請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87759完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建中 | zh_TW |
| dc.contributor.advisor | Chien-Chung Chen | en |
| dc.contributor.author | 楊丹妮 | zh_TW |
| dc.contributor.author | Tan-Ni Yang | en |
| dc.date.accessioned | 2023-07-19T16:20:05Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-05-11 | - |
| dc.identifier.citation | Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436. https://doi.org/10.1163/156856897X00357
Brindley, G. S. (1962). Two new properties of foveal after-images and a photochemical hypothesis to explain them. The Journal of Physiology, 164(1), 168-179. https://doi.org/10.1113/jphysiol.1962.sp007011 Caranbini, M., Hegger, D. J., & Movshon, J. A. (1997). Linearity and normaliazation in simple cells of the macaque primary visual cortex. The Journal of Neuroscience, 17(21), 8621-8644. https://doi.org/10.1523/JNEUROSCI.17-21-08621.1997 Chen, C.-C., Chen, H.-T., & Sato, T. (2014). Interocular lateral interaction subserves dichoptic positive color aftereffects. Journal of Vision, 14(10), 790-790. https://doi.org/10.1167/14.10.790 Chen, C.-C., & Foley, J. M. (2004). Pattern detection: interactions between oriented and concentric patterns. Vision Research, 44(9), 915-924. https://doi.org/10.1016/j.visres.2003.11.017 Chen, C.-C., Kasamatsu, T., Polat, U., & Norcia, A. M. (2001). Contrast response characteristics of long-range lateral interactions in cat striate cortex. NeuroReport, 12(4), 655-661. https://journals.lww.com/neuroreport/Fulltext/2001/03260/Contrast_response_characteristics_of_long_range.8.aspx Chen, C.-C., & Tyler, C. W. (2001). Lateral sensitivity modulation explains the flanker effect in contrast discrimination. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1466), 509-516. https://doi.org/10.1098/rspb.2000.1387 Commission internationale de l'éclairage. (2007). Fundamental chromaticity diagram with physiological axes – Part 1 and 2 (Technical Report 170-1). Cole, G. R., Stromeyer III, C. F., & Kronauer, R. E. (1990). Visual interactions with luminance and chromatic stimuli. Journal of the Optical Society of America A, 7(1), 128-140. https://doi.org/10.1364/JOSAA.7.000128 Craik, K. J. W. (1940). Origin of Visual After-images. Nature, 145(3674), 512-512. https://doi.org/10.1038/145512a0 Daw, N. W. (1962). Why after-images are not seen in normal circumstances. Nature, 196(4860), 1143-1145. https://doi.org/10.1038/1961143a0 Dodwell, P. C. (1983). The lie transformation group model of visual perception. Perception & Psychophysics, 34(1), 1-16. https://doi.org/10.3758/BF03205890 Eskew, R. T., McLellan, J. S., & Giulian, F. (1999). Chromatic detection and discrimination. In K. Gegenfurtner & L. T. Sharpe (Eds.), Color vision: From molecular genetics to perception (1st ed., pp. 345-368). Cambridge University Press. Foley, J. M. (1994). Human luminance pattern-vision mechanisms: masking experiments require a new model. Journal of the Optical Society of America A, 11(6), 1710-1719. https://doi.org/10.1364/JOSAA.11.001710 Foley, J. M., & Chen, C.-C. (1999). Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: Threshold measurements and a model. Vision Research, 39(23), 3855-3872. https://doi.org/10.1016/S0042-6989(99)00104-2 Foley, J. M., & Chen, C. C. (1997). Analysis of the effect of pattern adaptation on pattern pedestal effects: A two-process model. Vision Research, 37(19), 2779-2788. https://doi.org/10.1016/S0042-6989(97)00081-3 Georgeson, M., Meese, T., & Baker, D. (2007). Binocular interaction: contrast matching and contrast discrimination are predicted by the same model. Spatial Vision, 20(5), 397-413. https://doi.org/https://doi.org/10.1163/156856807781503622 Graham, N. V. S. (1989). Visual pattern analyzers. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195051544.001.0001 von Helmholtz, H. (1924). Helmholtz's treatise on physiological optics. (Trans. from the 3rd German ed.) (J. P. C. Southall, Ed.). Optical Society of America. https://doi.org/10.1037/13536-000 Hillis, J. M., & Brainard, D. H. (2005). Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds. Journal of the Optical Society of America A, 22(10), 2090-2106. https://doi.org/10.1364/JOSAA.22.002090 Hillis, J. M., & Brainard, D. H. (2007). Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation. Journal of the Optical Society of America A, 24(8), 2122-2133. https://doi.org/10.1364/JOSAA.24.002122 Hurvich, L. M., & Jameson, D. (1957). An opponent-process theory of color vision. Psychological Review, 64, 384-404. https://doi.org/10.1037/h0041403 Kaiser, P. K., & Boynton, R. M. (1996). Human color vision. Optical Society of America. Kleiner, M., Brainard, D., & Pelli, D. (2007). What's new in Psychtoolbox-3? Perception, 36(14), 1-16. https://doi.org/10.1177/03010066070360S101 Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39(16), 2729-2737. https://doi.org/10.1016/S0042-6989(98)00285-5 Krantz, D. H. (1975). Color measurement and color theory: II. Opponent-colors theory. Journal of Mathematical Psychology, 12(3), 304-327. https://doi.org/https://doi.org/10.1016/0022-2496(75)90027-9 McCollough, C. (1965). Color adaptaion of edge-detectors in the human visual system. Science, 149(3688), 1115-1116. https://doi.org/10.1126/science.149.3688.1115 Meese, T. S., Georgeson, M. A., & Baker, D. H. (2006). Binocular contrast vision at and above threshold. Journal of Vision, 6(11), 1224-1243. https://doi.org/10.1167/6.11.7 Määttänen, L. M., & Koenderink, J. J. (1991). Contrast adaptation and contrast gain control. Experimental Brain Research, 87(1), 205-212. https://doi.org/10.1007/BF00228521 Ohzawa, I., Sclar, G., & Freeman, R. D. (1982). Contrast gain control in the cat visual cortex. Nature, 298(15), 266-268. https://doi.org/10.1038/298266a0 Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T., & Norcia, A. M. (1998). Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature, 391(6667), 580-584. https://doi.org/10.1038/35372 Rudd, M. E., & Popa, D. (2007). Stevens’s brightness law, contrast gain control, and edge integration in achromatic color perception. Journal of the Optical Society of America A, 24(9), 2766-2782. https://doi.org/10.1364/JOSAA.24.002766 Rushton, W. A. H., & Henry, G. H. (1967). Bleaching and regeneration of cone pigments in man. Vision Research, 8(6), 617-631. https://doi.org/10.1016/0042-6989(68)90040-0 Sato, T., & Nakajima, Y. (2010). Positive color is perceived with dichoptic presentation in van Lier’s afterimage phenomenon. Perception ECVP Abstract, 39, 159-159. https://doi.org/10.1177/03010066100390S101 Shapley, R., & Enroth-Cugell, C. (1984). Visual adaptation and retinal gain controls. Progess in Retinal, 3, 263-346. https://doi.org/10.1016/0278-4327(84)90011-7 Shapley, R. M., & Victor, J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. The Journal of Physiology, 285(1), 275-298. https://doi.org/10.1113/jphysiol.1978.sp012571 Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64(3), 153-181. https://doi.org/10.1037/h0046162 Stockman, A., & Brainard, D. H. (2010). Color vision mechanisms. In M. Bass (Ed.), Handbook of optics: Vision and vision optics (Vol. 3, 3rd ed.). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780071498913/chapter/chapter11 Stockman, A., & Sharpe, L. T. (2000). The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Research, 40(13), 1711-1737. https://doi.org/10.1016/S0042-6989(00)00021-3 Stromeyer III, C. F., Lange, A. F., & Ganz, L. (1973). Spatial frequency phase effects in human vision. Vision Research, 13(12), 2345-2359. https://doi.org/10.1016/0042-6989(73)90234-4 Thompson, P., & Burr, D. (2009). Visual aftereffects. Current Biology, 19(1), R11-14. https://doi.org/10.1016/j.cub.2008.10.014 van Lier, R., Vergeer, M., & Anstis, S. (2009). Filling-in afterimage colors between the lines. Current Biology, 19(8), R323-324. https://doi.org/10.1016/j.cub.2009.03.010 Wade, N. J. (1978). Why do patterned afterimages fluctuate in visibility? Psychological Bulletin, 85(2), 338-352. https://doi.org/10.1037/0033-2909.85.2.338 Williams, D. R., & MacLeod, D. I. A. (1979). Interchangeable background for cone afterimages. Vision Research, 19(8), 867-877. https://doi.org/10.1016/0042-6989(79)90020-8 Xing, J., & Hegger, D. J. (2001). Measurement and modeling of center-surround suppression and enhancement. Vision Research, 41(5), 571-583. https://doi.org/10.1016/S0042-6989(00)00270-4 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87759 | - |
| dc.description.abstract | 視覺系統暴露在特定顏色的適應刺激(adaptor)下產生適應(adaptation)後,若於測試階段(test phase)放置與適應刺激邊緣相符的邊框(contour),與沒有邊框時相比,負後像(negative afterimage)的對比度會增加;而若將此邊框與適應刺激呈現於不同眼睛的相同位置(dichoptic presenting),會使觀察者在測試階段看到與適應刺激顏色相同的正後像(positive afterimage)。以上述視覺現象為基礎,本研究首先以目標偵測閾限對遮蔽刺激對比函數(target threshold versus pedestal contrast function),觀察不同實驗操弄下目標偵測閾限的上升(對目標機制的抑制)或下降(興奮),來探討適應與邊框對視覺色彩偵測機制的影響。結果顯示適應在低遮蔽刺激對比時有顯著的抑制作用,而此種抑制效果會隨著遮蔽刺激對比增加逐漸減弱。同眼邊框在低遮蔽刺激對比時有興奮效果,在高遮蔽刺激對比時則有抑制效果;另一方面,異眼邊框則只在低遮蔽刺激對比時有顯著的抑制效果。最後,若在適應後加入這兩種邊框,仍可觀察到邊框的效果造成的資料趨勢。根據上述結果,我們以過去在圖形偵測研究中,能解釋類似函數形狀變異的除法抑制(divisive inhibition)及側邊敏感度調節(lateral sensitivity modulation)模型進行擬合,適配度較高的結果顯示受邊框造成的側邊互動(lateral interaction)所影響的模型參數與過去研究並不一致,除了暗示色彩與圖形偵測機制的相異之外,也為色彩訊號的雙眼整合(binocular summation)機制提供了初步的線索。 | zh_TW |
| dc.description.abstract | After adapting to a specific color, a contour that fits the edge of the adaptor in the test phase can enhance the contrast of the negative afterimage. Moreover, if the contour is presented dichoptically with the adaptor, the observer will see a positive afterimage. In the current study, we conducted an experiment to measure the target threshold versus pedestal contrast function (TvC function) under different adaptor and contour presenting conditions. The results indicated that adaptation had a significant inhibition effect at low pedestal contrast, which weakened as the pedestal contrast increased. Additionally, the same-eye contour had an excitation effect at low pedestal contrast and an inhibition effect at high pedestal contrast, whereas the cross-eye contour had a significant inhibition effect only at low pedestal contrast. Furthermore, the effect of the contour was weakened with adaptation, but the trend still remained. These data were fitted with divisive inhibition and lateral sensitivity modulation models that explain similar variations observed in past research on pattern detection. The model fitting results showed that the parameters required to explain the effect of contour were inconsistent with pattern detection. The results reveal the difference between the two detection mechanisms and offer evidence regarding the binocular summation of color signals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:20:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:20:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii Table of Contents iv List of Tables vi List of Figures vii 1. Introduction 1 2. Method 7 2.1. Equipment 7 2.2. Stimuli 7 2.3. Procedure 9 2.4. Participants 12 3. Result 13 4. Discussion 21 4.1 Effect of Adaptation 22 4.2 Effect of Contour 22 4.3. Model Overview 23 4.4. Model Performance 26 4.5. The Role of Adaptation 28 4.6. The Role of Contour 28 5. Conclusion 32 6. Reference 33 | - |
| dc.language.iso | en | - |
| dc.subject | 側邊敏感度調節 | zh_TW |
| dc.subject | 除法抑制 | zh_TW |
| dc.subject | 色彩適應 | zh_TW |
| dc.subject | 後像 | zh_TW |
| dc.subject | 邊框 | zh_TW |
| dc.subject | 側邊互動 | zh_TW |
| dc.subject | contour | en |
| dc.subject | lateral interaction | en |
| dc.subject | divisive inhibition | en |
| dc.subject | color adaptation | en |
| dc.subject | afterimage | en |
| dc.subject | lateral sensitivity modulation | en |
| dc.title | 邊框在視覺後像色彩上的效果 | zh_TW |
| dc.title | The Contour Effect on Color Afterimages | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃碧群;吳佳瑾 | zh_TW |
| dc.contributor.oralexamcommittee | Pi-Chun Huang ;Chia-Ching Wu | en |
| dc.subject.keyword | 後像,邊框,色彩適應,側邊互動,除法抑制,側邊敏感度調節, | zh_TW |
| dc.subject.keyword | afterimage,contour,color adaptation,lateral interaction,divisive inhibition,lateral sensitivity modulation, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202300788 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-05-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 心理學系 | - |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
