Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉zh_TW
dc.contributor.advisorShang-Lien Loen
dc.contributor.author吳俊毅zh_TW
dc.contributor.authorChun-I Wuen
dc.date.accessioned2023-07-19T16:28:18Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-05-18-
dc.identifier.citationAl Nuaimi, E., H. Al Neyadi, N. Mohamed, and J. Al-Jaroodi (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1), 1-25.
Schleicher, J.M., M. Vogler, S. Dustdar, and C. Inzinger (2016). Application Architecture for the Internet of Cities: Blueprints for Future Smart City Applications. IEEE Internet Computing, 20(6), 68-75.
Sun, C., L. Fiksdal, A. Hanssen-Bauer, M.B. Rye, and T. Leiknes (2011). Characterization of membrane biofouling at different operating conditions (flux) in drinking water treatment using confocal laser scanning microscopy (CLSM) and image analysis. Journal of Membrane Science, 382(1), 194-201.
Plappally, A.K. and J.H. Lienhard V (2012). Energy requirements for water production, treatment, end use, reclamation, and disposal. Renewable and Sustainable Energy Reviews, 16(7), 4818–4848.
中華民國自來水協會 (1993)。自來水設備維護手冊。臺北市:中華民國自來水協會。
高志明、樓基中(2006)。淨水場廢水處理成效及污泥減量探討期末報告。台灣自來水股份有限公司委外研究計畫 (94TWC04)。
游乙剛 (2012)。自來水廠淨水污泥壓濾式脫水之研究 (碩士論文)。朝陽科技大學,臺中市。
廖于恆 (1993)。淨水污泥高分子調理機構之研究 (碩士論文)。國立交通大學,新竹市。
黃志彬 (2001)。淨水污泥與水庫淤泥燒結資源化之利用-污泥性質與燒結條件對燒結體之影響 (II)。行政院國家科學委員會補助專題研究計畫進度報告 (NSC90-2211-E009-029)。
高偉傑 (2011)。淨水污泥餅再利用於CLSM回填材料之研究 (碩士論文)。淡江大學,臺北市。
黃志彬 (2002)。污泥燒結/熔融之資源化整合型研究-子計畫一:淨水污泥與水庫淤泥燒結資源化之利用-污泥性質與燒結條件對燒結體之影響 (III)。行政院國家科學委員會專題研究計畫成果報告(NSC91-2211-E009-035)。
林志鴻 (2010)。淨水污泥再利用於水泥生料 (碩士論文)。國立中央大學,桃園市。
孫國鼎 (2000)。水庫淤泥及淨水污泥再利用製磚之研究 (碩士論文)。國立交通大學,新竹市。
林鴻章 (2014)。以淨水污泥燒製環保磚之研究 (碩士論文)。朝陽科技大學,臺中市。
顏笠安 (2009)。淨水場混凝污泥質量特性與脫水泥餅再利用初步評估 (碩士論文)。國立中央大學,桃園市。
洪福智 (2015)。以淨水污泥結合高爐石燒結材料對磷酸鹽吸脫附之研究 (碩士論文)。國立中山大學,高雄市。
蕭宇廷 (2012)。淨水污泥餅作為吸附材料處理含磷廢水之研究 (碩士論文)。國立中央大學,桃園市。
林正芳 (2002)。 鋁系淨水污泥燒結資源化為氧化鋁吸附劑研究。行政院國家科學委員會專題研究計畫成果報告 (NSC90-2211-E002-038)。
陳虹君 (2014)。固定床管柱實驗探討淨水污泥吸附含磷廢水之研究 (碩士論文)。國立中央大學,桃園市。
林正芳 (2001)。污泥燒結/熔融之資源化整合型研究─ 子計畫二: 工業廢水污泥/淨水污泥之燒結資源化研究。行政院國家科學委員會專題研究計畫成果報告 (NSC89-2211-E002-093)。
黃志彬 (1999)。污泥調理脫水效率提昇之研究-子計畫 II: 以低溫處理提昇污泥調理脫水效率之研究 (I)。行政院國家科學委員會專題研究計畫成果報告 (NSC88-2218-E009-030)。
黃志彬 (2000)。污泥調理脫水效率提昇之研究-子計畫 II: 以低溫處理提昇污泥調理脫水效率之研究 (II)。行政院國家科學委員會專題研究計畫成果報告 (NSC89-2211-E009-007)。
Wang, D. (2016). Raw water quality assessment for the treatment of drinking water. Environmental Earth Sciences, 75(19), 1327-1336.
Kubeck, C., W. van Berk, and A. Bergmann (2009). Modelling raw water quality: development of a drinking water management tool. Water Science and Technology, 59(1), 117-124.
Peng, C., Y. Huang, X. Yan, L. Jiang, X. Wu, W. Zhang, and X. Wang (2021). Effect of overlying water pH, temperature, and hydraulic disturbance on heavy metal and nutrient release from drinking water reservoir sediments. Water Environment Research, 93(10), 2135-2148.
Gmitrowicz-Iwan, J., S. Ligęza, J. Pranagal, B. Kołodziej, and H. Smal (2020). Can climate change transform non-toxic sediments into toxic soils?. Science of The Total Environment, 747, 141-201.
Česonienė, L., E. Mažuolytė-Miškinė, D. Šileikienė, K. Lingytė, and E. Bartkevičius (2019). Analysis of Biogenic Secondary Pollution Materials from Sludge in Surface Waters. International Journal of Environmental Research and Public Health, 16(23), 46-91.
Hof, A. and W. Schuurmans (2000). Water quality control in open channels. Water Science and Technology, 42(1), 153-159.
van Schagen, K., L. Rietveld, A. Veersma, and R. Babuška (2010). Control-design methodology for drinking-water treatment processes. Water Supply, 10(2), 121-127.
Tai, H., A. Celesti, M. Fazio, M. Villari, and A. Puliafito (2015). An integrated system for advanced water risk management based on cloud computing and IoT. 2015 2nd World Symposium on Web Applications and Networking (WSWAN), 1-7.
Asbjornsen, O.A. (1985). Chemical process control: An introduction to theory and practice: George Stephanopoulos. Automatica, 21(4), 502-504.
Stephanopoulos, G. (1984). Chemical Process Control - An Introduction to Theory and Practice. New Jersey, USA: American Scientist.
Storey, M.V., B. van der Gaag, and B.P. Burns (2011). Advances in on-line drinking water quality monitoring and early warning systems. Water Research, 45(2), 741-747.
姜佳伶 (2007)。淨水場沉澱及過濾單元濁度去除及其衍生廢污量之研究 (碩士論文)。國立中央大學,桃園市。
陳大為 (2011)。倒傳遞類神經網路於淨水混凝自動加藥前饋控制應用之研究-模廠試驗。國立交通大學,新竹市。
何承嶧、駱尚廉 (2020)。運用大數據協助提昇水安全計畫執行效能。中國土木水利工程學刊,32(3),271-283。
Marcal, J., B. Antizar-Ladislao, and J. Hofman (2021). Addressing Water Security: An Overview. Sustainability, 13(24), 13702.
Cook, C. and K. Bakker (2012). Water security: Debating an emerging paradigm, Global Environmental Change, 22(1), 94-102.
Gerlak, A.K. and F. Mukhtarov (2015). 'Ways of knowing' water: integrated water resources management and water security as complementary discourses. International Environmental Agreements Politics Law and Economics, 15(3), 257-272.
Zhang, X. and V.V. Vesselinov (2017). Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources, 101, 1-10.
Díaz-Alcaide, S., W.J.-P. Sandwidi, P. Martínez-Santos, M. Martín-Loeches, J.L. Cáceres, and N. Seijas (2021). Mapping Ground Water Access in Two Rural Communes of Burkina Faso. Water, 13(10), 1356.
Kurajica, L., M. Ujević Bošnjak, A.S. Kinsela, J. Štiglić, T.D. Waite, K. Capak, and Z. Pavlić (2021). Effects of changing supply water quality on drinking water distribution networks: Changes in NOM optical properties, disinfection byproduct formation, and Mn deposition and release. Science of The Total Environment, 762, 144-159.
Zhao, H., D. Hou, P. Huang, and G. Zhang (2014). Water Quality Event Detection in Drinking Water Network. Water Air and Soil Pollution, 225(11), 1-15.
吳俊宗、郭振泰、陳弘成、吳先琪、朱達仁、楊明德、柳文成 (2008)。石門水庫水質監測、水域生態環境及非點源污染調查研究95年~97年成果報告書成果報告書。 經濟部水利署北區水資源局。
郭振泰、吳俊宗、吳先琪 (2005)。以生態工法淨化水庫水質控制優養化研究計畫。行政院環境保護署 (EPA-94-U1G1-02-102)。
Lechelt, M., W. Blohm, B. Kirschneit, M. Pfeiffer, E. Gresens, J. Liley, R. Holz, C. Luring, and C. Moldaenke (2000). Monitoring of surface water by ultrasensitive Daphnia toximeter. Environmental Toxicology, 15(5), 390-400.
Ostfeld, A. and E. Salomons (2004). Optimal layout of early warning detection stations for water distribution systems security. Journal of Water Resources Planning and Management, 130(5), 377-385.
Li, M., C.Y. Wan, X.J. Pan, Y. Zou, S.Y. Chi, and J.B. Chang (2013). Complarative Study of Stress by Four Heavy Metals on Chlamydomonas Reinhardtii and the Potrential Application in BBE Algea Toximeter. Fresenius Environmental Bulletin, 22(5A), 1494-1500.
Brito, R.S., H.M. Pinheiro, F. Ferreira, J.S. Matos, A. Pinheiro, and N.D. Lourenco (2016). Calibration Transfer Between a Bench Scanning and a Submersible Diode Array Spectrophotometer for In Situ Wastewater Quality Monitoring in Sewer Systems. Applied Spectroscopy, 70(3), 443-454.
Li, X., W. Ma, T. Huang, A. Wang, Q. Guo, L. Zou, and C. Ding (2021). Spectroscopic fingerprinting of dissolved organic matter in a constructed wetland-reservoir ecosystem for source water improvement-a case study in Yanlong project, eastern China. Science of The Total Environment, 770, 144791.
Feng, L.K., J. Zhang, J.L. Fan, L.L. Wei, S.F. He, and H.M. Wu (2022). Tracing dissolved organic matter in inflowing rivers of Nansi Lake as a storage reservoir: Implications for water-quality control. Chemosphere, 286(Pt1), 131624.
Ponce Romero, J.M., S.H. Hallett, and S. Jude (2017). Leveraging Big Data Tools and Technologies: Addressing the Challenges of the Water Quality Sector. Sustainability, 9(12), 2160.
Chen, K., H. Chen, C. Zhou, Y. Huang, X. Qi, R. Shen, F. Liu, M. Zuo, X. Zou, J. Wang, Y. Zhang, D. Chen, X. Chen, Y. Deng, and H. Ren (2020). Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Research, 171, 115454.
Tiyasha, T.M. Tung, and Z.M. Yaseen (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585, 124670.
Shah, M.I., M.F. Javed, A. Alqahtani, and A. Aldrees (2021). Environmental assessment based surface water quality prediction using hyper-parameter optimized machine learning models based on consistent big data. Process Safety and Environmental Protection, 151, 324-340.
Koppanen, M., T. Kesti, J. Rintala, and M. Palmroth (2023). Can online particle counters and electrochemical sensors distinguish normal periodic and aperiodic drinking water quality fluctuations from contamination?. Science of The Total Environment, 872, 162078.
Zurita, J.L., A. Jos, A.M. Camean, M. Salguero, M. Lopez-Artiguez, and G. Repetto (2007). Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines. Chemosphere, 67(1), 1-12.
廖崇佑 (2009)。光學影像連續監測化學沉降污泥之沉澱特性研究 (碩士論文)。國立中央大學,桃園市。.
Miles, S.L., R.G. Sinclair, M.R. Riley, and I.L. Pepper (2011). Evaluation of Select Sensors for Real-Time Monitoring of Escherichia coli in Water Distribution Systems. Applied and Environmental Microbiology, 77(8), 2813-2816.
Christian Gomes Morais Nascimento, M., M. Carolina Robaina Vieira, F. R. P. Rocha, T. Almeida Silva, and W. Toito Suarez (2023). Flow-based green ceramics microdevice with smartphone image colorimetric detection for free chlorine determination in drinking water. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 287, 122096.
林光耀 (2014)。利用Webcam與雷射光建立量測批次式生物處理系統之水位、MLSS濃度、SS濃度及污泥沉澱速度光學量測裝置之研究 (碩士論文)。國立中央大學,桃園市。
Usin, V.V., I.V. Kumpanenko, A.S. Kamrukov, N.A. Ivanova, E.G. Raevskaya, E.O. Panin, and A.E. Goncharova (2014). Analytical control of the wastewater treatment process by a generalized on-line water quality index: Choice of analytical procedure and development of monitoring technology. Russian Journal of General Chemistry, 84(11), 2305-2314.
Fortunato, L., N. Pathak, Z. Ur Rehman, H. Shon, and T. Leiknes (2018). Real-time monitoring of membrane fouling development during early stages of activated sludge membrane bioreactor operation. Process Safety and Environmental Protection, 120, 313-320.
Kim, J., K. Park, and K. Joo (2019). Feasibility of miniature radiation portal monitor for measurement of radioactivity contamination in flowing water in pipe. Journal of Instrumentation, 13(01), P01022.
Fujioka, T., T. Ueyama, F. Mingliang, and M. Leddy (2019). Online assessment of sand filter performance for bacterial removal in a full-scale drinking water treatment plant. Chemosphere, 229, 509-514.
Zhou, Y., M. Liu, L. Zhou, K.-S. Jang, H. Xu, K. Shi, G. Zhu, M. Liu, J. Deng, Y. Zhang, R.G.M. Spencer, D.N. Kothawala, E. Jeppesen, and F. Wu (2020). Rainstorm events shift the molecular composition and export of dissolved organic matter in a large drinking water reservoir in China: High frequency buoys and field observations. Water Research, 187, 116471.
Beauchamp, N., C. Bouchard, C. Dorea, and M. Rodriguez (2020). Ultraviolet absorbance monitoring for removal of DBP-precursor in waters with variable quality: Enhanced coagulation revisited. Science of The Total Environment, 717, 137225.
Rao, H., W. Liu, K. He, S. Zhao, Z. Lu, S. Zhang, M. Sun, P. Zou, X. Wang, Q. Zhao, Y. Wang, and T. Liu (2020). Smartphone-Based Fluorescence Detection of Al3+ and H2O Based on the Use of Dual-Emission Biomass Carbon Dots. ACS Sustainable Chemistry & Engineering, 8(23), 8857-8867.
Pranitis, D.M., M. Telting-diaz, M.E. Meyerhoff, and R.R. Schroeder (1992). Potentiometric Ion-, Gas-, and Bio-Selective Membrane Electrodes. Critical Reviews in Analytical Chemistry, 23(3), 163-186.
Soropogui, K., M. Sigaud, and O. Vittori (2006). Alert electrodes for continuous monitoring of nitrate ions in natural water. Electroanalysis, 18(23), 2354-2360.
Marrakchi, M., C. Martelet, S.V. Dzyadevych, P. Namour, and N. Jaffrezic-Renault (2007). An enzyme biosensor based on gold interdigitated thin film electrodes for water quality control. Analytical Letters, 40(7), 1307-1316.
Zhou, Y.S., T. Jing, Q.L. Hao, Y.K. Zhou, and S.R. Mei (2012). A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode. Electrochimica Acta, 74, 165-170.
Uppuluri, K., M. Lazouskaya, D. Szwagierczak, K. Zaraska, and M. Tamm (2021). Fabrication, Potentiometric Characterization, and Application of Screen-Printed RuO2 pH Electrodes for Water Quality Testing. Sensors, 21(16), 5399.
Wu, L., X.H. Liu, X. Yu, S.J. Xu, S.X. Zhang, and S.M. Guo (2022). Fabrication of Boron-Doped Diamond Film Electrode for Detecting Trace Lead Content in Drinking Water. Materials, 15(17), 6013.
Cho, G., S. Azzouzi, G. Zucchi, and B. Lebental (2022). Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Review. Sensors, 22(1), 218.
莊旭楨 (2016)。從水土界面儀的應用歷程到水土環萬用感測技術的創新應用課題與展望。社團法人臺灣災害管理學會 & Ainosco Press,2016年會,23-1-23-10。
莊旭楨、陳文祥 (2019)。精密電導率剖面儀於淨水場測試初探-以板新淨水場為例。中華民國自來水協會會刊,38(2),1-10。
劉奕甫 (2007)。低濁原水處理策略評估:實驗室及現場診斷 (碩士論文)。國立交通大學,新竹市。
Yan, M.Q., D.S. Wang, J.R. Ni, J.H. Qu, C.W.K. Chow, and H.L. Liu (2008). Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics. Water Research, 42(13), 3361-3370.
Dayarathne, H.N.P., M.J. Angove, R. Aryal, H. Abuel-Naga, and B. Mainali (2021). Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. Journal of Water Process Engineering, 40, 101820.
Aboubaraka, A.E., E.F. Aboelfetoh, and E.-Z.M. Ebeid (2017). Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water. Chemosphere, 181, 738-746.
Christensen, E., T. Håkonsen, L.J. Robertson, and M. Myrmel (2016). Zirconium and chitosan coagulants for drinking water treatment – a pilot study. Journal of Water Supply: Research and Technology-Aqua, 65(8), 635-644.
Zin, N.S.M., T. Ramarao, M.H.Z. Abidin, and W.A.W. Mohamed (2019). Coagulation-Flocculation of Leachate by Using Single Coagulant Made from Chemical Coagulant (Polyaluminium Chloride) and Natural Coagulant (Tapioca Flour). International Journal of Integrated Engineering, 11(6), 236-243.
Santos, T.R.T., M.F. Silva, L. Nishi, A.M.S. Vieira, M.R.F. Klein, M.B. Andrade, M.F. Vieira, and R. Bergamasco (2016). Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environmental Science and Pollution Research, 23(8), 7692-7700.
Nimesha, S., C. Hewawasan, D.J. Jayasanka, Y. Murakami, N. Araki, and N. Maharjan (2022). Effectiveness of natural coagulants in water and wastewater treatment. Global Journal of Environmental Science and Management, 8(1), 101-116.
Singer, P.C. and K. Bilyk (2002). Enhanced coagulation using a magnetic ion exchange resin. Water Research, 36(16), 4009-4022.
Joseph, L., J.R.V. Flora, Y.-G. Park, M. Badawy, H. Saleh, and Y. Yoon (2012). Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separation and Purification Technology, 95, 64-72.
邱芬蘭 (2002)。污泥毯澄清池去除濁度、硬度及有機物之探討 (碩士論文)。國立交通大學,新竹市。
Benschoten, J.E.V. and J.K. Edzwald (1990). Chemical aspects of coagulation using aluminum salts-I. hydrolytic reactions of alum and polyaluminum chloride. Water Research, 24(12), 1519-1526.
Lin, J.L., J.R. Pan, and C. Huang (2013). Enhanced particle destabilization and aggregation by flash-mixing coagulation for drinking water treatment. Separation and Purification Technology, 115, 145–151.
Yu, W.-Z., J. Gregory, and N. Graham (2016). Regrowth of broken hydroxide flocs: effect of added fluoride. Environmental Science & Technology, 50(4), 1828–1833.
Bouvy, M., S.M. Nascimento, R.J.R. Molica, A. Ferreira, V. Huszar, and S. Azevedo (2003). Limnological features in Tapacura reservoir (northeast Brazil) during a severe drought. Hydrobiologia, 493(1), 115-130.
Kemdirim, E.C. (2005). Studies on the hydrochemistry of Kangimi reservoir, Kaduna State, Nigeria. African Journal of Ecology, 43(1), 7-13.
Wei, N., Z. Zhang, D. Liu, Y. Wu, J. Wang, and Q. Wang (2015). Coagulation behavior of polyaluminum chloride: Effects of pH and coagulant dosage. Chinese Journal of Chemical Engineering, 23(6), 1041-1046.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87783-
dc.description.abstract近年物聯網 (Internet of Things, IoT) 與大數據正蓬勃發展中,然而現今淨水處理過程中,大多數污泥排放都是透過傳統方法來控制,例如:定時排放和經驗豐富的操作人員適時掌控。傳統淨水污泥排放機制並未考慮沉澱池的污泥濃度,因此排放污泥的機制不能依據水質進行調節,傳統控制方法的缺點是低能量效率和低應變能力。
本研究透過使用「即時精準多層式感測器 (Real-Time Precise Multi-Layer Sensor, RPMS)」進行水池污泥監測,以判斷污泥位置。本研究於大湳給水廠二次污泥濃縮池中成功監測並判斷出污泥位置,由RPMS所測得之污泥厚度與現場採樣的污泥厚度位置誤差為50公分以內。並且於乾旱時期、乾旱逐漸解旱期、颱風降雨前後,在平鎮給水廠高速膠凝平板式污泥毯澄清池進行淨水程序加藥、天氣變化與污泥毯澄清池中進行水質監測,發現天氣對原水水質有明顯的影響,但現行淨水操作條件並未能夠即時針對最適加藥量進行調整。
本研究利用RPMS 進行污泥層監測後,得出水中TDS與SS對相對導電率 (Relative Electrical conductivity, R-EC) 均會產生影響,其中TDS對R-EC影響約為SS對R-EC影響的100倍,然而同一日的水池中各深度TDS變化幅度不大,因此在同一水池中,僅SS會隨深度變化影響R-EC,因此可以透過R-EC變化判斷污泥層位置。
RPMS具有良好的污泥層與清水層的判斷能力,同時亦可監測清水層沉澱後的水質狀況,亦具有作為水質預警、物聯網與大數據的發展潛力,以期可為國內自來水供水品質帶來改善。
zh_TW
dc.description.abstractIn recent years, there has been a flourishing development of the Internet of Things (IoT) and big data. However, most sludge discharge in the current water treatment process is controlled using traditional methods, such as timed release and the expertise of experienced operators. The conventional sludge discharge mechanism does not consider the sludge concentration in the sedimentation tank, resulting in an inability to adjust the sludge discharge based on water quality. The drawbacks of traditional control methods include low energy efficiency and limited adaptability.
This study introduces the use of a Real-Time Precise Multi-Layer Sensor (RPMS) to monitor sludge levels in water tanks and determine the position of the sludge. We successfully tracked and accurately determined the positions of sludge in the secondary sludge thickening tank of the Da-Nan Water Plant. The deviation between the sludge thickness measured by RPMS and the on-site sampling was within 50 centimeters. Water treatment processes and water quality monitoring occurred in the high-speed coagulation plate settling tank at the Pingzhen Water Plant during dry periods, drought relief, and before and after typhoon rainfall. The study revealed a significant impact of weather on the raw water quality. However, the current water treatment operating conditions could not adjust the optimal dosage in real time.
By utilizing RPMS for sludge layer monitoring, this study found that total dissolved solids (TDS) and suspended solids (SS) both had an impact on the relative electrical conductivity (R-EC) of the water. The influence of TDS on R-EC was approximately 100 times greater than that of SS on R-EC. However, the daily TDS variation within the same water tank was insignificant. Therefore, only SS varied with depth and influenced R-EC, enabling the determination of the sludge layer position through changes in R-EC.
RPMS demonstrated excellent capability in distinguishing between sludge and clear water layers, as well as monitoring the water quality after sedimentation. It also showed potential in water quality forecasting, IoT, and big data development, aiming to improve the domestic tap water supply quality.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:28:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:28:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
ABSTRACT II
摘要 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2研究目的 3
1.3研究內容 4
第二章 文獻回顧 5
2.1 國內自來水廠淨廢水流程現況與困境 5
2.2 強化淨水程序 9
2.3 檢、監測技術發展 14
2.3.1 建立水質推測模擬模型 15
2.3.2 大數據分析與AI學習分析技術建立分析技術 17
2.3.3開發新型即時監測儀器進行監測 18
2.4 混凝劑使用沿革 23
第三章 材料與方法 26
3.1研究流程 26
3.2 實驗方法 27
3.2.1 實驗藥品 30
3.2.2實驗儀器 31
3.3導電度計原理與定義 32
3.4多層式導電率監測儀原理 34
3.5 導電率監測儀與導電度計差異 38
3.6 實驗場址 39
3.6.1 大湳給水廠 39
3.6.2 大湳給水廠-二次污泥沉澱池 41
3.6.3 平鎮給水廠 43
3.6.4 平鎮給水廠-高速膠凝平板式污泥毯澄清池 45
3.7 取樣 49
3.7.1 大湳給水廠二次污泥濃縮池 49
3.7.2 平鎮給水廠高速膠凝平板式污泥毯澄清池 49
第四章 結果與討論 50
4.1 RPMS與傳統導電度計差異 50
4.2大湳給水廠 53
4.2.1大湳給水廠二次污泥濃縮池短期監測結果 56
4.2.2原水濁度 62
4.2.3不同深度導電度 64
4.2.4不同深度的pH 66
4.2.5不同深度的SS 67
4.2.6不同深度的TDS 70
4.2.7不同深度的溶解Al 72
4.3平鎮給水廠 74
4.3.1 平鎮給水廠高速膠凝平板式污泥毯澄清池短期監測結果 77
4.3.1 高速膠凝平板式污泥毯澄清池SS濃度與TDS濃度 79
4.3.2 高速膠凝平板式污泥毯澄清池重金屬濃度 82
4.3.3 高速膠凝平板式污泥毯澄清池pH變化 85
4.3.4石門水庫水位變化與平鎮給水廠淨水用藥添加量變化 86
4.4 R-EC與TDS及SS關聯性 90
第五章 結論與建議 97
參考文獻 100
-
dc.language.isozh_TW-
dc.subject自來水處理zh_TW
dc.subject污泥厚度檢測zh_TW
dc.subject物聯網zh_TW
dc.subject即時精準多層式感測器zh_TW
dc.subject水質預警zh_TW
dc.subjectReal-Time Precise Multi-Layer Sensoren
dc.subjectInternet of Things (IoT)en
dc.subjectSludge Thickness Detectionen
dc.subjectWater Treatmenten
dc.subjectWater Quality Forecastingen
dc.title即時精準多層式感測器改善給水廠污泥操作之研究zh_TW
dc.titleReal-Time Precision Multi-Layer Sensor for Monitoring Sludge Operation Procedure in Water Treatment Planten
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee闕蓓德;張鎮南;張添晉;吳振榮;李育輯zh_TW
dc.contributor.oralexamcommitteePei-Te Chiueh;Cneng-Nan Chang;Tien-Chin Chang;Zhen-Rong Wu;Yu-Chi Leeen
dc.subject.keyword即時精準多層式感測器,自來水處理,物聯網,污泥厚度檢測,水質預警,zh_TW
dc.subject.keywordReal-Time Precise Multi-Layer Sensor,Water Treatment,Internet of Things (IoT),Sludge Thickness Detection,Water Quality Forecasting,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202300821-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-05-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved