Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87791
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳哲夫zh_TW
dc.contributor.advisorJeffrey D. Warden
dc.contributor.author簡至寬zh_TW
dc.contributor.authorChih-Kuan Chienen
dc.date.accessioned2023-07-19T16:30:57Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-06-13-
dc.identifier.citation1. Laroche, L., N. Bekiaris, H.W. Andersen, and M. Morari, Homogeneous azeotropic distillation: separability and flowsheet synthesis. Industrial & engineering chemistry research, 1992. 31(9): p. 2190-2209.
2. Sholl, D.S. and R.P. Lively, Seven chemical separations to change the world. Nature, 2016. 532(7600): p. 435-437.
3. Kiss, A.A. and R. Smith, Rethinking energy use in distillation processes for a more sustainable chemical industry. Energy, 2020. 203: p. 117788.
4. Glinos, K.N., I.P. Nikolaides, and M.F. Malone, New complex column arrangements for ideal distillation. Industrial & Engineering Chemistry Process Design And Development, 1986. 25(3): p. 694-699.
5. Agrawal, R. and Z.T. Fidkowski, Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations? Industrial & engineering chemistry research, 1998. 37(8): p. 3444-3454.
6. Liu, Z., L. Hao, X. Han, Z. Cao, and H. Wei, Novel energy saving and economic extractive distillation process via integrating two-feed preheating strategy and heat pump vapor recompression. Separation and Purification Technology, 2023. 307: p. 122791.
7. Cui, C., X. Zhang, and J. Sun, Design and optimization of energy-efficient liquid-only side-stream distillation configurations using a stochastic algorithm. Chemical Engineering Research and Design, 2019. 145: p. 48-52.
8. Midori, S., S. Zheng, and I. Yamada, Analysis of divided-wall column for extractive distillation; Suichoku bunkatsugata chushutsu joryuto ni kansuru kaiseki. Kagaku Kogaku Ronbunshu, 2000. 26.
9. Li, L., Y. Tu, L. Sun, Y. Hou, M. Zhu, L. Guo, Q. Li, and Y. Tian, Enhanced efficient extractive distillation by combining heat-integrated technology and intermediate heating. Industrial & Engineering Chemistry Research, 2016. 55(32): p. 8837-8847.
10. Zhang, Q., M. Liu, C. Li, and A. Zeng, Design and control of extractive distillation process for separation of the minimum-boiling azeotrope ethyl-acetate and ethanol. Chemical Engineering Research and Design, 2018. 136: p. 57-70.
11. Feng, Z., W. Shen, G. Rangaiah, and L. Dong, Design and control of vapor recompression assisted extractive distillation for separating n-hexane and ethyl acetate. Separation and Purification Technology, 2020. 240: p. 116655.
12. Ma, Z., D. Yao, J. Zhao, H. Li, Z. Chen, P. Cui, Z. Zhu, L. Wang, Y. Wang, and Y. Ma, Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis. Process Safety and Environmental Protection, 2021. 148: p. 462-472.
13. Doherty, M.F. and M.F. Malone, Conceptual design of distillation systems. 2001, McGraw-Hill.
14. Abushwireb, F., H. Elakrami, and M. Emtir, The effect of solvent selection on energy-integrated extractive distillation for aromatics recovery from pyrolysis gasoline: Simulation and optimization. Chemical Engineering Transactions, 2009. 18: p. 243-248.
15. Hernandez, S., Analysis of energy‐efficient complex distillation options to purify bioethanol. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 2008. 31(4): p. 597-603.
16. Errico, M., B.-G. Rong, G. Tola, and M. Spano, Optimal synthesis of distillation systems for bioethanol separation. Part 2. Extractive distillation with complex columns. Industrial & Engineering Chemistry Research, 2013. 52(4): p. 1620-1626.
17. Cui, C., Q. Zhang, X. Zhang, J. Sun, and I.-L. Chien, Process synthesis and plantwide control of intensified extractive distillation with preconcentration for separating the minimum-boiling azeotropes: A case study of acetonitrile dehydration. Separation and Purification Technology, 2022. 285: p. 120397.
18. Zhang, Q., A. Zeng, X. Yuan, and Y. Ma, Design and control of economically attractive side-stream extractive distillation process. Chemical Engineering Research and Design, 2020. 160: p. 571-586.
19. Shi, T., W. Chun, A. Yang, Y. Su, S. Jin, J. Ren, and W. Shen, Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope. Chemical Engineering Science, 2020. 215: p. 115373.
20. Luyben, W.L., Comparison of extractive distillation and pressure-swing distillation for acetone− methanol separation. Industrial & engineering chemistry research, 2008. 47(8): p. 2696-2707.
21. Tututi-Avila, S., N. Medina-Herrera, J. Hahn, and A. Jiménez-Gutiérrez, Design of an energy-efficient side-stream extractive distillation system. Computers & Chemical Engineering, 2017. 102: p. 17-25.
22. Zhang, Y., A. Li, J. Gao, D. Xu, L. Zhang, Z. Zhang, and Y. Wang, Thermal coupled extractive distillation sequences with three entrainers for the separation of azeotrope isopropyl alcohol+ diisopropyl ether. Journal of Chemical Technology & Biotechnology, 2020. 95(5): p. 1590-1603.
23. Xu, Y., J. Li, Q. Ye, and Y. Li, Energy efficient extractive distillation process assisted with heat pump and heat integration to separate acetonitrile/1, 4-dioxane/water. Process Safety and Environmental Protection, 2021. 156: p. 144-159.
24. Yang, A., Z.Y. Kong, J. Sunarso, Y. Su, Q. Wang, and S. Zhu, Insights on sustainable separation of ternary azeotropic mixture tetrahydrofuran/ethyl acetate/water using hybrid vapor recompression assisted side-stream extractive distillation. Separation and Purification Technology, 2022. 290: p. 120884.
25. Pleşu, V., A.E.B. Ruiz, J. Bonet, and J. Llorens, Simple equation for suitability of heat pump use in distillation, in Computer Aided Chemical Engineering. 2014, Elsevier. p. 1327-1332.
26. Gu, J., X. You, C. Tao, J. Li, W. Shen, and J. Li, Improved design and optimization for separating tetrahydrofuran–water azeotrope through extractive distillation with and without heat integration by varying pressure. Chemical Engineering Research and Design, 2018. 133: p. 303-313.
27. Anokhina, E. and A. Timoshenko, Criterion of the energy effectiveness of extractive distillation in the partially thermally coupled columns. Chemical Engineering Research and Design, 2015. 99: p. 165-175.
28. Gerbaud, V., I. Rodriguez-Donis, L. Hegely, P. Lang, F. Denes, and X. You, Review of extractive distillation. Process design, operation, optimization and control. Chemical Engineering Research and Design, 2019. 141: p. 229-271.
29. Staak, D. and T. Grützner, Process integration by application of an extractive dividing-wall column: An industrial case study. Chemical Engineering Research and Design, 2017. 123: p. 120-129.
30. Chen, Y.-Y., Z.Y. Kong, A. Yang, H.-Y. Lee, and J. Sunarso, Design and control of an energy intensified side-stream extractive distillation for binary azeotropic separation of n-hexane and ethyl acetate. Separation and Purification Technology, 2022. 294: p. 121176.
31. Tang, W.-T. and J.D. Ward, Energy and exergy analysis of a stacked complex sequence and alternatives for ternary distillation. Separation and Purification Technology, 2023. 304: p. 122384.
32. He, S., W. Fan, H. Huang, J. Gao, D. Xu, Y. Ma, L. Zhang, and Y. Wang, Separation of the Azeotropic Mixture Methanol and Toluene Using Extractive Distillation: Entrainer Determination, Vapor–Liquid Equilibrium Measurement, and Modeling. ACS omega, 2021. 6(50): p. 34736-34743.
33. Matsuda, H., H. Takahara, S. Fujino, D. Constantinescu, K. Kurihara, K. Tochigi, K. Ochi, and J. Gmehling, Selection of entrainers for the separation of the binary azeotropic system methanol+ dimethyl carbonate by extractive distillation. Fluid Phase Equilibria, 2011. 310(1-2): p. 166-181.
34. Hu, C.-C. and S.-H. Cheng, Development of alternative methanol/dimethyl carbonate separation systems by extractive distillation—A holistic approach. Chemical Engineering Research and Design, 2017. 127: p. 189-214.
35. Arce, A., E. Rodil, and A. Soto, Extractive distillation of 2‐methoxy‐2‐methylpropane+ ethanol using 1‐butanol as entrainer: Equilibria and simulation. The Canadian Journal of Chemical Engineering, 1999. 77(6): p. 1135-1140.
36. Zhang, T., A. Li, X. Xu, Y. Ma, D. Xu, L. Zhang, J. Gao, and Y. Wang, Separation of azeotropic mixture (acetone+ n-heptane) by extractive distillation with intermediate and heavy boiling entrainers: Vapour-liquid equilibrium measurements and correlation. The Journal of Chemical Thermodynamics, 2021. 152: p. 106284.
37. Lladosa, E., J.B. Montón, M.C. Burguet, and R. Muñoz, Effect of pressure and the capability of 2-methoxyethanol as a solvent in the behaviour of a diisopropyl ether–isopropyl alcohol azeotropic mixture. Fluid phase equilibria, 2007. 262(1-2): p. 271-279.
38. Luo, H., K. Liang, W. Li, Y. Li, M. Xia, and C. Xu, Comparison of pressure-swing distillation and extractive distillation methods for isopropyl alcohol/diisopropyl ether separation. Industrial & Engineering Chemistry Research, 2014. 53(39): p. 15167-15182.
39. Resa, J.M., C. González, S.O. de Landaluce, and J. Lanz, (Vapour+ liquid) equilibria, densities, excess molar volumes, refractive indices, speed of sound for (methanol+ allyl acetate) and (vinyl acetate+ allyl acetate). The Journal of Chemical Thermodynamics, 2002. 34(7): p. 1013-1027.
40. Zhang, Y., Z. Wang, X. Xu, J. Gao, D. Xu, L. Zhang, and Y. Wang, Entrainers selection and vapour-liquid equilibrium measurements for separating azeotropic mixtures (ethanol+ n-hexane/cyclohexane) by extractive distillation. The Journal of Chemical Thermodynamics, 2020. 144: p. 106070.
41. Luyben, W.L., Effect of solvent on controllability in extractive distillation. Industrial & engineering chemistry research, 2008. 47(13): p. 4425-4439.
42. WANG, Y., Q. LI, R. LI, J. QI, L. ZHANG, X. SONG, and C. PENG, Simulation of the separation of acetone-methanol systems by positive and reverse extractive distillation. Journal of Beijing University of Chemical Technology, 2020. 47(1): p. 20.
43. Yang, S., Y. Wang, G. Bai, and Y. Zhu, Design and control of an extractive distillation system for benzene/acetonitrile separation using dimethyl sulfoxide as an entrainer. Industrial & Engineering Chemistry Research, 2013. 52(36): p. 13102-13112.
44. Dı́az, C. and J. Tojo, Phase equilibria behaviour of n-heptane with o-xylene, m-xylene, p-xylene and ethylbenzene at 101.3 kPa. The Journal of Chemical Thermodynamics, 2002. 34(12): p. 1975-1984.
45. Liu, K., T. Zhang, Y. Ma, J. Gao, D. Xu, L. Zhang, and Y. Wang, Vapour-liquid equilibrium measurements and correlation for separating azeotropic mixture (ethyl acetate+ n-heptane) by extractive distillation. The Journal of Chemical Thermodynamics, 2020. 144: p. 106075.
46. Hosgor, E., T. Kucuk, I.N. Oksal, and D.B. Kaymak, Design and control of distillation processes for methanol–chloroform separation. Computers & chemical engineering, 2014. 67: p. 166-177.
47. Cao, Y., J. Hu, H. Jia, G. Bu, Z. Zhu, and Y. Wang, Comparison of pressure-swing distillation and extractive distillation with varied-diameter column in economics and dynamic control. Journal of Process control, 2017. 49: p. 9-25.
48. Ravagnani, M., M. Reis, R. Maciel Filho, and M. Wolf-Maciel, Anhydrous ethanol production by extractive distillation: A solvent case study. Process Safety and Environmental Protection, 2010. 88(1): p. 67-73.
49. Gil, I., L. García, and G. Rodríguez, Simulation of ethanol extractive distillation with mixed glycols as separating agent. Brazilian Journal of Chemical Engineering, 2014. 31: p. 259-270.
50. Jaime, J.s.A., G. Rodríguez, and I.n.D. Gil, Control of an optimal extractive distillation process with mixed-solvents as separating agent. Industrial & Engineering Chemistry Research, 2018. 57(29): p. 9615-9626.
51. Yang, X.-L. and J.D. Ward, Extractive distillation optimization using simulated annealing and a process simulation automation server. Industrial & Engineering Chemistry Research, 2018. 57(32): p. 11050-11060.
52. Douglas, J.M., Conceptual design of chemical processes. 1988: McGraw-Hill New York.
53. Turton, R., R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis, synthesis and design of chemical processes. 2008: Pearson Education New Jersey.
54. Laroche, L., N. Bekiaris, H.W. Andersen, and M. Morari, The curious behavior of homogeneous azeotropic distillation—implications for entrainer selection. AIChE Journal, 1992. 38(9): p. 1309-1328.
55. Wang, Q., B. Yu, and C. Xu, Design and control of distillation system for methylal/methanol separation. Part 1: extractive distillation using DMF as an entrainer. Industrial & engineering chemistry research, 2012. 51(3): p. 1281-1292.
56. Wu, Y.C., P.H.-C. Hsu, and I.-L. Chien, Critical assessment of the energy-saving potential of an extractive dividing-wall column. Industrial & Engineering Chemistry Research, 2013. 52(15): p. 5384-5399.
57. Cordeiro, G.n.M., M.F. de Figueirêdo, W.B. Ramos, F.c.A. Sales, K.D. Brito, and R.P. Brito, Systematic strategy for obtaining a dividing-wall column applied to an extractive distillation process. Industrial & Engineering Chemistry Research, 2017. 56(14): p. 4083-4094.
58. Luyben, W.L., Principles and case studies of simultaneous design. 2012: John Wiley & Sons New Jersey.
59. Seider, W.D., J. Seader, D.R. Lewin, and S. Widagdo, Product and process design principles: synthesis. 2004: Wiley New Jersey.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87791-
dc.description.abstract萃取蒸餾為一常見的共沸物分離方法,因其經濟可行性較高且動態控制較為穩定,然而此方法之能耗相當可觀,屬能源密集型單元操作,為此,研究人員發展出數種節能技術以降低其能源消耗,包括熱耦合、液態側流與熱整合等技術。雖然現有文獻不乏大量針對此些技術之研究與應用,但並無快速且通用的標準可幫助程序設計,系統性的評估與篩選方法仍有待發展。

為了解決此不足,本研究藉由十七組二元最小共沸物系統與重夾帶劑配合六種強化蒸餾序列與兩種基本序列之優化結果得出一系列趨勢及現象,且透過觀察與比較這些系統之能耗與年化總成本,本研究提出一個新指標RCB用以評估這些節能技術之合適性,針對不同條件與情況快速篩選出較具成本效益之技術和序列。

依照RCB之數值變化,本研究歸納出下列結論: (1) 當不考慮再沸器與冷凝器之熱整合時,如RCB小於約8.4,修正型液態側流序列 (MSSS)表現最佳,如RCB大於約8.4,雙塔液態側流序列 (DCSSS)表現最佳。 (2) 當共沸物重成分與夾帶劑之相對揮發度過高時,即使再混合效應相當嚴重,液態側流也不具成本效益。 (3) 當考慮再沸器與冷凝器之熱整合時,如RCB小於約2.2,普通熱整合序列(OSS)具有最佳表現,如RCB大於約2.2,雙塔液態側流熱整合序列(SDCSSS)具有最佳表現。 (4) 當RCB較小時,再沸器與冷凝器之熱整合較有效,當RCB較大時,液態側流序列較有效。 (5) 當RCB介於2.6與8.4之間時,再沸器與冷凝器之熱整合搭配液態側流序列效果較佳,如RCB小於2.6,液態側流幫助甚微,不建議使用,如RCB大於8.4,再沸器與冷凝器之熱整合幫助甚微,不建議使用。 (6) 當RCB較小時,隔牆塔缺乏成本效益,當RCB較大時,隔牆塔可降低能耗與成本,但其表現仍不及液態側流序列。
zh_TW
dc.description.abstractExtractive distillation is a widely-used but energy-intensive method for separating homogeneous azeotropic mixtures into pure components. The most common case is a minimum-boiling azeotrope separated using a heavy entrainer. Numerous design alternatives have been proposed for reducing energy consumption in such processes, including alternatives with side-streams, column stacking and thermally coupled sequences. However, there is very little guidance in the literature about which alternative is likely to work the best in a given situation.

To address this deficiency, in this work, seventeen industrially-relevant chemical systems comprising two species that form a minimum boiling azeotrope and a heavy entrainer are selected for study. Two ordinary and six energy-saving flowsheet alternatives for extractive distillation processes were also selected. Each of the eight flowsheet alternatives was optimized for each of the 17 chemical systems. A novel metric RCB (the ratio of the entrainer flow rate to the heavy key flow rate) is proposed to facilitate interpretation of the results. The following general trends are observed when comparing flowsheet alternatives for chemical systems with different values of RCB:
(1) When comparing sequences without stacking, the modified side-stream sequence (MSSS) performs better when RCB is smaller (less than about 8.4); the double-column side-stream sequence (DCSSS) performs better when RCB is larger (greater than about 8.4). (2) When the relative volatility of the heavy key and the entrainer is too high, side-stream sequences may be uneconomical even if the remixing effect is substantial. (3) Considering sequences with column stacking, the ordinary stacked sequence (OSS) performs better when RCB is smaller (less than about 2.2) and the stacked double-column side-stream sequence (SDCSSS) performs better when RCB is larger (greater than about 2.2). (4) Column stacking is more effective when RCB is small, and side streams are more effective when RCB is large. (5) The stacked side-stream sequence is recommended for intermediate values of RCB (2.6<RCB<8.4). For RCB<2.6, the benefit of the side-stream is minimal and a sequence with stacking only is probably preferred for simplicity. For RCB>8.4 the benefit of stacking is minimal and a sequence with a side-stream only is probably preferred for simplicity. (6) The dividing-wall column (DWCU) is not economical when RCB is small and is economical but still less attractive than side-stream sequences when RCB is large.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:30:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:30:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Literature Survey 3
1.3 Problem Statements 5
1.4 Thesis Organization 6
Chapter 2 Methods 7
2.1 The Definition of RCB 7
2.2 Extractive Distillation Sequences 8
2.3 Azeotropes and Entrainers 10
2.4 Process Optimization 13
2.5 Initial Guesses & Results Validation 16
Chapter 3 The Interpretation of RCB 22
3.1 The 1st Interpretation of RCB 22
3.2 The 2nd Interpretation of RCB 23
3.3 The 3rd Interpretation of RCB 24
3.4 The 4th Interpretation of RCB 25
3.5 The 5th Interpretation of RCB 26
Chapter 4 Results 29
4.1 Results for Sequences with no Column Stacking 29
4.1.1 The Preferred Non-stacked Sequence for Each Case 29
4.1.2 Examples with Detailed Flowsheets for Non-stacked Sequences 31
4.2 Results for Sequences with Column Stacking 36
4.2.1 The Preferred Stacked Sequence for Each Case 37
4.2.2 Examples with Detailed Flowsheets for Stacked Sequences 39
4.3 Overall Evaluation 43
4.3.1 The Dividing Wall versus Side Streams 43
4.3.2 Column Stacking versus Side Streams 45
Chapter 5 Conclusions 47
REFERENCES 49
Appendix A. Optimization Variables 55
Appendix B. Binary Interaction Parameters 57
Appendix C. Parameters for SA Algorithm 58
Appendix D. Economic Evaluation 59
Appendix E. TAC and Reboiler Duty of Each Sequence 65
Appendix F. Flowsheets for the 5th Interpretation 68
Appendix G. The transition points of RCB 70
-
dc.language.isoen-
dc.subject隔牆塔zh_TW
dc.subject熱整合zh_TW
dc.subject製程強化zh_TW
dc.subject勻相共沸蒸餾zh_TW
dc.subject萃取蒸餾zh_TW
dc.subject熱耦合zh_TW
dc.subject程序優化zh_TW
dc.subject共沸混合物夾帶劑zh_TW
dc.subject液態側流zh_TW
dc.subjectprocess optimizationen
dc.subjectextractive distillationen
dc.subjecthomogeneous azeotropic distillationen
dc.subjectprocess intensificationen
dc.subjectheat integrationen
dc.subjectside streamen
dc.subjectthermal couplingen
dc.subjectdividing-wall columnen
dc.subjectcolumn stackingen
dc.subjectentrainersen
dc.title用於萃取蒸餾塔序列節能技術之比較zh_TW
dc.titleComparison of alternative energy-saving strategies for extractive distillation processesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳誠亮;余柏毅;錢義隆;李豪業zh_TW
dc.contributor.oralexamcommitteeCheng-Liang Chen;Bor-Yih Yu;I-Lung Chien;Hao-Yeh Leeen
dc.subject.keyword萃取蒸餾,勻相共沸蒸餾,製程強化,熱整合,液態側流,熱耦合,隔牆塔,共沸混合物夾帶劑,程序優化,zh_TW
dc.subject.keywordextractive distillation,homogeneous azeotropic distillation,process intensification,heat integration,side stream,thermal coupling,dividing-wall column,column stacking,entrainers,process optimization,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202301003-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-06-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved