Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87726
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺zh_TW
dc.contributor.advisorPai-Chi Lien
dc.contributor.author陳宥銓zh_TW
dc.contributor.authorYou-Chuan Chenen
dc.date.accessioned2023-07-19T16:08:28Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-04-11-
dc.identifier.citation[1] McKetty M. H. (1998). The AAPM/RSNA physics tutorial for residents. X-ray attenuation. Radiographics: a review publication of the Radiological Society of North America, Inc, 18(1), 151–149. https://doi.org/10.1148/radiographics.18.1.9460114
[2] U.S. Department of Health and Human Services. (n.d.). Magnetic Resonance Imaging (MRI). National Institute of Biomedical Imaging and Bioengineering. Retrieved July 13, 2022, from https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
[3] Kocak, M. (2022, July 1). Magnetic Resonance Imaging (MRI) - special subjects. MSD Manual Consumer Version. Retrieved July 5, 2022, from https://www.msdmanuals.com/home/special-subjects/common-imaging-tests/magnetic-resonance-imaging-mri
[4] Nowicki, A., & Dobruch-Sobczak, K. (2016). Introduction to ultrasound elastography. Journal of ultrasonography, 16(65), 113–124. https://doi.org/10.15557/JoU.2016.0013
[5] Sigrist RMS; Liau J; Kaffas AE; Chammas MC; Willmann JK; (n.d.). Ultrasound elastography: Review of techniques and clinical applications. Theranostics. Retrieved August 2, 2022, from https://pubmed.ncbi.nlm.nih.gov/28435467/
[6] Jeong, W. K., Lim, H. K., Lee, H.-K., Jo, J. M., & Kim, Y. (2014). Principles and clinical application of ultrasound elastography for diffuse liver disease. Ultrasonography, 33(3), 149–160. https://doi.org/10.14366/usg.14003
[7] J. H. Moon1, H. Y. S. (2017, December 27). The influence of lesion depth on sonoelatographic assessment of breast lesion: Comparison of strain and shear wave elastography. ECR 2018 EPOS. Retrieved March 26, 2022, from https://dx.doi.org/10.1594/ecr2018/C-0155
[8] J. Matthew Barnes, Laralynne Przybyla, Valerie M. Weaver, Andrew Ewald; Tissue mechanics regulate brain development, homeostasis, and disease. J Cell Sci 1 January 2017; 130 (1): 71–82. doi: https://doi.org/10.1242/jcs.191742
[9] Sarvazyan, A.P., Rudenko, O.V., Swanson, S. D., Fowlkes, J. B. and Emelianov, S. Y., “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics, ” Ultrasound Med Biol, vol. 24, pp. 1419-35 (1998).
[10] H. C. Starritt, F. A. Duck, and V. F. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol., vol. 36, no. 11, pp. 1465–1474, 1991
[11] K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am., vol. 110, no. 1, pp. 625–634, 2001
[12] M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 10, pp. 1699–1712, 2005.
[13] Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and drug development technologies, 12(4), 207–218. https://doi.org/10.1089/adt.2014.573
[14] Zerda, A. de la, Kratochvil, M. J., Suhar, N. A., & Heilshorn, S. C. (2018, June 1). Review: Bioengineering strategies to probe T cell mechanobiology. AIP Publishing. Retrieved September 29, 2022, from https://aip.scitation.org/doi/citedby/10.1063/1.5006599
[15] National Health Insurance Medical expenditures of top ten cancers, 2017. Available: https://www.nhi.gov.tw/Content_List.aspx?n=AE8F3C1B6EC35217&topn=CDA985A80C0DE710 [Accessed 6 Jun 2019]
[16] Huang SY; Chen HM; Liao KH; Ko BS;Hsiao FY; (n.d.). Economic burden of cancers in Taiwan: A direct and indirect cost estimate for 2007-2017. BMJ open. Retrieved August 18, 2022, from https://pubmed.ncbi.nlm.nih.gov/33039986/
[17] Home Page: Cancer Treatment Reviews. (n.d.). Retrieved August 12, 2022, from https://www.cancertreatmentreviews.com/ Kocak, M. (2022, July 1). Magnetic Resonance Imaging (MRI) - special subjects. MSD Manual Consumer Version. Retrieved July 5, 2022, from https://www.msdmanuals.com/home/special-subjects/common-imaging-tests/magnetic-resonance-imaging-mri
[18] Lu S-L, Chao P-Y, Liu W-W, Han K, Cheng JC-H, Li P-C (2022) Longitudinal shear wave elasticity measurements of millimeter-sized biomaterials using a single-element transducer platform. PLoS ONE 17(4): e0266235. https://doi. org/10.1371/journal.pone.0266235
[19] Prieur, F., & Catheline, S. (2016). Simulation of shear wave elastography imaging using the toolbox “K-wave.” Proceedings of Meetings on Acoustics. https://doi.org/10.1121/2.0000398
[20] k-Wave © 2009-2020 Bradley Treeby, Ben Cox, and Jiri Jaros
[21] Wave. k. (n.d.). Retrieved March 16, 2022, from http://www.k-wave.org/documentation/pstdElastic2D.php
[22] Wave. k. (n.d.). Retrieved March 16, 2022, from http://www.k-wave.org/documentation/pstdElastic3D.php
[23] B. E. Treeby, J. Jaros, D. Rohrbach, and B. T. Cox, "Modelling elastic wave propagation using the k-Wave MATLAB toolbox," IEEE International Ultrasonics Symposium, pp. 146-149, 2014
[24] The pseudospectral time-domain (PSTD) algorithm for Acoustic waves in absorptive media. IEEE Xplore. (n.d.). Retrieved March 16, 2022, from https://ieeexplore.ieee.org/abstract/document/710587
[25] Chen S, Fatemi M, Greenleaf JF. Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. J Acoust Soc Am.2004;115:2781–2785.
[26] Deng Y, Rouze NC, Palmeri ML, Nightingale KR. Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner. IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):164-176. doi: 10.1109/TUFFC.2016.2614944. PMID: 28092508; PMCID: PMC5266610.
[27] Sharp Corporation. S. (n.d.). Retrieved September 16, 2022, from https://www.s-sharp.com/web/products/products.jsp
[28] Gemmeke, H., & Ruiter, N.V. (2007). 3D ultrasound computer tomography for medical imaging. Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 580, 1057-1065.
[29] Koulountzios, P.; Rymarczyk, T.; Soleimani, M. Ultrasonic Time-of-Flight Computed Tomography for Investigation of Batch Crystallisation Processes. Sensors 2021, 21, 639. https:// doi.org/10.3390/s21020639
[30] S. Prasad and M. Almekkawy, "DL-UCT: A Deep Learning Framework for Ultrasound Computed Tomography," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-5, doi: 10.1109/ISBI52829.2022.9761660.
[31] Z. Wu, T. Bicer, Z. Liu, V. De Andrade, Y. Zhu and I. T. Foster, "Deep Learning-based Low-dose Tomography Reconstruction with Hybrid-dose Measurements," 2020 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC) and Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S), 2020, pp. 88-95, doi: 10.1109/MLHPCAI4S51975.2020.00017.
[32] Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0
[33] Zhang, Z., Liu, Q., & Wang, Y. (2017, November 29). Road extraction by deep residual U-Net. arXiv.org. Retrieved November 17, 2022, from https://arxiv.org/abs/1711.10684v1
[34] He, K., Zhang, X., Ren, S., & Sun, J. (2015, December 10). Deep residual learning for image recognition. arXiv.org. Retrieved November 17, 2022, from https://arxiv.org/abs/1512.03385
[35] Ronneberger, O., Fischer, P., & Brox, T. (1970, January 1). U-Net: Convolutional Networks for Biomedical Image Segmentation. SpringerLink. Retrieved November 17, 2022, from https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
[36] Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
[37] X. Yin, W. Chen, X. Wu and H. Yue, "Fine-tuning and visualization of convolutional neural networks," 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2017, pp. 1310-1315, doi: 10.1109/ICIEA.2017.8283041.
[38] Tierney, J., Luchies, A., Khan, C., Byram, B., & Berger, M. (2020, July 6). Domain adaptation for ultrasound beamforming. arXiv.org. Retrieved January 3, 2023, from https://arxiv.org/abs/2007.03096
[39] Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. (2020, October 7). A brief review of domain adaptation. arXiv.org. Retrieved January 3, 2023, from https://arxiv.org/abs/2010.03978
[40] Zanin M;Aitya NAA;Basilio J;Baumbach J;Benis A;Behera CK;Bucholc M;Castiglione F;Chouvarda I;Comte B;Dao TT;Ding X;Pujos-Guillot E;Filipovic N;Finn DP;Glass DH;Harel N;Iesmantas T;Ivanoska I;Joshi A;Boudjeltia KZ;Kaoui B;Kaur D;Maguire LP;McClean PL;McCom. (n.d.). An early stage researcher's primer on Systems Medicine Terminology. Network and systems medicine. Retrieved February 17, 2023, from https://pubmed.ncbi.nlm.nih.gov/33659919/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87726-
dc.description.abstract細胞組織的彈性硬度與癌症的階段和病灶嚴重程度有很高相關性,臨床上能透過定量三維細胞膠微環境之彈性硬度來觀察癌症的治療效果,先前研究中有提出反射式剪切波(reflected shear wave)彈性影像的概念,有著量測誤差與耗材體積較大兩缺點待改善,故本研究最佳化了該反射式剪切波彈性影像系統。首先透過k-Wave模擬2D剪切波的傳遞與反射過程,來發展本實驗反射式剪切波系統的演算法,在實驗中利用20 MHz高頻單探頭打出2000週期的超音波來製造聲輻力來產生剪切波,搭配直徑12 mm圓柱狀1.5%水膠反射壁的設計,與待測物造成阻抗差異使剪切波產生反射波,利用已知的反射壁距離用飛時測距與峰值尋找…等演算法,獲得反彈剪切波訊號的回來時間差,計算待測物之平均剪切波速度進而定義其平均彈性硬度,在誤差上提出新版本演算法標準差0.02 m/s比舊版本縮小了約50%,並節省50%原先三維細胞膠培養時所需的藥品花費,達到了實驗兼顧經濟成本的效果。另一方面,本研究還針對未來實驗中癌症有彈性硬度非均質狀態的情況,進行重構介質彈性分布的討論,例如:三維細胞膠中有團聚的腫瘤球,因為本研究使用的單探頭系統無法像傳統電腦斷層使用反向投影演算法,故本研究透過生成各種的非均質彈性硬度分布介質的模擬資料,約15000筆,使單探頭繞3 mm的同心圓在36個角度下旋轉,以類斷層掃描的方法,收集不同位置下待測物的剪切波反彈訊號特徵,使用機器學習搭載深度多層的訓練模型,學習重構該介質的原始彈性硬度分布狀態與訊號上的關係,測試於模擬資料上模型回召率達到0.8有良好的表現,並套用至實際實驗中非均質仿體與非均質三維細胞膠的彈性硬度重構上。zh_TW
dc.description.abstractThe shear modulus of human body tissues has a high correlation with the stage of cancer. This study developed the single-transducer reflected shear wave elasticity imaging system(RSWEI)for 3D cell cultures to effectively quantify the shear modulus after cancer treatment. This study showed that the new system saved 50% of the cost and has a smaller standard deviation in measuring the shear modulus, the new algorithm was 0.02 m/s, while the previous version was 0.04 m/s, reducing the error by about 50%. In this study, k-Wave was used to simulate the transmission and reflection of 2D shear waves to develop the algorithm for the reflection shear wave system. In the experiment, a 20 MHz single-transducer was used to generate 2000 cycles of ultrasound to produce acoustic radiation force to generate shear waves, and a 1.5% agarose gel reflecting wall and the tested object was designed to cause impedance differences to make shear wave reflections. In homogeneous assumption, analyzing the elasticity imaging of the single transducer by the time of flight and find-peaks algorithms were used to obtain shear wave speed information. In addition, this study also discussed the reconstruction of the elasticity distribution of heterogeneous states generated by cancer characteristics, such as tumor balls with aggregated cell gels. Since this system cannot use filtered back-projection algorithm like traditional CT scans, simulated data with heterogeneous shear wave speed media were generated, and the single transducer was rotated around 36 angles to collect reflected shear wave signal characteristics at different positions, using machine learning to train the model and learn the relationship between the original medium and scanning signals. The model achieved good performance with a recall rate of 0.8 on simulated data and was ultimately applied to reconstruct the elasticity stiffness of heterogeneous phantoms and 3D cell gels in actual experiments.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:08:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:08:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xvii
1 第一章 緒論 1
1.1 超音波彈性影像 1
1.2 剪切波原理 5
1.3 三維細胞培養 9
1.4 研究目的 11
1.5 論文架構 13
2 第二章 剪切波模擬方法 15
2.1 模型介紹 16
2.2 模擬方法與架構 17
2.3 模擬流程與資料提取 20
2.3.1 聲壓場三維模擬 20
2.3.2 剪切波二維模擬 22
2.4 結果討論 24
2.4.1 剪切波的反射時序 24
2.4.2 新型設計同心圓俯視圖結果 27
2.4.3 非均質介質的剪切波模擬結果 29
3 第三章 實驗設計與平均硬度演算法 32
3.1 系統架構 33
3.2 實驗設計與演算法 37
3.3 仿體實驗結果 42
3.4 生物膠實驗結果 48
3.5 問題討論 52
4 第四章 機器學習與重構方法 57
4.1 硬體系統設計 60
4.2 資料集建立 64
4.3 實驗模型訓練過程及方法 68
4.4 模型學習結果評估 71
4.5 重構結果與問題討論 75
5 第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 84
5.2.1 環形量測自動化 84
5.2.2 環形量測最佳化與通用化 85
5.2.3 環形量測硬體改善 87
REFERENCE 88
-
dc.language.isozh_TW-
dc.subject電腦斷層zh_TW
dc.subject剪切波zh_TW
dc.subject彈性影像zh_TW
dc.subject飛時測距zh_TW
dc.subject機器學習zh_TW
dc.subject電腦模擬zh_TW
dc.subjecttime of flighten
dc.subjectcomputer tomographyen
dc.subjectshear wave elasticity imagingen
dc.subjectcomputer simulationen
dc.subjectmachine learningen
dc.title用於三維細胞膠之單探頭超音波反射式剪切波彈性影像zh_TW
dc.titleSingle Transducer Reflected Shear Wave Elasticity Imaging (RSWEI) for 3D Cell Culturesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭耿璽;沈哲州;劉瑋文zh_TW
dc.contributor.oralexamcommitteeGeng-Shi Jeng;Che-Chou Shen;Wei-Wen Liuen
dc.subject.keyword剪切波,彈性影像,飛時測距,機器學習,電腦斷層,電腦模擬,zh_TW
dc.subject.keywordcomputer tomography,shear wave elasticity imaging,time of flight,machine learning,computer simulation,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202300676-
dc.rights.note未授權-
dc.date.accepted2023-04-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
8.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved