請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87709
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃榮南 | zh_TW |
dc.contributor.advisor | Rong-Nan Huang | en |
dc.contributor.author | 楊騰志 | zh_TW |
dc.contributor.author | Teng-Zhi Yang | en |
dc.date.accessioned | 2023-07-11T16:27:03Z | - |
dc.date.available | 2024-09-03 | - |
dc.date.copyright | 2023-07-11 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 何德明、林宗岐、 溫育德、王瑋龍。 2009。 小黑蚊雌蟲產卵偏好與藻類之關係。2009 小黑蚊之發生、生態及防治研討會。行政院環境保護署。17-18。
吳怡慧、盧美君。 2017。 中國平腹小蜂之量產及應用概況。 苗栗區農業專訊(80)。 8-9。 李學進。 2007。 環境用藥防治臺灣鋏蠓藥評估計畫。 行政院環境保護署。 103。 杜武俊。 2001。 臺灣鋏蠓傳播黃質病毒之探討。 行政院環境保護署。 20。 周欽賢、王正雄。 2002。 醫學昆蟲與病媒防治。 南山堂出版社。 494-495。 林宗岐。 1998。 臺灣產家蟻亞科系統分類學與動物地理學硏究 (膜翅目: 蟻科)。 國立臺灣大學植物病蟲害學系研究所博士論文。 施劍鎣。 2010。 動物性資材-捕植蟎。 作物蟲害非農藥防治資材: 農業試驗所。 段淑人。 2019。 天敵在臺灣生物防治應用之發展及願景。 有益昆蟲在友善農耕之應用研討會專輯。 11-24。 章加寶、黃勝泉。 2010。 動物性資材-黃斑粗喙椿象。 作物蟲害非農藥防治資材: 農業試驗所。 曾信光。 2017。 應用草蛉防治查數小型害蟲之方法及成就。 行政院農業委員會(104)。 湯秋鳳。 2012。 臺灣鋏蠓之化學感應蛋白特性及其高親和性配體之研究。中臺科技大學生命科學研究所碩士論文,69頁。 楊達璿。 2018。 鹽類對埃及斑蚊和臺灣鋏蠓卵黑化之影響與耐旱之研究。國立臺灣大學昆蟲學研究所碩士論文,66頁。 楊曉峯。 2007。 土壤因子對臺灣鋏蠓成蟲產卵及幼蟲發育的影響碩士論文,64頁。 國立中興大學昆蟲系。 裘明華、榮雲龍。 1979。 臺灣鋏蠓的生活史研究 (雙翅目: 蠓科)。 昆蟲學報 22(4)。 437-442。 劉文勇、李學進、王瑋龍。 2008。 臺灣鋏蠓 (雙翅目: 蠓科) 飼育技術之探討。 臺灣昆蟲28(3)。 183-193。 蔡逸文、陳吉同。 2002。 布袋蓮生物防治。 苗栗區農業專訊(19)。 1-2。 謝伯岳。 2007。 臺灣鋏蠓 Forcipomyia taiwana (Shiraki) 的產卵習性、棲群動態與對昆蟲生長調節劑感受性之研究。碩士論文,83頁。 國立中興大學昆蟲學系。 羅怡珮、簡良芬。 2020。 臺灣鋏蠓 (Forcipomyia taiwana) 誘引物質之實驗室篩選研究。 臺灣昆蟲40(2)。 144-156。 羅怡珮。 2017。 臺灣鋏蠓誘引及忌避防治技術研究。 科技部計畫編號: MOST 106-2321-B041-001。 譚璟憲、薛景珉、柯衛。 1989。 臺灣鋏蠓吸血和生殖的觀察。 昆蟲學報32(1)。 52-57。 Anato, F. M., R. B. Wargui, A. A. Sinzogan, J. Offenberg, A. Adandonon, J. F. Vayssières, and D. K. Kossou. 2015. Reducing losses inflicted by insect pests on cashew, using weaver ants as a biological control agent. Agricultural and Forest Entomology, 17(3), 285-291. Ansari, M. A., E. C. Pope, S. Carpenter, E.-J. Scholte, and T. M. Butt. 2011. Entomopathogenic fungus as a biological control for an important vevtor of livestock disease: The Culicoides Biting Midge. PLoS ONE, 6(1): e16108. Bekeko, Z. 2013. Effect of urea and common salt (NaCl) treated glyphosate on parthenium weed (Parthenium hysterophorus L.) at Western Hararghe zone, Ethiopia. African Journal of Agricultural Research. 8(23): 3036-3041. Bhasin, A., and W. Mordue. 2001. Field studies on efficacy of host odour baits for the biting midge Culicoides impunctatus in Scotland. Medical and Veterinary Entomology. 15(2): 147-156. Campbell, N. J., C. M. Bristow, G. S. Ayers, and G. A. Simmons. 1991. Design and field test of portable colonies of the predaceous ant, Formica exsectoides (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society. 64(1): 116-120. Carpenter, S., P. Mellor, and S. Torr. 2008. Control techniques for Culicoides biting midges and their application in the UK and northwestern Palaearctic. Medical and Veterinary Entomology. 22(3): 175-187. Cerdá, X., and A. Dejean. 2011. Predation by ants on arthropods and other animals. Kerala: Trans World Research Network. Chen, M. E., M. H. Tsai, H. T. Huang, C. C. Tsai, M. J. Chen, D. S. Yang, T. Z. Yang, J. Wang,.and R. N. Huang. 2021. Transcriptome profiling reveals the developmental regulation of NaCl-treated Forcipomyia taiwana eggs. BMC genomics. 22(1): 1-14. Chuang, Y. Y., C. S. Lin, C. H. Wang, and C. C. Yeh. 2000). Distribution and seasonal occurrence of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the Nantou area in Taiwan. Journal of Medical Entomology. 37(2): 205-209. Cribb, B. 2000. Oviposition and maintenance of Forcipomyia (Lasiohelea) townsvillensis (Diptera: Ceratopogonidae) in the laboratory. Journal of Medical Entomology. 37(3): 316-318. Diamé, L., J. Y. Rey, J. F. Vayssières, I. Grechi, A. Chailleux, and K. Diarra. 2017. Ants: Major functional elements in fruit agro-ecosystems and biological control agents. Sustainability. 10(1): 23. Downes, J. 1969. The swarming and mating flight of Diptera. Annual Review of Entomology. 14: 271-298. Dudley, N., and S. Alexander. 2017. Agriculture and biodiversity: a review. Biodiversity. 18(2-3): 45-49. Fernandes, W., P. Oliveira, S. Carvalho, and M. Habib. 1994. Pheidole ants as potential biological control agents of the boll weevil, Anthonomus grandis (Col., Curculionidae), in southeast Brazil. Journal of Applied Entomology. 118(1‐5): 437-441. Frances, S., A. Sweeney, and R. Humber. 1989. Crypticola clavulifera gen. et sp. nov. and Lagenidium giganteum: Oomycetes pathogenic for dipterans infesting leaf axils in an Australian rain forest. Journal of Invertebrate Pathology. 54(1): 103-111. Gajski, D., and S. Pekár. 2021. Assessment of the biocontrol potential of natural enemies against psyllid populations in a pear tree orchard during spring. Pest Management Science. 77(5): 2358-2366. Gerry, A. C., and B. A. Mullens. 1998. Response of male Culicoides variipennis sonorensis (Diptera: Ceratopogonidae) to carbon dioxide and observations of mating behavior on and near cattle. Journal of Medical Entomology. 35(3): 239-244. Goheen, J. R., and T. M. Palmer. 2010. Defensive plant-ants stabilize megaherbivore-driven landscape change in an African savanna. Current Biology. 20(19): 1768-1772. Henderson, C. F., and E. W. Tilton. 1955. Tests with acaricides against the brown wheat mite. Journal of Economic Entomology. 48(2): 157-161. Hölldobler, B., and E. O. Wilson. 2009. The Superorganism: the Beauty, Elegance, and Strangeness of Insect Societies. New York: W. W. Norton & Company. Hooper, D. U., F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer, and D. A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs. 75(1): 3-35. Kenne, M., B. Schatz, J. L. Durand, and A. Dejean. 2000. Hunting strategy of a generalist ant species proposed as a biological control agent against termites. Entomologia Experimentalis et Applicata. 94(1): 31-40. Kline, D. L., and M. O. Mann. 1998. Evaluation of butanone, carbon dioxide, and 1-octen-3-ol as attractants for mosquitoes associated with north central Florida bay and cypress swamps. Journal of the American Mosquito Control Association. 14(3): 289-297. Lehane, M. J. 2005. The Biology of blood-sucking in Insects. Cambridge: Cambridge University Press. Liu, W. Y., S. J. Lee, and E. C. Yang. 2009. Evaluation for attractiveness of four chemicals to the biting midge, Forcipomyia taiwana (Diptera: Ceratopogonidae). Journal of the American Mosquito Control Association. 25(4): 448-455. Loke, P. Y., and C. Y. Lee. 2004. Foraging behavior of field populations of the big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Sociobiology. 43(2): 211-220. Ma, H., C. Xin, Y. Xu, D. Wang, X. Lin, and Z. Chen. 2021. Effect of salt stress on secondary metabolites of cotton and biological characteristics and detoxification enzyme activity of cotton spider mites. Crop Protection. 141: 105498. Majer, J. D., and J. H. Delabie. 1993. An evaluation of Brazilian cocoa farm ants as potential biological control agents. Journal of Plant Protection in the Tropics. 10(1): 43-49. Mands, V., D. Kline, and A. Blackwell. 2004. Culicoides midge trap enhancement with animal odour baits in Scotland. Medical and Veterinary Entomology. 18(4): 336-342. Markin, G. P. 1970. Foraging behavior of the Argentine ant in a California citrus grove. Journal of Economic Entomology. 63(3): 740-744. Moguel, P., and V. M. Toledo. 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology. 13(1): 11-21. Mozūraitis, R., M. Hajkazemian, J. W. Zawada, J. Szymczak, K. Pålsson, V. Sekar, I. Biryukova, M. R. Friedländer, L. L. Koekemoer, J. K. Baird, A.-K. Borg-Karlson, and S. N. Emami. 2020. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nature Ecology and Evolution. 4(10): 1395-1401. Nonacs, P., and L. M. Dill. 1991. Mortality risk versus food quality trade‐offs in ants: patch use over time. Ecological Entomology. 16(1): 73-80. Nordenhem, H., N. Björklund, L. Lenoir, and G. Nordlander. 2013. Ants protect conifer seedlings from feeding damage by the pine weevil Hylobius abietis. Agricultural and Forest Entomology. 15(1): 98-105. Ogogol, R., J. P. Egonyu, G. Bwogi, S. Kyamanywa, and M. Erbaugh. 2017. Interaction of the predatory ant Pheidole megacephala (Hymenoptera: Formicidae) with the polyphagus pest Xylosandrus compactus (Coleoptera: Curculionidea). Biological Control. 104: 66-70. Olotu, M. I., H. Du Plessis, Z. S. Seguni, and N. K. Maniania. 2013. Efficacy of the African weaver ant Oecophylla longinoda (Hymenoptera: Formicidae) in the control of Helopeltis spp.(Hemiptera: Miridae) and Pseudotheraptus wayi (Hemiptera: Coreidae) in cashew crop in Tanzania. Pest Management Science. 69(8): 911-918. Peng, R. K., and K. Christian. 2004. The weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), an effective biological control agent of the red-banded thrips, Selenothrips rubrocinctus (Thysanoptera: Thripidae) in mango crops in the Northern Territory of Australia. International Journal of Pest Management. 50(2): 107-114. Peng, R., and K. Christian. 2007. The effect of the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), on the mango seed weevil, Sternochetus mangiferae (Coleoptera: Curculionidae), in mango orchards in the Northern Territory of Australia. International Journal of Pest Management. 53(1): 15-24. Peng, R., K. Christian, and D. Reilly. 2010. Weaver ants, Oecophylla smaragdina (Hymenoptera: Formicidae), as biocontrol agents on African mahogany trees, Khaya senegalensis (Sapindales: Meliaceae), in the Northern Territory of Australia. International Journal of Pest Management. 56(4): 363-370. Perfecto, I., R. A. Rice, R. Greenberg, and M. E. Van der Voort. 1996. Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. Bioscience. 46(8): 598-608. Pierre, E. M., and A. H. Idris. 2013. Studies on the predatory activities of Oecophylla smaragdina (Hymenoptera: Formicidae) on Pteroma pendula (Lepidoptera: Psychidae) in oil palm plantations in Teluk Intan, Perak (Malaysia). Asian Myrmecology. 5(1): 163-176. Poinar, G., and V. Sarto i Monteys. 2008. Mermithids (Nematoda: Mermithidae) of biting midges (Diptera: Ceratopogonidae): Heleidomermis cataloniensis n. sp. from Culicoides circumscriptus Kieffer in Spain and a species of Cretacimermis Poinar, 2001 from a ceratopogonid in Burmese amber. Systematic Parasitology. 69(1): 13-21. Risch, S. J., and C. R. Carroll. 1982. The ecological role of ants in two Mexican agroecosystems. Oecologia. 55(1): 114-119. Rupp, H. 1996. Adverse assessments of Gambusia affinis: an alternate view for mosquito control practitioners. Journal of the American Mosquito Control Association. 12(2 Pt 1): 155-159. Rüppell, O., and R. Kirkman. 2005. Extraordinary starvation resistance in Temnothorax rugatulus (Hymenoptera, Formicidae) colonies: demography and adaptive behavior. Insectes Sociaux. 52(3): 282-290. Sarkar, A., P. K. Ghosh, K. Pramanik, S. Mitra, T. Soren, S. Pandey, M. H. Mondal, T. K. Maiti. 2018. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology. 169(1): 20-32. Shiraki, T. 1913. Investigation on general injurious insect. Taiwan Sotokufu Noji Shikenjo Tokubetsu Hokodu. 8: 286-297. Stergiopoulos, K., P. Cabrero, S.-A. Davies, and J. A. Dow. 2009. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress. Physiological Genomics. 37(1): 1-11. Sun, W. K. 1974. Laboratory colonization of biting midges (Diptera: Ceratopogonidae). Journal of Medical Entomology. 11(1): 71-73. Symondson, W. O. C., K. D. Sunderland, and M. H. Greenstone. 2002. Can generalist predators be effective biocontrol agents? Annu.Rev. Entomol. 47: 561-594. Trexler, J. D., C, S. Apperson, C. Gemeno, M. J. Perich, D. Carlson, and C. Schal. 2003. Field and laboratory evaluations of potential oviposition attractants for Aedes albopictus (Diptera: Culicidae). Journal of the American Mosquito Control Association. 19(3): 228-234. Unkles, S., C. Marriott, J. R. Kinghorn, C. Panter, and A. Blackwell. 2004. Efficacy of the entomopathogenic fungus, Culicinomyces clavisporus against larvae of the biting midge, Culicoides nubeculosus (Diptera: Ceratopogonidae). Biocontrol Science and Technology. 14(4): 397-401. Vaidyanathan, R., and J. D. Edman. 1997. Sampling with light traps and human bait in epidemic foci for eastern equine encephalomyelitis virus in southeastern Massachusetts. Journal of the American Mosquito Control Association. 13(4): 345-355. Van Mele, P. 2008. A historical review of research on the weaver ant Oecophylla in biological control. Agricultural and Forest Entomology. 10(1): 13-22. Van Mele, P., J.-F. Vayssières, E. Van Tellingen, and J. Vrolijks. 2007. Effects of an African weaver Ant, Oecophylla longinoda, in controlling mango fruit flies (Diptera: Tephritidae) in Benin. Journal of Economic Entomology. 100(3), 695-701. Vandermeer, J., I. Perfecto, G. Ibarra Nuñez, S. Phillpott, and A. Garcia Ballinas. 2002. Ants (Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico. Agroforestry Systems. 56(3): 271-276. Way, M., and K. Khoo. 1991. Colony dispersion and nesting habits of the ants, Dolichoderus thoracicus and Oecophylla smaragdina (Hymenoptera: Formicidae), in relation to their success as biological control agents on cocoa. Bulletin of Entomological Research. 81(3): 341-350. Wright, P., and C. Easton. 1996. Natural incidence of Lagenidium giganteum Couch (Oomycetes: Lagenidiales) infecting the biting midge Culicoides molestus (Skuse)(Diptera: Ceratopogonidae). Australian Journal of Entomology. 35(2): 131-134. Yachi, S., and M. Loreau. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences. 96(4): 1463-1468. Yeh, C.-C., and Y.-Y. Chuang. 1996. Colonization and bionomics of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the laboratory. Journal of Medical Entomology. 33(3): 445-448. Zhao, Z., J. L. Zung, A. Hinze, A. L. Kriete, A. Iqbal, M. A. Younger, B. J. Mattews, D. M. Strauch, and C. S. McBride. 2022. Mosquito brains encode unique features of human odour to drive host seeking. Nature. 605(7911): 706-712. Zhou, Y., N. Tang, L. Huang, Y. Zhao, X. Tang, and K. Wang. 2018. Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences. 19(1): 252. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87709 | - |
dc.description.abstract | 臺灣鋏蠓(Forcipomyia taiwana)為重要之衛生害蟲,雌成蟲嗜吸人血,易引起受害者皮膚瘙癢及紅腫,尤其在春夏之際中南部及東部地區發生嚴重,影響當地居民居家生活與工作,甚至影響各地區觀光產業。環境整頓為主要的防治思維,但於流行高峰期仍不可避免的需要進行化學藥劑防治,以快速有效率的抑制臺灣鋏蠓密度,然而合成化學藥劑防治只能短暫抑制臺灣鋏蠓族群,卻不可避免地造成環境污染及影響人類健康。為了因應環境友善的概念,本論文致力於開發天然友善資材作為防治依據。我們的研究結果顯示大頭家蟻屬(Pheidole)為臺灣鋏蠓發生地區主要螞蟻種類,進一步試驗了大頭家蟻屬螞蟻對臺灣鋏蠓卵、幼蟲、蛹之掠食潛力,結果顯示大頭家蟻屬螞蟻對臺灣鋏蠓幼蟲及蛹皆有掠食意願,與同為活的獵物跳蟲與椿象比較,臺灣鋏蠓被掠食機率較高;但若為死的獵物,則以跳蟲與椿象被掠食機率較高。本研究亦自野外採集蟻巢,於實驗室建立穩定族群後,在安置於野外田間進行防治試驗,但蟻巢受颱風影響,以致未能評估防治效率。此外,本論文也試驗低濃度鹽類對臺灣鋏蠓發育之影響,並確認了低濃度鹽類雖不會抑制卵的黑化,但會造成臺灣鋏蠓幼蟲生存率的降低。再利用對臺灣鋏蠓卵發育也具有抑制作用的硫酸胺肥料,進行田間防治試驗。結果顯示於肥料施灑後,試驗區臺灣鋏蠓族群密度均有短暫的降低,但其效果卻大幅的受到降雨等天候因素影響,仍需進行進一步的研究探討可行之施用時機與方法。 | zh_TW |
dc.description.abstract | Forcipomyia taiwana is an important hygiene pest with preference on human blood, so that cause victim skin itchy and swelling. The outbreak and spread of this biting midge has resulted in serious influence on residents in central, south and east Taiwan among spring and summer season and even posed significant impact on resort areas to drive away visitors. The general strategy of F. taiwana control is environmental rectification, but synthetic pesticides are still the emergent control strategy for this biting midge at outbreak period. However synthetic insecticides could only temporary inhibit F. taiwana density, it causes environmental pollution and influence human health. My research dedicated to develop eco-friendly materials as basis for field control of F. taiwana in the Botany Garden of National Museum of Natural Science, Taichung. Ants have been recognized as ideal biological agents for insect pests. My studies showed that Genus Pheidole is the main ant species in endemic area of F. taiwana. The laboratory studies suggested that Pheidole ants exhibited higher foraging preference on F. taiwana’s larvae, and pupae than eggs as well as other living prey, such as springtails and stinkbugs, which has similar habitat and body size to F. taiwana larvae. Moreover, Pheidole ant colonies were collected from wild and stabilized in laboratory before releasing for field test. Unfortunately, we can’t evaluate the suppressive efficiency of Pheidole ant on F. taiwana due to the influence of typhoon. My research also showed that low concentration of NaCl did not inhibit the melanization of eggs, but exhibit significantly negative impact on the post-embryo development of F. taiwana. In addition to NaCl, fertilizer ammonium sulfate also could inhibit the egg melanization of F. taiwana and were used for field test. The result shows that population density of F. taiwana were only temporary reduced after application of ammonium sulfate. The weather condition, such as rainfall and regular watering in the Botany Garden were the main confound factors and need to be taken into consideration in future evaluation of field test for F. taiwana management. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:27:03Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-11T16:27:03Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄
致謝 i 摘要 ii Abstract iii 目錄 v 附錄 x 壹、 緒言 1 貳、 往昔研究 3 一、 臺灣鋏蠓基礎生物學研究 3 (一) 幼蟲食物來源研究 3 (二) 臺灣鋏蠓幼蟲飼養基質研究 4 (三) 吸血與產卵習性研究 4 (四) 實驗室品系之建立 5 二、 吸血蠓防治策略研究 6 (一) 吸血蠓之天敵研究 7 (二) 生物防治的應用 8 (三) 螞蟻作為生物防治天敵的研究 9 三、 鹽類濃度影響臺灣鋏蠓生長發育的研究 13 參、 材料和方法 14 一、 臺灣鋏蠓飼養裝置與材料 14 (一) 成蟲飼養盒 14 臺灣鋏蠓 14 (二) 雌成蟲休憩盒 15 (三) 幼蟲飼養杯 15 (四) 小球藻藻液 16 (五) 臺灣鋏蠓採集用具 16 (六) 臺灣鋏蠓餵血裝置 17 (七) 臺灣鋏蠓飼養過程 17 二、 大頭家蟻對臺灣鋏蠓掠食特性測試 19 (一) 蟻相調查和螞蟻鑑定 19 (二) 大頭家蟻飼養 20 (三) 掠食實驗裝置 22 (四) 大頭家蟻對臺灣鋏蠓取食意願測試 23 (五) 大頭家蟻對不同獵物控制能力測試 23 (六) 大頭家蟻對死的獵物掠食偏好測試 24 (七) 大頭家蟻對臺灣鋏蠓蛹的掠食潛力測試 24 三、 大頭家蟻作為防治臺灣鋏蠓生物資材可能性測試 25 (一) 移動式蟻巢 25 (二) 試驗地點和蟻巢數量 26 (三) 評估方法 26 四、 低濃度氯化鈉對臺灣鋏蠓幼蟲成長影響 26 五、 硫酸銨防治臺灣鋏蠓田間測試 28 肆、 結果 30 一、 大頭家蟻對臺灣鋏蠓掠食特性測試 30 (一) 蟻相調查 30 (二) 大頭家蟻對臺灣鋏蠓取食意願測試 31 (三) 大頭家蟻對獵物控制能力測試 32 (四) 大頭家蟻對死的獵物掠食偏好測試 32 (五) 大頭家蟻對臺灣鋏蠓蛹的掠食潛力測試 32 二、 大頭家蟻作為防治臺灣鋏蠓生物資材田間試驗 33 三、 低濃度氯化鈉對臺灣鋏蠓幼蟲成長影響 33 四、 硫酸銨防治臺灣鋏蠓田間測試 34 伍、 討論 35 一、 大頭家蟻對臺灣鋏蠓掠食特性測試 35 (一) 蟻相調查 35 (二) 大頭家蟻對臺灣鋏蠓取食意願測試 36 (三) 大頭家蟻對獵物控制能力測試 38 (四) 大頭家蟻對死的獵物掠食偏好測試 39 (五) 大頭家蟻對臺灣鋏蠓蛹的掠食潛力測試 40 二、 大頭家蟻作為防治臺灣鋏蠓生物資材可能性測試 40 三、 低濃度氯化鈉對臺灣鋏蠓幼蟲成長影響 42 四、 硫酸銨防治臺灣鋏蠓田間測試 43 陸、 參考文獻 45 表目錄 表 一、蟻巢的螞蟻種類、規模和數量 56 表 二、台中大坑苧園巷福德祠周遭螞蟻相的組成、多樣性和豐富度 57 表 三、台大展書樓螞蟻相的組成、多樣性和豐富度 58 表 四、寶藏巖螞蟻相的組成、多樣性和豐富度 59 表 五、科博館植物園螞蟻相的組成、多樣性和豐富度 60 表 六、各調查區誘引式陷阱誘得螞蟻種類和數量 61 圖目錄 圖 一、臺灣鋏蠓飼養用具 62 圖 二、大頭家蟻飼養裝置 63 圖 三、各類型獵物的尺寸 64 圖 四、人工蟻巢於植物園內設置分布圖 65 圖 五、科博館植物園肥料施灑範圍 66 圖 六、科博館植物園內臺灣鋏蠓密度監測點位置分布圖 67 圖 七、熱烈大頭家蟻對臺灣鋏蠓各齡期非選擇性掠食測試 68 圖 八、熱烈大頭家蟻對臺灣鋏蠓各齡期選擇性掠食測試 69 圖 九、寬結大頭家蟻對臺灣鋏蠓各階段與齡期非選擇性掠食測試 70 圖 十、寬結大頭家蟻對臺灣鋏蠓各齡期選擇性掠食測試 71 圖 十一、熱帶大頭家蟻對活的獵物掠食偏好(控制能力)測試結果 72 圖 十二、熱烈大頭家蟻對活的獵物掠食偏好(控制能力)測試結果 73 圖 十三、熱帶大頭家蟻對死的獵物掠食偏好測試結果 74 圖 十四、熱烈大頭家蟻對死的獵物掠食偏好測試結果 75 圖 十五、熱烈大頭家蟻對臺灣鋏蠓蛹的掠食潛力測試結果 76 圖 十六、低鹽度對臺灣鋏蠓成長發育之影響 77 圖 十七、移動式蟻巢進行淋水模擬測試 78 圖 十八、野生螞蟻捕食臺灣鋏蠓幼蟲 79 圖 十九、以周為單位評估低鹽度對臺灣鋏蠓防治效果 80 圖 二十、以月為單位評估低鹽度對臺灣鋏蠓幼蟲的防治效果 81 圖 二十一、以月為單位評估低鹽度對臺灣鋏蠓防治效果2 82 圖 二十二、以月為單位低鹽度影響臺灣鋏蠓幼蟲成長防治率結果3 83 圖 二十三、以月為單位低鹽度影響臺灣鋏蠓幼蟲成長防治率結果4 84 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用螞蟻與鹽類於臺灣鋏蠓防治之初探 | zh_TW |
dc.title | Preliminary study of ants and salts for the management of biting midge, Forcipomyia taiwana | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 羅怡珮 | zh_TW |
dc.contributor.oralexamcommittee | Chung-Chi Lin;Wen-Hua Chen;Mei-Ling Chan;Yi-Pey Luo | en |
dc.subject.keyword | 臺灣鋏蠓,生物防治,螞蟻,鹽類, | zh_TW |
dc.subject.keyword | Forcipomyia taiwana,biological control,ants,salts, | en |
dc.relation.page | 94 | - |
dc.identifier.doi | 10.6342/NTU202203749 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-24 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 昆蟲學系 | - |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf | 5.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。