author | 陳宏愷 | zh_TW |
dc.contributor.author | Hong-Kai Chen | en |
dc.date.accessioned | 2023-07-19T16:31:16Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-07-19 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-16 | - |
dc.identifier.citation | Chen, H.-K., et al., Low-Pressure Argon/Hydrogen/Oxygen Plasma Treatment on LiMn2O4 Li-Ion Hybrid Supercapacitors. ECS Journal of Solid State Science and Technology, 2023. 12(4).
Bose, B.K., Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 2010. 4(1): p. 6-17. WCED, S.W.S., World commission on environment and development. Our common future, 1987. 17(1): p. 1-91. Sachs, W., Global ecology and the shadow of development. Global ecology: A new arena of political conflict, 1993. 3: p. 22. Clark, B. and R. York, Carbon metabolism: Global capitalism, climate change, and the biospheric rift. Theory and society, 2005. 34: p. 391-428. Singh, P.P. and M. Verma, Recent advances in alternative sources of energy. Energy: Crises, Challenges and Solutions, 2021: p. 55-71. Sayed, E.T., et al., Renewable Energy and Energy Storage Systems. Energies, 2023. 16(3): p. 1415. Farhadi, M. and O. Mohammed, Energy storage technologies for high-power applications. IEEE Transactions on Industry Applications, 2015. 52(3): p. 1953-1961. Zuo, W., et al., Battery‐supercapacitor hybrid devices: recent progress and future prospects. Advanced science, 2017. 4(7): p. 1600539. Ryhänen, T., et al., Nanotechnologies for future mobile devices. 2010: Cambridge University Press. Grossi, M., Energy harvesting strategies for wireless sensor networks and mobile devices: a review. Electronics, 2021. 10(6): p. 661. Muzaffar, A., et al., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and sustainable energy reviews, 2019. 101: p. 123-145. Jayalakshmi, M. and K. Balasubramanian, Simple capacitors to supercapacitors-an overview. Int. J. Electrochem. Sci, 2008. 3(11): p. 1196-1217. Liu, C., et al., Dielectric barrier discharge plasma jet (DBDjet) processed reduced graphene oxide/polypyrrole/chitosan nanocomposite supercapacitors. Polymers, 2021. 13(20): p. 3585. Delbari, S.A., et al., Transition metal oxide-based electrode materials for flexible supercapacitors: A review. Journal of Alloys and Compounds, 2021. 857: p. 158281. Boota, M. and Y. Gogotsi, MXene—conducting polymer asymmetric pseudocapacitors. Advanced Energy Materials, 2019. 9(7): p. 1802917. Barbieri, O., et al., Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005. 43(6): p. 1303-1310. Chang, R. A review of the cathode materials development for lithium-ion batteries. in 2nd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2022). 2022. SPIE. Liu, D., et al., Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics. Separation and Purification Technology, 2021. 270: p. 118809. Ye, S., et al., Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method. Electrochimica acta, 2010. 55(8): p. 2972-2977. Wang, X., et al., Citric acid-assisted sol–gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material. Journal of Crystal Growth, 2003. 256(1-2): p. 123-127. Quan, Z., et al., Preparation of nanocrystalline LiMn2O4 thin film by electrodeposition method and its electrochemical performance for lithium battery. Journal of power sources, 2013. 244: p. 375-381. Yan, H., X. Huang, and L. Chen, Microwave synthesis of LiMn2O4 cathode material. Journal of power sources, 1999. 81: p. 647-650. Raman, S.R., X. Xue, and K.E. Cheng. Review of charge equalization schemes for Li-ion battery and super-capacitor energy storage systems. in 2014 International Conference on Advances in Electronics Computers and Communications. 2014. IEEE. Opitz, A., et al., Can Li-Ion batteries be the panacea for automotive applications? Renewable and Sustainable Energy Reviews, 2017. 68: p. 685-692. Yang, M., et al., Fabrication of high‐power Li‐ion hybrid supercapacitors by enhancing the exterior surface charge storage. Advanced Energy Materials, 2015. 5(17): p. 1500550. dos Santos Junior, G.A., et al., High-performance lithium-ion hybrid supercapacitors based on lithium salt/imidazolium ionic liquid electrolytes and Ni-doped LiMn2O4 cathode materials. ACS Applied Energy Materials, 2020. 3(9): p. 9028-9039. Song, H., et al., Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. Journal of Power Sources, 2016. 328: p. 599-606. Kalel, N., A. Darpe, and J. Bijwe, Low pressure plasma induced surface changes of some stainless steels. Surface and Coatings Technology, 2021. 425: p. 127700. Molitor, P., V. Barron, and T. Young, Surface treatment of titanium for adhesive bonding to polymer composites: a review. International Journal of Adhesion and Adhesives, 2001. 21(2): p. 129-136. Rossi, F., O. Kylián, and M. Hasiwa, Decontamination of surfaces by low pressure plasma discharges. Plasma Processes and Polymers, 2006. 3(6‐7): p. 431-442. Benedikt, J., Plasma-chemical reactions: low pressure acetylene plasmas. Journal of Physics D: Applied Physics, 2010. 43(4): p. 043001. Lai, J.-Y., et al., LiMn2O4 Li-ion hybrid supercapacitors processed by nitrogen atmospheric-pressure plasma jet. Ceramics International, 2023. 49(7): p. 11067-11075. Boulos, M.I., et al., The plasma state. Thermal Plasmas: Fundamentals and Applications, 1994: p. 1-47. Conrads, H. and M. Schmidt, Plasma generation and plasma sources. Plasma Sources Science and Technology, 2000. 9(4): p. 441. Grzegorzewski, F., Influence of non-thermal plasma species on the structure and functionality of isolated and plant-based 1, 4-benzopyrone derivatives and phenolic acids. 2010, Universitätsbibliothek der Technischen Universität Berlin. Burm, K., Calculation of the Townsend discharge coefficients and the Paschen curve coefficients. Contributions to Plasma Physics, 2007. 47(3): p. 177-182. Wittenberg, H., Gas tube design. Electron Tube Design, 1962. 792. Hori, M., Radical-controlled plasma processes. Reviews of Modern Plasma Physics, 2022. 6(1): p. 36. 林世凱 and 柯富祥, 研究電漿蝕刻技術製作奈米級光阻線. 2010. <409_高空大氣放電現象的多樣性與複雜性.pdf>. Franz, G., Low pressure plasmas and microstructuring technology. 2009: Springer Science & Business Media. Bardos, L. and H. Barankova, Plasma processes at atmospheric and low pressures. Vacuum, 2008. 83(3): p. 522-527. Chao, T., Introduction to semiconductor manufacturing technology. 2001: Spie Press. White, A., New hollow cathode glow discharge. Journal of Applied Physics, 1959. 30(5): p. 711-719. Zhao, Z.-Y., et al., Impacts of renewable energy regulations on the structure of power generation in China–a critical analysis. Renewable Energy, 2011. 36(1): p. 24-30. Chen, H., et al., Progress in electrical energy storage system: A critical review. Progress in natural science, 2009. 19(3): p. 291-312. Zheng, H., et al., Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries. Materials Today Energy, 2020. 18: p. 100518. Zhang, F., et al., A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013. 6(5): p. 1623-1632. Choun, M., Investigation on formate oxidation on palladium and strategies for improving performance in alkaline direct formate fuel cells. 2016. Kim, H., et al., A novel high‐energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Advanced Energy Materials, 2013. 3(11): p. 1500-1506. Wei, D. and T.W. Ng, Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochemistry Communications, 2009. 11(10): p. 1996-1999. Navathe, G., et al., A Critical Review on Design and Development of New Generation Energy Storage Devices. ES Energy & Environment, 2022. 17: p. 11-32. Yang, W., et al., Graphene in supercapacitor applications. Current Opinion in Colloid & Interface Science, 2015. 20(5-6): p. 416-428. Li, C., et al., A study of activated carbon nanotubes as double-layer capacitors electrode materials. Materials Letters, 2004. 58(29): p. 3774-3777. Shiraishi, S., Electric double layer capacitors, in Carbon Alloys. 2003, Elsevier. p. 447-457. Chen, G.Z., Supercapacitor and supercapattery as emerging electrochemical energy stores. International Materials Reviews, 2017. 62(4): p. 173-202. Wang, J., et al., Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017. 4(1): p. 71-90. Prabaharan, S., R. Vimala, and Z. Zainal, Nanostructured mesoporous carbon as electrodes for supercapacitors. Journal of Power Sources, 2006. 161(1): p. 730-736. Jiang, Y. and J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2019. 2(1): p. 30-37. Szabó, S., Underpotential deposition of metals on foreign metal substrates. International Reviews in Physical Chemistry, 1991. 10(2): p. 207-248. Herrero, E., L.J. Buller, and H.D. Abruña, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chemical Reviews, 2001. 101(7): p. 1897-1930. Pramitha, A. and Y. Raviprakash, Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. Journal of Energy Storage, 2022. 49: p. 104120. Li, Y., et al., A Study of 3D flake MnO2 nanoflower decorated hollow carbon spheres as cathode material for pseudo-capacitive deionization. Journal of Environmental Chemical Engineering, 2022. 10(2): p. 107266. Chai, J., et al., Insights on Titanium-based chalcogenides TiX2 (X= O, S, Se) as LIBs/SIBs anode materials. Chemical Engineering Journal, 2022: p. 139768. Liu, J., et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Advanced science, 2018. 5(1): p. 1700322. Wang, D.-G., et al., Metal-organic framework-based materials for hybrid supercapacitor application. Coordination Chemistry Reviews, 2020. 404: p. 213093. Dutta, S., A. Bhaumik, and K.C.-W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy & Environmental Science, 2014. 7(11): p. 3574-3592. Roberts, A.D., X. Li, and H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chemical Society Reviews, 2014. 43(13): p. 4341-4356. Singh, R. and R. Deshmukh, Carbon nanotube as an emerging theranostic tool for oncology. Journal of Drug Delivery Science and Technology, 2022: p. 103586. Shahidi, S. and B. Moazzenchi, Carbon nanotube and its applications in textile industry–A review. The Journal of The Textile Institute, 2018. 109(12): p. 1653-1666. He, H., et al., Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013. 2013. Weiss, N.O., et al., Graphene: an emerging electronic material. Advanced materials, 2012. 24(43): p. 5782-5825. Atif, R. and F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein journal of nanotechnology, 2016. 7(1): p. 1174-1196. Sagadevan, S., M.R. Johan, and J.A. Lett, Fabrication of reduced graphene oxide/CeO 2 nanocomposite for enhanced electrochemical performance. Applied Physics A, 2019. 125: p. 1-11. Yan, S., et al., Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small, 2019. 15(4): p. 1804371. Majumdar, D., T. Maiyalagan, and Z. Jiang, Recent progress in ruthenium oxide‐based composites for supercapacitor applications. ChemElectroChem, 2019. 6(17): p. 4343-4372. Özdokur, K.V., S. Koçak, and F.N. Ertaş, Nanostructured Metal–Metal Oxides and Their Electrocatalytic Applications. Advanced Coating Materials, 2018: p. 275. Schäfer, H., G. Schneidereit, and W. Gerhardt, Zur Chemie der Platinmetalle. RuO2 chemischer transport, eigenschaften, thermischer Zerfall. Zeitschrift für anorganische und allgemeine Chemie, 1963. 319(5‐6): p. 327-336. Xie, Y. and C. Yao, Electrochemical performance of RuO2-TiO2 nanotube hybrid electrode material. Materials Research Express, 2020. 6(12): p. 125550. Choi, S.H., J.S. Kim, and Y.S. Yoon, Fabrication and characterization of SnO2–RuO2 composite anode thin film for lithium ion batteries. Electrochimica acta, 2004. 50(2-3): p. 547-552. Xie, J., et al., Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles. Ceramics International, 2011. 37(1): p. 419-421. Hwang, B., R. Santhanam, and D. Liu, Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol–gel method. Journal of power sources, 2001. 97: p. 443-446. Lai, G.S., et al., Development of thin film nanocomposite membrane incorporated with plasma enhanced chemical vapor deposition-modified hydrous manganese oxide for nanofiltration process. Composites Part B: Engineering, 2019. 176: p. 107328. Su, L., et al., Surface engineering of a LiMn2O4 electrode using nanoscale polymer thin films via chemical vapor deposition polymerization. ACS applied materials & interfaces, 2018. 10(32): p. 27063-27073. dos Santos Junior, G.A., et al., High-performance Li-ion hybrid supercapacitor based on LiMn2O4 in ionic liquid electrolyte. Electrochimica Acta, 2019. 325: p. 134900. Hodeau, J., et al., Neutron profile refinement of the structures of Li2SnO3 and Li2ZrO3. Journal of Solid State Chemistry, 1982. 45(2): p. 170-179. Teo, L., et al., Conductivity and dielectric studies of Li 2 SnO 3. Ionics, 2012. 18: p. 655-665. Wang, Q., et al., Preparation of Li2SnO3 and its application in lithium‐ion batteries. Surface and interface analysis, 2013. 45(8): p. 1297-1303. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539. Chen, R., et al., A comparative review of electrolytes for organic‐material‐based energy‐storage devices employing solid electrodes and redox fluids. ChemSusChem, 2020. 13(9): p. 2205-2219. Béguin, F., et al., Carbons and electrolytes for advanced supercapacitors. Advanced materials, 2014. 26(14): p. 2219-2251. Pal, B., et al., Exploration of Charge Storage Behavior of Binder-Free EDL Capacitors in Aqueous Electrolytes. ACS Omega, 2023. Erickson, E.M., et al., Insights into the cathode–electrolyte interphases of high-energy-density cathodes in lithium-ion batteries. ACS applied materials & interfaces, 2020. 12(14): p. 16451-16461. Jin, S., et al., A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 2022: p. 130535. Pohlmann, S. and A. Balducci, A new conducting salt for high voltage propylene carbonate-based electrochemical double layer capacitors. Electrochimica Acta, 2013. 110: p. 221-227. Baker, G.A., et al., An analytical view of ionic liquids. Analyst, 2005. 130(6): p. 800-808. Karanth, S., Non-Conventional Extraction of Bovine Lactoperoxidase From Whey. 2022, National Institute of Technology Karnataka, Surathkal. Shin, H.S., et al., Multilayered, Bipolar, All‐Solid‐State Battery Enabled by a Perovskite‐Based Biphasic Solid Electrolyte. ChemSusChem, 2018. 11(18): p. 3184-3190. Cheng, X., et al., Gel polymer electrolytes for electrochemical energy storage. Advanced Energy Materials, 2018. 8(7): p. 1702184. Bocharova, V. and A.P. Sokolov, Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules, 2020. 53(11): p. 4141-4157. Gong, J., et al., Electrical conductance of polyelectrolyte gels. The Journal of Physical Chemistry B, 1997. 101(5): p. 740-745. Ahn, D. and M. Song, Variations of the Electrochemical Properties of LiMn2 O 4 with Synthesis Conditions. Journal of the Electrochemical Society, 2000. 147(3): p. 874. Zhang, Y., et al. Research Status of Spinel LiMn2O4 Cathode Materials for Lithium Ion Batteries. in IOP Conference Series: Earth and Environmental Science. 2020. IOP Publishing. Mishra, A., et al., Carbon cloth‐based hybrid materials as flexible electrochemical supercapacitors. ChemElectroChem, 2019. 6(23): p. 5771-5786. Leng, L., et al., An overview on engineering the surface area and porosity of biochar. Science of the total Environment, 2021. 763: p. 144204. Gui, Z., et al., Natural cellulose fiber as substrate for supercapacitor. ACS nano, 2013. 7(7): p. 6037-6046. He, P., et al., Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS applied materials & interfaces, 2019. 11(35): p. 32225-32234. Numakura, D. Advanced Screen Printing" Practical Approaches for Printable & Flexible Electronics". in 2008 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference. 2008. IEEE. Tomchenko, A.A., Printed Chemical Sensors: From Screen-Printing to Microprinting∗. Encycl. Sens, 2006. 10: p. 279-290. Borisov, Y.A. and A. Chernishev, Vacuum concentrator of liquid microvolumes. Biomedical Engineering, 2015. 49(4): p. 246-251. Malisch, R., et al., Application of centrifugal vacuum concentrators in residue analysis. Fresenius' journal of analytical chemistry, 1991. 341: p. 449-456. Schnyder, A., " In vitro" and" in vivo" drug targeting using biotinylated immunoliposomes. 2005, University_of_Basel. Petasch, W., et al., Low-pressure plasma cleaning: a process for precision cleaning applications. Surface and Coatings Technology, 1997. 97(1-3): p. 176-181. Pham, P.V., Cleaning of graphene surfaces by low-pressure air plasma. Royal Society open science, 2018. 5(5): p. 172395. Tseng, C.-Y., I.-C. Cheng, and J.-Z. Chen, Low-pressure-plasma-processed NiFe-MOFs/nickel foam as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022. 47(85): p. 35990-35998. Zhao, T. and L. Jiang, Contact angle measurement of natural materials. Colloids and Surfaces B: Biointerfaces, 2018. 161: p. 324-330. Elton, L. and D.F. Jackson, X-ray diffraction and the Bragg law. American Journal of Physics, 1966. 34(11): p. 1036-1038. Carter, G.F., G.F. Carter, and D.E. Paul, Materials science and engineering. 1991: ASM international. Epp, J., X-ray diffraction (XRD) techniques for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. 2016, Elsevier. p. 81-124. Nishino, T., K. Takano, and K. Nakamae, Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of Polymer Science Part B: Polymer Physics, 1995. 33(11): p. 1647-1651. Briggs, D., Surface analysis of polymers by XPS and static SIMS. 1998: Cambridge University Press. Klockenkämper, R. and A. Von Bohlen, Total-reflection X-ray fluorescence analysis and related methods. 2014: John Wiley & Sons. Baer, D.R. and M.H. Engelhard, XPS analysis of nanostructured materials and biological surfaces. Journal of Electron Spectroscopy and Related Phenomena, 2010. 178: p. 415-432. Seyama, H., M. Soma, and B. Theng, X-ray photoelectron spectroscopy, in Developments in Clay Science. 2013, Elsevier. p. 161-176. Carlson, B.D. and D.T. Donavan, SEM. Sport Marketing Quarterly, 2008. 17: p. 154-62. Butler, J., et al., Low-voltage scanning electron microscopy of polymers. Polymer, 1995. 36(9): p. 1781-1790. Newbury, D.E. and N.W. Ritchie, Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). Journal of Analytical Atomic Spectrometry, 2013. 28(7): p. 973-988. Seiler, H., Secondary electron emission in the scanning electron microscope. Journal of Applied Physics, 1983. 54(11): p. R1-R18. Song, J., et al., Two-and three-electrode impedance spectroscopy of lithium-ion batteries. Journal of Power Sources, 2002. 111(2): p. 255-267. Beati, A.A., et al., Development and evaluation of a pseudoreference Pt//Ag/AgCl electrode for electrochemical systems. Industrial & engineering chemistry research, 2012. 51(14): p. 5367-5371. Knudsen, K.B., Alkali Metal-O↓ 2 Batteries Performance and Lifetime Limiting Effects. 2016: Technical University of Denmark. Mabbott, G.A., An introduction to cyclic voltammetry. Journal of Chemical education, 1983. 60(9): p. 697. McCormack, S., N.R. Russell, and J.F. Cassidy, Cyclic voltammetry of ferrocene carboxylic acid cyclodextrin inclusion complexes. Electrochimica acta, 1992. 37(11): p. 1939-1944. Ratha, S., et al., Characterization and performance evaluation of supercapacitor. Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques, 2018: p. 23-43. Isacfranklin, M., et al., Hydrogen free direct growth carbon nanorod as a promising electrode in symmetric supercapacitor applications. Progress in Organic Coatings, 2021. 158: p. 106379. Quan, Y., et al., 3D hierarchical porous CuS flower-dispersed CNT arrays on nickel foam as a binder-free electrode for supercapacitors. New Journal of Chemistry, 2019. 43(27): p. 10906-10914. Meng, J., et al., Efficient MMoO 4 (M= Co, Ni) carbon cloth electrodes for water oxidation. Inorganic Chemistry Frontiers, 2017. 4(11): p. 1791-1797. Yuan, H., et al., Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite. Applied Surface Science, 2012. 259: p. 288-293. Chang, S.-K., et al., Recent development in spinel cobaltites for supercapacitor application. Ceramics International, 2015. 41(1): p. 1-14. Sun, L., Q. Fu, and C. Pan, Mn3O4 embedded 3D multi-heteroatom codoped carbon sheets/carbon foams composites for high-performance flexible supercapacitors. Journal of Alloys and Compounds, 2020. 849: p. 156666. Zhao, P., et al., Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceramics International, 2019. 45(8): p. 10420-10428. Zhang, Y., et al., Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method. Materials research bulletin, 2002. 37(8): p. 1411-1417. Levi, E., et al., In situ XRD study of Li deintercalation from two different types of LiMn2O4 spinel. Solid State Ionics, 1999. 126(1-2): p. 109-119. Khorrami, G.H., A.K. Zak, and A. Kompany, Optical and structural properties of X-doped (X= Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods. Ceramics International, 2012. 38(7): p. 5683-5690. Shi, C., et al., Hydrogen plasma reduction induced oxygen vacancies in cubic In2O3 particles with enhanced photocatalytic performance. Ceramics International, 2018. 44(18): p. 22235-22240. Cui, P., et al., Plasma-assisted lattice oxygen vacancies engineering recipe for high-performing supercapacitors in a model of birnessite-MnO2. Chemical Engineering Journal, 2021. 412: p. 128676. Zhang, J., et al., Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catalysis Science & Technology, 2015. 5(4): p. 2305-2313. Madec, L., et al., Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi 1/3 Mn 1/3 Co 1/3 O 2/graphite pouch cells: electrochemical, GC-MS and XPS analysis. Physical chemistry chemical physics, 2015. 17(40): p. 27062-27076. Chi, C., H. Katsui, and T. Goto, Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition. Ceramics International, 2017. 43(1): p. 1278-1283. Todea, M., et al., XPS investigation of new solid forms of 5-fluorouracil with piperazine. Journal of Molecular Structure, 2018. 1165: p. 120-125. Rheinheimer, V., et al., XPS study on the stability and transformation of hydrate and carbonate phases within MgO systems. Materials, 2017. 10(1): p. 75. Wood, K.N. and G. Teeter, XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Applied Energy Materials, 2018. 1(9): p. 4493-4504. Duncan, H., et al., Study of the LiMn1. 5Ni0. 5O4/electrolyte interface at room temperature and 60° C. Journal of the Electrochemical Society, 2011. 158(5): p. A537. Dang, R., et al., Designing advanced P3-type K0. 45Ni0. 1Co0. 1Mn0. 8O2 and improving electrochemical performance via Al/Mg doping as a new cathode material for potassium-ion batteries. Journal of Power Sources, 2020. 464: p. 228190. Haruna, A.B., et al., Defect-Engineered β-MnO2− δ Precursors Control the Structure–Property Relationships in High-Voltage Spinel LiMn1. 5Ni0. 5O4− δ. ACS omega, 2021. 6(39): p. 25562-25573. Bélanger, D., T. Brousse, and J. Long, Manganese oxides: battery materials make the leap to electrochemical capacitors. The Electrochemical Society Interface, 2008. 17(1): p. 49. Vu, N.H., et al., Hydrothermal synthesis of Li2MnO3-stabilized LiMnO2 as a cathode material for Li-ion battery. Journal of Nanomaterials, 2021. 2021: p. 1-6. Palaniyandy, N., et al., A facile segregation process and restoration of LiMn2O4 cathode material from spent lithium-ion batteries. Journal of The Electrochemical Society, 2020. 167(9): p. 090510. Lekakou, C., et al., Carbon-based fibrous EDLC capacitors and supercapacitors. Journal of Nanotechnology, 2011. 2011. Ehsani, A., et al., Influence of ionic liquid on pseudocapacitance performance of electrochemically synthesized conductive polymer: Electrochemical and theoretical investigation. Journal of colloid and interface science, 2017. 500: p. 315-320. Senthilkumar, B., et al., Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. Journal of alloys and compounds, 2013. 553: p. 350-357. Shao, J., et al., Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO 2@ MnO 2 core/shell nanostructures for supercapacitors. Journal of Materials Chemistry A, 2015. 3(11): p. 6168-6176. Lektrakoontara, P., et al., Structure and electrochemical properties of acid-leached LiMn 2− x Ti x O 4. Journal of Materials Science: Materials in Electronics, 2018. 29: p. 12089-12099. Frackowiak, E. and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950. Augustyn, V., P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614. Tashima, D., et al., Plasma surface treatment of carbonaceous materials for application in electric double layer capacitors. Japanese journal of applied physics, 2006. 45(10S): p. 8521. Gogotsi, Y. and R.M. Penner, Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? 2018, ACS Publications. p. 2081-2083. Rai, A., A. Sharma, and A.K. Thakur, Evaluation of aluminium doped lanthanum ferrite based electrodes for supercapacitor design. Solid State Ionics, 2014. 262: p. 230-233. Ekinci, H., et al., Effect of annealing on the structural, optical and surface properties of chromium oxide (Cr2O3) thin films deposited by e-beam evaporation for plasma etching applications. Journal of Alloys and Compounds, 2021. 875: p. 160087. Cuypers, D., et al., Wet chemical etching of InP for cleaning applications: I. An oxide formation/oxide dissolution model. ECS Journal of Solid State Science and Technology, 2013. 2(4): p. P185. Basnayaka, P.A., et al., High performance asymmetric supercapacitors based on dual phosphorus (P) and nitrogen (N) co-doped carbon and graphene-polyaniline electrodes. ECS Journal of Solid State Science and Technology, 2017. 6(6): p. M3168. Liu, T., et al., Polyaniline/MnO2 composite with high performance as supercapacitor electrode via pulse electrodeposition. Polymer Composites, 2015. 36(1): p. 113-120. Cho, W.-H., I.-C. Cheng, and J.-Z. Chen, Performance Comparison of Reduced Graphene Oxide (rGO)-polyaniline (PANI) Supercapacitors with LiCl, Li2SO4, and H2SO4 Electrolytes. Journal of The Electrochemical Society, 2023. Chiang, M.-H., et al., Modification of hydrophilic property of polypropylene films by a parallel-plate nitrogen-based dielectric barrier discharge jet. IEEE Transactions on Plasma Science, 2010. 38(6): p. 1489-1498. Kull, K.R., M.L. Steen, and E.R. Fisher, Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. Journal of membrane science, 2005. 246(2): p. 203-215. Kuok, F.-H., et al., Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor. Materials Research Express, 2017. 4(11): p. 115501. Kuok, F.-H., et al., Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)–reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors. RSC advances, 2018. 8(6): p. 2851-2857. Xu, C.-H., et al., SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets. Materials Research Express, 2016. 3(8): p. 085002. Wang, Q., et al., Hydrazine sensor based on Co3O4/rGO/carbon cloth electrochemical electrode. Advanced Materials Interfaces, 2016. 3(12): p. 1500691. Zhang, D., et al., Li2SnO3 derived secondary Li–Sn alloy electrode for lithium-ion batteries. Journal of alloys and compounds, 2006. 415(1-2): p. 229-233. Wang, S., C. Wang, and X. Ji, Towards understanding the salt-intercalation exfoliation of graphite into graphene. Rsc Advances, 2017. 7(82): p. 52252-52260. Power, R. and D. Time, Surface Modification of Electrospun Polymer Tubular Conduits using Low Temperature Reduced Pressure Plasma. Yue, L., et al., Synthesis of a novel (NH4) 3PW11O39Sn/TiO2 heterostructure for efficient photocatalytic degradation and removal of water pollutants. Materials Letters, 2019. 237: p. 137-140. Cheng, S., et al., Influence of EDTA concentration on the structure and properties of SnS films prepared by electro-deposition. Surface and Coatings Technology, 2008. 202(24): p. 6070-6074. Zhang, X., et al., Enhanced cycling performance of rechargeable Li–O2 batteries via LiOH formation and decomposition using high-performance MOF-74@ CNTs hybrid catalysts. Energy Storage Materials, 2019. 17: p. 167-177. Luo, G., et al., Electrochemical recovery lithium from brine via taming surface wettability of regeneration spent batteries cathode materials. Applied Energy, 2023. 337: p. 120890. Salleh, N.A., et al., Electrode Polymer Binders for Supercapacitor Applications: A Review. Journal of Materials Research and Technology, 2023. Rani, B., A.K. Nayak, and N.K. Sahu, Electrochemical supercapacitor application of CoFe2O4 nanoparticles decorated over graphitic carbon nitride. Diamond and Related Materials, 2021. 120: p. 108671. Hu, J., et al., A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construction and Building Materials, 2022. 325: p. 126718. Xiao, Y., et al., A toolbox of reference electrodes for lithium batteries. Advanced Functional Materials, 2022. 32(13): p. 2108449. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87792 | - |
dc.description.abstract | 本研究將氯化鋰與硝酸亞錳之混合稠狀前驅漿料以網版網印法均勻塗布於碳纖維布上,接著在高溫爐管中以400°C之溫度煅燒6小時,藉此將前驅漿料轉化為錳酸鋰晶體,完成錳酸鋰混合型超級電容。之後分別使用純氬氣、氬氣與5%氫氣之混氣、氬氣與5%氧氣之混氣的低壓電漿對錳酸鋰混合型超級電容進行表面處理,處理後的試片在1 M硫酸鋰之液態電解液中以三電極系統進行電化學量測,採用銀/氯化銀(Ag/AgCl)和鉑(Pt)分別作為水系參考電極與對電極,並透過循環伏安法(CV)、定電流充放電法(GCD)、電化學阻抗譜(EIS)對錳酸鋰混合型超級電容進行測試。實驗結果顯示低壓電漿處理確實能有效改善混合型超級電容之性能,特別是在氬氣與5%氧氣之混氣條件下,其面電容量上升約24 %,達到了23.12 µA h/cm2,此外其庫倫效率和容量保持率相對於未處理之試片也有顯著提升。 | zh_TW |
dc.description.abstract | In this study, LiCl and Mn(NO3)2•4H2O are mixed together and applied onto a carbon cloth substrate using screen-printing method. The resulting sample is then heated at 400°C for 6 h in a tube furnace, resulting in the formation of LiMn2O4 Li-ion hybrid supercapacitors (Li-HSCs). The Li-HSCs are then subjected to low-pressure plasma (LPP) treatment using Ar, Ar+5%H2, or Ar+5%O2. The three-electrode setup is used, with the treated LiMn2O4 Li-HSCs serving as the working electrode, while Pt and Ag/AgCl electrodes are used as counter and reference electrodes, respectively. The LiMn2O4 Li-HSCs are characterized using cyclic voltammetry, galvanostatic charging/discharging, and electrochemical impedance spectroscopy. The results indicate that treatment with Ar+5%O2 plasma leads to a significant improvement in the areal capacity of the LiMn2O4 Li-HSCs, increasing it by approximately 24% to 23.12 μA h/cm2. This treatment also enhances the capacity retention rate and coulomb efficiency of the LiMn2O4 Li-HSCs. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:31:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-19T16:31:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 文獻回顧與理論介紹 4 2.1 低壓電漿 4 2.1.1 電漿基礎介紹 4 2.1.2 電漿原理介紹 5 2.1.3 低壓電漿介紹 10 2.2 混合型超級電容 12 2.2.1 混合型超級電容之介紹 12 2.2.2 混合型超級電容之儲能原理 14 2.2.3 混合型超級電容之電極材料 16 2.2.4 混合型超級電容之電解液 21 2.3 錳酸鋰與碳纖維布 24 2.3.1 錳酸鋰 24 2.3.2 碳纖維布 25 第三章 實驗步驟及各項儀器 26 3.1 實驗耗材及儀器 26 3.2 實驗步驟 28 3.2.1 配製氯化鋰-硝酸亞錳之前驅漿料 28 3.2.2 製備尖晶石型錳酸鋰電極於碳纖維布基材上 28 3.2.3 組裝三電極系統之錳酸鋰混合型超級電容 29 3.3 製程設備簡介 30 3.3.1 氣壓式網版印刷機 30 3.3.2 直立式迴旋真空濃縮機 30 3.3.3 低壓電漿清洗機 31 3.4 分析儀器介紹 32 3.4.1 水接觸角測儀 32 3.4.2 X射線繞射儀 32 3.4.3 X射線光電子能譜儀 34 3.4.4 場發射鎗掃描式電子顯微鏡 35 3.4.5 電化學工作站 37 第四章 結果與討論 40 4.1 錳酸鋰混合型超級電容之表面親疏水性分析 40 4.2 錳酸鋰混合型超級電容之表面型態分析 42 4.3 錳酸鋰混合型超級電容之結晶型態分析 44 4.4 錳酸鋰混合型超級電容之表面化學型態分析 46 4.5 錳酸鋰混合型超級電容之循環伏安法分析 53 4.6 錳酸鋰混合型超級電容之Trasatti分析 55 4.7 錳酸鋰混合型超級電容之定電流充放電分析 57 4.8 錳酸鋰混合型超級電容之電化學阻抗圖譜分析 61 4.9錳酸鋰混合型超級電容之穩定性分析 62 第五章 結論 63 第六章 附錄:氮氣常壓噴射式電漿快速製備錫酸鋰混合型超級電容 65 6.1 摘要 65 6.2 實驗步驟 65 6.3 結果與討論 66 6.3.1 錫酸鋰混合型超級電容之表面親疏水性分析 66 6.3.2 錫酸鋰混合型超級電容之表面型態分析 68 6.3.3 錫酸鋰混合型超級電容之結晶型態分析 70 6.3.4 錫酸鋰混合型超級電容之表面化學型態分析 71 6.3.5 錫酸鋰混合型超級電容之循環伏安法分析 76 6.3.6 錫酸鋰混合型超級電容之Trasatti分析 79 6.3.7 錫酸鋰混合型超級電容之定電流充放電分析 81 6.3.8 錫酸鋰混合型超級電容之穩定性分析 85 6.4 結論 87 參考文獻 88 個人期刊發表 101 | - |
dc.language.iso | zh_TW | - |
dc.title | 低壓氬氣/氫氣/氧氣電漿處理錳酸鋰混合型超級電容 | zh_TW |
dc.title | Low-Pressure Argon/Hydrogen/Oxygen Plasma Treatment on LiMn2O4 Li-ion Hybrid Supercapacitors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳奕君;徐振哲 | zh_TW |
dc.contributor.oralexamcommittee | I-Chun Cheng;Cheng-Che Hsu | en |
dc.subject.keyword | 低壓電漿,混合型超級電容,鍛燒,錳酸鋰, | zh_TW |
dc.subject.keyword | Low-pressure plasma (LPP),Li-ion hybrid supercapacitors (Li-HSCs),calcination,lithium manganate (LiMn2O4), | en |
dc.relation.page | 101 | - |
dc.identifier.doi | 10.6342/NTU202301051 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-06-16 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。