請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87789完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫 | zh_TW |
| dc.contributor.advisor | Jeffrey D. Ward | en |
| dc.contributor.author | 簡瑋廷 | zh_TW |
| dc.contributor.author | Wei-Ting Chien | en |
| dc.date.accessioned | 2023-07-19T16:30:18Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-10 | - |
| dc.identifier.citation | [1] Orehek, J., Teslic, D., & Likozar, B. (2020). Continuous crystallization processes in pharmaceutical manufacturing: A review. Organic Process Research & Development, 25(1), 16-42.
[2] Chen, J., Sarma, B., Evans, J. M., & Myerson, A. S. (2011). Pharmaceutical crystallization. Crystal Growth & Design, 11(4), 887-895. [3] Zhang, D. J., Xu, S. J., Du, S. C., Wang, J. K., & Gong, J. B. (2017). Progress of Pharmaceutical Continuous Crystallization. Engineering, 3(3), 354-364. doi: 10.1016/j.Eng.2017.03.023 [4] Wang, T., Lu, H., Wang, J., Xiao, Y., Zhou, Y., Bao, Y., & Hao, H. (2017). Recent progress of continuous crystallization. Journal of industrial and engineering chemistry, 54, 14-29. [5] Myerson, A. S., Erdemir, D., & Lee, A. Y. (2019). Handbook of Industrial Crystallization: Cambridge University Press. [6] Lewis, A., Seckler, M., Kramer, H., & Van Rosmalen, G. (2015). Industrial crystallization: fundamentals and applications: Cambridge University Press. [7] Ward, J. D., Mellichamp, D. A., & Doherty, M. F. (2006). Choosing an operating policy for seeded batch crystallization. AIChE Journal, 52(6), 2046-2054. [8] Vekilov, P. G. (2010). Nucleation. Crystal Growth & Design, 10(12), 5007-5019. [9] Boistelle, R., & Astier, J. (1988). Crystallization mechanisms in solution. Journal of crystal growth, 90(1-3), 14-30. [10] Lacmann, R., Herden, A., & Mayer, C. (1999). Kinetics of nucleation and crystal growth. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 22(4), 279-289. [11] Agrawal, S., & Paterson, A. (2015). Secondary nucleation: mechanisms and models. Chemical Engineering Communications, 202(5), 698-706. [12] Hintz, R. J., & Johnson, K. C. (1989). The effect of particle size distribution on dissolution rate and oral absorption. International Journal of Pharmaceutics, 51(1), 9-17. [13] Meng, W., Sirota, E., Feng, H., McMullen, J. P., Codan, L., & Cote, A. S. (2020). Effective Control of Crystal Size via an Integrated Crystallization, Wet Milling, and Annealing Recirculation System. Organic Process Research & Development, 24(11), 2639-2650. [14] Abu Bakar, M. R., Nagy, Z. K., Saleemi, A. N., & Rielly, C. D. (2009). The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes. Crystal Growth and Design, 9(3), 1378-1384. [15] Nagy, Z. K., Chew, J. W., Fujiwara, M., & Braatz, R. D. (2008). Comparative performance of concentration and temperature controlled batch crystallizations. Journal of Process Control, 18(3-4), 399-407. doi: 10.1016/j.jprocont.2007.10.006 [16] Furuta, M., Mukai, K., Cork, D., & Mae, K. (2016). Continuous crystallization using a sonicated tubular system for controlling particle size in an API manufacturing process. Chemical Engineering and Processing-Process Intensification, 102, 210-218. doi: 10.1016/j.cep.2016.02.002 [17] Mesbah, A., Landlust, J., Huesman, A. E. M., Kramer, H. J. M., Jansens, P. J., & Van den Hof, P. M. J. (2010). A model-based control framework for industrial batch crystallization processes. Chemical Engineering Research & Design, 88(9A), 1223-1233. doi: 10.1016/j.cherd.2009.09.010 [18] Acevedo, D., Yang, Y., Warnke, D. J., & Nagy, Z. K. (2017). Model-Based Evaluation of Direct Nucleation Control Approaches for the Continuous Cooling Crystallization of Paracetamol in a Mixed Suspension Mixed Product Removal System. Crystal Growth & Design, 17(10), 5377-5383. doi: 10.1021/acs.cgd.7b00860 [19] Yang, Y., Song, L., & Nagy, Z. K. (2015). Automated direct nucleation control in continuous mixed suspension mixed product removal cooling crystallization. Crystal Growth & Design, 15(12), 5839-5848. [20] Yu, Z. Q., Chow, P. S., & Tan, R. B. (2006). Seeding and constant-supersaturation control by ATR-FTIR in anti-solvent crystallization. Organic Process Research & Development, 10(4), 717-722. [21] Saleemi, A. N., Rielly, C. D., & Nagy, Z. K. (2012). Comparative investigation of supersaturation and automated direct nucleation control of crystal size distributions using ATR-UV/vis spectroscopy and FBRM. Crystal Growth & Design, 12(4), 1792-1807. [22] Szilagyi, B., Eren, A., Quon, J. L., Papageorgiou, C. D., & Nagy, Z. K. (2020). Application of model-free and model-based quality-by-control (QbC) for the efficient design of pharmaceutical crystallization processes. Crystal Growth & Design, 20(6), 3979-3996. [23] Nagy, Z. K. (2009). Model based robust control approach for batch crystallization product design. Computers & Chemical Engineering, 33(10), 1685-1691. doi: 10.1016/j.compchemeng.2009.04.012 [24] Fevotte, F., & Fevotte, G. (2010). A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes. Chemical Engineering Science, 65(10), 3191-3198. doi: 10.1016/j.ces.2010.02.009 [25] Kumar, S., & Ramkrishna, D. (1997). On the solution of population balance equations by discretization—III. Nucleation, growth and aggregation of particles. Chemical Engineering Science, 52(24), 4659-4679. [26] Lee, G., Meyer, X. M., Biscans, B., Le Lann, J. M., & Yoon, E. S. (1999). Adaptive finite difference method for the simulation of batch crystallization. Computers & Chemical Engineering, 23, S363-S366. doi: 10.1016/s0098-1354(99)80089-1 [27] van Peborgh Gooch, J. R., & Hounslow, M. J. (1996). Monte Carlo simulation of size‐enlargement mechanisms in crystallization. AIChE Journal, 42(7), 1864-1874. [28] Haseltine, E. L., Patience, D. B., & Rawlings, J. B. (2005). On the stochastic simulation of particulate systems. Chemical Engineering Science, 60(10), 2627-2641. doi: 10.1016/j.ces.2004.05.038 [29] Madras, G., & McCoy, B. J. (2002). Dynamics of crystal size distributions with size-dependent rates. Journal of crystal growth, 243(1), 204-213. [30] Hulburt, H. M., & Katz, S. (1964). Some problems in particle technology: A statistical mechanical formulation. Chemical Engineering Science, 19(8), 555-574. [31] Randolph, A. (2012). Theory of particulate processes: analysis and techniques of continuous crystallization: Elsevier. [32] Bajcinca, N. (2013). Analytic solutions to optimal control problems in crystal growth processes. Journal of Process Control, 23(2), 224-241. doi: 10.1016/j.jprocont.2012.08.010 [33] Vollmer, U., & Raisch, J. (2006). Control of batch crystallization—A system inversion approach. Chemical Engineering and Processing: Process Intensification, 45(10), 874-885. [34] Hofmann, S., Bajcinca, N., Raisch, J., & Sundmacher, K. (2017). Optimal control of univariate and multivariate population balance systems involving external fines removal. Chemical Engineering Science, 168, 101-123. doi: 10.1016/j.ces.2016.12.032 [35] Hofmann, S., & Raisch, J. (2012). Solutions to inversion problems in preferential crystallization of enantiomers-part I: Batch crystallization in a single vessel. Chemical Engineering Science, 80, 253-269. doi: 10.1016/j.ces.2012.06.021 [36] Hofmann, S., & Raisch, J. (2013). Solutions to inversion problems in preferential crystallization of enantiomers-Part II: Batch crystallization in two coupled vessels. Chemical Engineering Science, 88, 48-68. doi: 10.1016/j.ces.2012.10.030 [37] Pontryagin, L. S. (1987). Mathematical theory of optimal processes: CRC press. [38] Kirk, D. E. (2004). Optimal control theory: an introduction: Courier Corporation. [39] Hofmann, S., & Raisch, J. (2010). Application of optimal control theory to a batch crystallizer using orbital flatness. Paper presented at the 16th Nordic Process Control Workshop, Lund, Sweden. [40] Tseng, Y. T., & Ward, J. D. (2017). Comparison of objective functions for batch crystallization using a simple process model and Pontryagin's minimum principle. Computers & Chemical Engineering, 99, 271-279. doi: 10.1016/j.compchemeng.2017.01.017 [41] Pan, H. J., & Ward, J. D. (2021). Computationally Efficient Algorithm for Solving Population Balances with Size-Dependent Growth, Nucleation, and Growth-Dissolution Cycles. Industrial & Engineering Chemistry Research, 60(34), 12614-12628. doi: 10.1021/acs.iecr.1c01947 [42] Pan, H. J., & Ward, J. D. (2021). Dimensionless Framework for Seed Recipe Design and Optimal Control of Batch Crystallization. Industrial & Engineering Chemistry Research, 60(7), 3013-3026. doi: 10.1021/acs.iecr.0c06132 [43] Pan, H. J., & Ward, J. D. (2020). Optimization of Simple Batch Crystallization Systems Considering Crystal Shape and Nucleation. Industrial & Engineering Chemistry Research, 59(20), 9550-9561. doi: 10.1021/acs.iecr.9b06842 [44] Tseng, Y. T., Pan, H. J., & Ward, J. D. (2019). Pareto-Optimal Fronts for Simple Crystallization Systems Using Pontryagin's Minimum Principle. Industrial & Engineering Chemistry Research, 58(31), 14239-14251. doi: 10.1021/acs.iecr.9b02394 [45] Kubota, N., Doki, N., Yokota, M., & Sato, A. (2001). Seeding policy in batch cooling crystallization. Powder technology, 121(1), 31-38. [46] Aamir, E., Nagy, Z., & Rielly, C. (2010). Evaluation of the effect of seed preparation method on the product crystal size distribution for batch cooling crystallization processes. Crystal Growth & Design, 10(11), 4728-4740. [47] Zhang, C.-t., Wang, H.-r., & Wang, Y.-l. (2010). Internally generated seeding policy in anti-solvent crystallization of ceftriaxone sodium. Chemical Engineering and Processing: Process Intensification, 49(4), 396-401. [48] Zhang, F., Shan, B., Wang, Y., Zhu, Z., Yu, Z.-Q., & Ma, C. Y. (2021). Progress and opportunities for utilizing seeding techniques in crystallization processes. Organic Process Research & Development, 25(7), 1496-1511. [49] He, Y., Gao, Z., Zhang, T., Sun, J., Ma, Y., Tian, N., & Gong, J. (2020). Seeding techniques and optimization of solution crystallization processes. Organic Process Research & Development, 24(10), 1839-1849. [50] Hemalatha, K., Nagveni, P., Kumar, P. N., & Rani, K. Y. (2018). Multiobjective optimization and experimental validation for batch cooling crystallization of citric acid anhydrate. Computers & Chemical Engineering, 112, 292-303. doi: 10.1016/j.compchemeng.2018.02.019 [51] Ashraf, A. B., & Rao, C. S. (2022). Multiobjective temperature trajectory optimization for unseeded batch cooling crystallization of aspirin. Computers & Chemical Engineering, 160. doi: 10.1016/j.compchemeng.2022.107704 [52] Pan, H.-J., & Ward, J. D. (2023). Algorithms for solving boundary value problems in optimal control of seeded batch crystallization processes with temperature-dependent kinetics. Chemical Engineering Science, 270, 118517. [53] Srinivasan, B., Palanki, S., & Bonvin, D. (2003). Dynamic optimization of batch processes: I. Characterization of the nominal solution. Computers & Chemical Engineering, 27(1), 1-26. [54] Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144. [55] Hemalatha, K., & Rani, K. Y. (2017). Multiobjective Optimization of Unseeded and Seeded Batch Cooling Crystallization Processes. Industrial & Engineering Chemistry Research, 56(20), 6012-6021. doi: 10.1021/acs.iecr.7b00586 [56] Bhoi, S., Lenka, M., & Sarkar, D. (2017). Particle engineering by optimization for the unseeded batch cooling crystallization of L-asparagine monohydrate. CrystEngComm, 19(42), 6373-6382. [57] Cohon, J. L. (2004). Multiobjective programming and planning (Vol. 140): Courier Corporation. [58] Zelany, M. (1974). A concept of compromise solutions and the method of the displaced ideal. Computers & Operations Research, 1(3-4), 479-496. [59] Bryson, A., & Ho, Y.-C. (1975). Applied optimal control, hemisphere pub. Corp., Washington DC. [60] Encarnación-Gómez, L. G., Bommarius, A. S., & Rousseau, R. W. (2016). Crystallization kinetics of ampicillin using online monitoring tools and robust parameter estimation. Industrial & Engineering Chemistry Research, 55(7), 2153-2162. [61] Hoffmann, J., Flannigan, J., Cashmore, A., Briuglia, M. L., Steendam, R. R., Gerard, C. J., . . . Ter Horst, J. H. (2022). The unexpected dominance of secondary over primary nucleation. Faraday Discussions, 235, 109-131. [62] Deck, L.-T., & Mazzotti, M. (2022). Conceptual Validation of Stochastic and Deterministic Methods To Estimate Crystal Nucleation Rates. Crystal Growth & Design. [63] Unno, J., & Hirasawa, I. (2021). Numerical Simulations of Seeded Batch Crystallization Demonstrating the Effect of Stochastic Nucleation on Crystal Product Quality. Journal of Chemical Engineering of Japan, 54(7), 380-386. [64] Maggioni, G. M., & Mazzotti, M. (2015). Modelling the stochastic behaviour of primary nucleation. Faraday Discussions, 179, 359-382. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87789 | - |
| dc.description.abstract | 本研究開發了一個框架來解決晶種和非晶種批次結晶系統最適化問題。在本研究中,應用最佳控制理論(optimal control theory)來求解考量初級成核之多目標批次結晶製程最適化問題,本論文陳述並求解晶種與非晶種之最適化問題,同時也追蹤成核晶體的質量,並將其包含在質量平衡中。然而由此產生的兩點邊界值問題(two-point boundary value problem)非常複雜,狀態(states)及協態(costates)變數的導數表達式為高度非線性的,因此傳統的打靶法(shooting method)往往難以收斂。在含有晶種的案例中,可透過假設在哈密頓(Hamiltonian)方程式中成核的質量相較於晶種成長的質量是可忽略不計的,來簡化數學計算。而在非晶種的案例中,可應用基於梯度(gradient-based)的演算法來有效地求解兩點邊界值問題。
本論文以氨苄青黴素(ampicillin)在水中析出結晶為個案研究,展示本論文中所提出的最佳化方法,進而求得最佳控制輸入曲線(如過飽和度軌跡、pH值軌跡)。本研究亦透過建構柏拉圖最佳解前緣(Pareto-optimal front)來分析不同目標函數間的競爭權衡關係,如最小化成核晶體數量、成核質量,或最大化晶體之加權平均大小。本研究所提出之演算法快速且穩健,或許可適用於模型基底線上控制。除此之外,此演算法未來也可用於解決更複雜之批次結晶系統之最適化問題。 | zh_TW |
| dc.description.abstract | This work develops a framework for solving optimization problems for both seeded and unseeded batch crystallization systems. In this work, optimal control theory (OCT) is applied to solve multi-objective optimization problems for batch crystallization processes with primary nucleation. Optimization problems for both seeded and unseeded cases are stated and solved. The mass of the nucleated crystals is tracked and included in the material balance. The resulting two-point boundary-value problems (TPBVPs) are difficult to solve because the expressions for the derivatives of the states and costates are highly non-linear. Conventional shooting methods usually fail to converge. In seeded case, the nucleus-grown mass in the Hamiltonian equation is assumed to be negligible compared to the seed-grown mass, which simplifies the mathematics. In unseeded case, a gradient-based algorithm is applied to solve the TPBVP efficiently.
A case study of ampicillin crystallized from water illustrates the method developed in this work. Optimal control input profiles (e.g. supersaturation trajectories and pH trajectories) and the complete product CSD are determined. Furthermore, the Pareto-optimal fronts are constructed to analyze the trade-off between the competing objectives of minimizing the number of nucleated crystals and the nucleated mass or the weight mean size. The algorithm is found to be both fast and robust, suggesting that it might be suitable for online model-based control. Moreover, the algorithm proposed in this work might be useful for solving even more complicated optimization problems for batch crystallization systems with complex kinetics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:30:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:30:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Overview of Crystallization Processes 1 1.2 Literature Review and Motivation 3 1.3 Thesis Organization 8 Chapter 2 Theory 9 2.1 Modeling of Batch Crystallization Processes 9 2.2 Crystallization Kinetics 12 Chapter 3 Optimization Problems and Solutions 14 3.1 Optimization Problem Statements 14 3.1.1 Case 1: Seeded Crystallization 14 3.1.2 Case 2: Unseeded Crystallization 16 3.2 Pareto-Optimal Fronts for Multi-Objective Optimization Problems 18 3.2.1 Case 1: Seeded Crystallization 20 3.2.2 Case 2: Unseeded Crystallization 20 3.3 Solutions to Optimization Problems 20 3.3.1 Case 1: Seeded Crystallization 20 3.3.2 Case 2: Unseeded Crystallization 25 Chapter 4 Case Study 31 4.1 Parameters for the System 31 4.2 Results and Discussion 33 4.2.1 Case 1: Seeded Crystallization 33 4.2.2 Case 2: Unseeded Crystallization 40 Chapter 5 Conclusions 48 REFERENCES 51 | - |
| dc.language.iso | en | - |
| dc.subject | 最佳控制理論 | zh_TW |
| dc.subject | 初級成核 | zh_TW |
| dc.subject | 模型基底控制 | zh_TW |
| dc.subject | 粒數平衡方程式 | zh_TW |
| dc.subject | 多目標最佳化 | zh_TW |
| dc.subject | Population balance equations | en |
| dc.subject | Primary nucleation | en |
| dc.subject | Optimal control theory | en |
| dc.subject | Multi-objective optimization | en |
| dc.subject | Model-based control | en |
| dc.title | 考量初級成核之晶種與非晶種批次結晶製程之最適化 | zh_TW |
| dc.title | Optimization of Seeded and Unseeded Batch Crystallization Processes with Primary Nucleation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳誠亮;錢義隆;余柏毅;李豪業 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Liang Chen;I-Lung Chien;Bor-Yih Yu;Hao-Yeh Lee | en |
| dc.subject.keyword | 初級成核,模型基底控制,粒數平衡方程式,多目標最佳化,最佳控制理論, | zh_TW |
| dc.subject.keyword | Primary nucleation,Model-based control,Population balance equations,Multi-objective optimization,Optimal control theory, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202300993 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-06-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
