Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德zh_TW
dc.contributor.advisorChi-Te Liangen
dc.contributor.author林佑軒zh_TW
dc.contributor.authorYu-Hsuan Linen
dc.date.accessioned2023-07-11T16:16:54Z-
dc.date.available2024-09-28-
dc.date.copyright2023-07-11-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] N. C. D. Nath, T. Debnath, M. Nurunnabi, and E.-K. Kim, in Biomedical Applications of Graphene and 2D Nanomaterials (Elsevier, 2019), pp. 165.
[2] Y. Jung, J. Shen, and J. J. Cha, Nano Convergence 1, 1 (2014).
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[4] E. Kogan and V. Nazarov, Physical Review B 85, 115418 (2012).
[5] L. Schué, L. Sponza, A. Plaud, H. Bensalah, K. Watanabe, T. Taniguchi, F. Ducastelle, A. Loiseau, and J. Barjon, arXiv preprint arXiv:1803.03766 (2018).
[6] R. Ribeiro and N. Peres, Physical Review B 83, 235312 (2011).
[7] H. Wang et al., Nano letters 12, 4674 (2012).
[8] B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS nano 5, 9934 (2011).
[9] K. Yuan et al., Advanced Functional Materials 29, 1904032 (2019).
[10] D. Shcherbakov et al., Science Advances 7, eabe2892 (2021).
[11] D. A. Bandurin et al., Nature nanotechnology 12, 223 (2017).
[12] K. Premasiri, S. K. Radha, S. Sucharitakul, U. R. Kumar, R. Sankar, F.-C. Chou, Y.-T. Chen, and X. P. Gao, Nano Letters 18, 4403 (2018).
[13] J. Zeng et al., Physical Review B 98, 125414 (2018).
[14] A. Agrawal, R. Wadhwa, and M. Kumar, (2021).
[15] A. Segura, Crystals 8, 206 (2018).
[16] M. J. Hamer et al., ACS nano 13, 2136 (2019).
[17] C. Song, S. Huang, C. Wang, J. Luo, and H. Yan, J. Appl. Phys. 128, 060901 (2020).
[18] A. Chevy, A. Kuhn, and M.-S. Martin, J. Cryst. Growth 38, 118 (1977).
[19] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[20] Y. A. Bychkov and É. I. Rashba, JETP lett 39, 78 (1984).
[21] M. Zhou, S. Yu, W. Yang, W.-k. Lou, F. Cheng, D. Zhang, and K. Chang, Physical Review B 100, 245409 (2019).
[22] M. U. Farooq, L. Xian, and L. Huang, Physical Review B 105, 245405 (2022).
[23] D. Shcherbakov, J. Yang, S. Memaran, K. Watanabe, T. Taniguchi, D. Smirnov, L. Balicas, and C. N. Lau, Physical Review B 106, 045307 (2022).
[24] H. Arora et al., ACS applied materials & interfaces 11, 43480 (2019).
[25] N.-f. Shen, X.-d. Yang, X.-x. Wang, G.-h. Wang, and J.-g. Wan, Chem. Phys. Lett. 749, 137430 (2020).
[26] L. Zhou et al., Appl. Phys. Lett. 121, 071603 (2022).
[27] P. Kang, V. Michaud-Rioux, X. Kong, G. Yu, and H. Guo, 2D Materials 4, 045014 (2017).
[28] E. Kress-Rogers, R. Nicholas, J. Portal, and A. Chevy, Solid State Commun. 44, 379 (1982).
[29] H. Schmidt, I. Yudhistira, L. Chu, A. C. Neto, B. Özyilmaz, S. Adam, and G. Eda, Phys. Rev. Lett. 116, 046803 (2016).
[30] S. Iordanskii, Y. B. Lyanda-Geller, and G. Pikus, ZhETF Pisma Redaktsiiu 60, 199 (1994).
[31] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[32] R. Chwang, B. Smith, and C. Crowell, Solid·State Electron. 17, 1217 (1974).
[33] A. Ceferino et al., Physical Review B 104, 125432 (2021).
[34] D. Fang, S. Chen, Y. Li, and B. Monserrat, Journal of Physics: Condensed Matter 33, 155001 (2021).
[35] W. Ju, Y. Xu, T. Li, M. Li, K. Tian, J. Chen, and H. Li, Applied Surface Science 595, 153528 (2022).
[36] F. Ahmed et al., Advanced Functional Materials 28, 1804235 (2018).
[37] J. G. Gluschke, J. Seidl, H. H. Tan, C. Jagadish, P. Caroff, and A. P. Micolich, Nanoscale 12, 20317 (2020).
[38] P. Pfeffer and W. Zawadzki, Physical Review B 52, R14332 (1995).
[39] R. Winkler and U. Rössler, Physical Review B 48, 8918 (1993).
[40] K. Premasiri and X. P. Gao, Journal of Physics: Condensed Matter 31, 193001 (2019).
[41] P. Boross, B. Dóra, A. Kiss, and F. Simon, Scientific Reports 3, 1 (2013).
[42] Y. Yafet, in Solid State Phys. (Elsevier, 1963), pp. 1.
[43] R. J. Elliott, Phys. Rev. 96, 266 (1954).
[44] M. Dyakonov and V. Perel, Soviet Physics Solid State, Ussr 13, 3023 (1972).
[45] H.-Z. Lu and S.-Q. Shen, in Spintronics Vii (SPIE, 2014), pp. 263.
[46] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[47] J. Hu et al., Nature Physics 11, 471 (2015).
[48] W. Knap et al., Physical Review B 53, 3912 (1996).
[49] Y.-T. Huang et al., ACS applied materials & interfaces 10, 33450 (2018).
[50] K. Watanabe, T. Taniguchi, and H. Kanda, Nature materials 3, 404 (2004).
[51] A. G. Garcia, M. Neumann, F. Amet, J. R. Williams, K. Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, Nano letters 12, 4449 (2012).
[52] Y.-J. Sun, S.-M. Pang, and J. Zhang, The Journal of Physical Chemistry Letters 13, 3691 (2022).
[53] Y. Sun, S. Luo, X.-G. Zhao, K. Biswas, S.-L. Li, and L. Zhang, Nanoscale 10, 7991 (2018).
[54] C. Lee et al., Nanotechnology 29, 335202 (2018).
[55] W. Feng, W. Zheng, W. Cao, and P. Hu, Advanced materials 26, 6587 (2014).
[56] S. R. Tamalampudi, Y.-Y. Lu, R. K. U, R. Sankar, C.-D. Liao, C.-H. Cheng, F. C. Chou, and Y.-T. Chen, Nano letters 14, 2800 (2014).
[57] Y. Choi, Y. Seok, H. Jang, A. S. Kumar, K. Watanabe, T. Taniguchi, X. P. Gao, and K. Lee, ACS Applied Electronic Materials 3, 163 (2020).
[58] T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Nature nanotechnology 11, 37 (2016).
[59] P. Huang, M. Grzeszczyk, K. Vaklinova, K. Watanabe, T. Taniguchi, K. Novoselov, and M. Koperski, Physical Review B 106, 014107 (2022).
[60] H. Yi, Y. N. Gartstein, and V. Podzorov, Scientific reports 6, 1 (2016).
[61] O. Lang, C. Pettenkofer, J. F. Sánchez-Royo, A. Segura, A. Klein, and W. Jaegermann, J. Appl. Phys., 5687.
[62] D. K. Sang et al., Nanomaterials 9, 82 (2019).
[63] Y.-H. Chen et al., npj 2D Materials and Applications 3, 1 (2019).
[64] H.-Y. Chang, W. Zhu, and D. Akinwande, Appl. Phys. Lett. 104, 113504 (2014).
[65] M. H. Guimaraes, H. Gao, Y. Han, K. Kang, S. Xie, C.-J. Kim, D. A. Muller, D. C. Ralph, and J. Park, ACS nano 10, 6392 (2016).
[66] Y.-R. Chang et al., ACS Photonics 4, 2930 (2017).
[67] J. G. Simmons, J. Appl. Phys. 34, 238 (1963).
[68] J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).
[69] A. Jain, P. Bharadwaj, S. Heeg, M. Parzefall, T. Taniguchi, K. Watanabe, and L. Novotny, Nanotechnology 29, 265203 (2018).
[70] Q.-Z. Guo, L.-C. Yang, R.-C. Wang, and C.-P. Liu, ACS applied materials & interfaces 11, 1420 (2018).
[71] Y. Nan, J. Shao, M. Willatzen, and Z. L. Wang, Research 2022 (2022).
[72] F. Tikhonenko, D. Horsell, R. Gorbachev, and A. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).
[73] B. L. Altshuler, A. Aronov, and D. Khmelnitsky, Journal of Physics C: Solid State Physics 15, 7367 (1982).
[74] Y. Shi, N. Gillgren, T. Espiritu, S. Tran, J. Yang, K. Watanabe, T. Taniguchi, and C. N. Lau, 2D Materials 3, 034003 (2016).
[75] D. T. Do, S. D. Mahanti, and C. W. Lai, Scientific Reports 5, 1 (2015).
[76] N. Kuroda and Y. Nishina, Solid State Commun. 34, 481 (1980).
[77] S. Firoz Islam and T. Kanti Ghosh, J. Appl. Phys. 113, 183710 (2013).
[78] R. Somphonsane et al., Scientific reports 10, 1 (2020).
[79] R. Somphonsane, H. Ramamoorthy, G. Bohra, G. He, D. Ferry, Y. Ochiai, N. Aoki, and J. Bird, Nano letters 13, 4305 (2013).
[80] E. Yalon et al., ACS applied materials & interfaces 9, 43013 (2017).
[81] D. Buckley et al., Advanced Functional Materials 31, 2008967 (2021).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87678-
dc.description.abstract近年來,愈來愈多研究者關注二維材料的新穎量子特性。在眾多二維材料中,III–VI 族半導體—γ相硒化銦具有高電子遷移率且缺乏反演對稱性,因而成為一種值得研究的材料。由於缺乏反演對稱性,硒化銦中出現了很強的自旋—軌道耦合效應,從而導致磁阻行為的改變。本論文研究了硒化銦/二氧化矽和硒化銦/六方氮化硼系統中的弱反定域效應。我們製作出多電極硒化銦場效電晶體元件,其具有幾乎歐姆接觸,製程中也無須光阻。我們在硒化銦/六方氮化硼系統上研發出一種特別的「互補性接觸」解決其接觸問題,使其同時具有高遷移率場效通道與低電阻接觸,並以優化的交流-直流小訊號鎖相放大技術在五十到二克爾文的溫度範圍內進行四點量測與霍爾量測,從中計算載子遷移率和密度。而在量子擴散體系中,硒化銦也是探索量子干涉現象的良好二維電子系統。我們用Hikami-Larkin-Nagaoka方程擬合硒化銦磁阻,分析不同的量子散射途徑,包括自旋軌道耦合、非彈性散射和彈性散射。探討相位同調性與自旋弛緩現象對溫度、基板效應、水平電場和垂直電場的關聯性。硒化銦磁阻現象提供了有關二維電子系統中散射過程的基本資訊。我們量測到的自旋—軌道耦合效應實驗結果符合先前的理論與實驗研究。zh_TW
dc.description.abstractTwo-dimensional materials draw great attention because of their novel quantum electronic properties. Among them, γ-indium selenide (γ-InSe), which belongs to the III–VI semiconductor group, is an intriguing material because of its high electron mobility and lack of inversion symmetry. Because of the lack of inversion symmetry, strong spin-orbit coupling in InSe arises, leading to modified magnetoresistance behavior that is the focus of this study. In this thesis, the weak antilocalization effect in γ-InSe/silicon dioxide (SiO2) and γ-InSe/hexagonal-boron nitride (h-BN) systems are studied. A resist-free fabrication process is developed to realize multi-probe InSe field-effect transistor devices with near-ohmic contacts. A special “complementary contact method” is developed with high-mobility channel and low-resistance contact, solving the contact issue on γ-InSe/h-BN. We perform the electronic transport and Hall effect measurement with a greatly improved standard AC+DC lock-in technique for temperatures ranging from 50 K to 2 K, from which the mobility and carrier density are evaluated. In the quantum diffusive regime, the InSe devices are a good platform for exploring quantum interference in two-dimensional electronic systems. The magnetoresistance of the InSe devices is fitted by the Hikami-Larkin-Nagaoka equation, yielding different quantum scattering paths, including spin-orbit coupling, inelastic scattering, and elastic scattering. The dependence of the phase coherency and spin relaxation on temperature, substrates, in-plane electric, and the out-of-plane electric field is extensively discussed. The magnetoresistance behavior of the InSe devices offers original information about the scattering process in two-dimensional electronic systems. Our spin-orbit coupling result consistently matches previous theoretical and experimental research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:16:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-11T16:16:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 van der Waal crystals 1
1.2 Physical properties of InSe and InSe/hBN heterostructure 2
1.3 Previous research on InSe quantum transport 5
1.4 Motivation 8
1.5 Thesis structure 10
Chapter 2 Theory 11
2.1 Electrical transport 11
2.1.1 Physics of field-effect transistor 11
2.1.2 Four-probe measurement and the model of contact resistance 12
2.1.3 Metal–semiconductor junction 14
2.1.4 Physics of the Hall effect 16
2.2 Quantum transport and scattering 18
2.2.1 Spin-orbit coupling effect 18
2.2.2 Spin relaxation processes with spin-orbit coupling 20
2.2.3 Weak localization and weak antilocalization effect 21
Chapter 3 Experimental method and equipment 25
3.1 Fabrication of InSe field-effect devices 25
3.1.1 The fabrication process of InSe FET 25
3.1.2 PDMS-dome-assisted dry-transfer technique 27
3.2 Electrical and magneto-transport measurement 28
3.2.1 Electrical measurement configuration 28
3.2.2 Magneto-transport data processing 30
3.3 Optical measurement 33
3.3.1 Raman spectroscopy 33
3.3.2 Photoluminescence spectroscopy 34
3.4 Atomic force microscopy 35
Chapter 4 Experimental result and discussion 36
4.1 Optical characterization of γ-InSe and substrate effect 36
4.2 Electronic transport and contact engineering 38
4.2.1 Devices structures and photos 38
4.2.2 Field-effect transistor transport characteristic 39
4.2.3 Extraction of mobility and carrier density 40
4.2.4 Complementary contact method to improve γ-InSe/h-BN device contact 42
4.2.5 I–V characteristics and contact resistance of complementary contact method 48
4.3 Quantum scattering of InSe FET 54
4.3.1 Weak antilocalization effect of InSe and quantum scattering models comparison 54
4.3.2 Phase coherence of InSe with different substrate 58
4.3.3 Spin-orbit coupling of InSe with different substrate 60
4.3.4 Electric bias effect on quantum scattering of InSe/SiO2 64
Chapter 5 Conclusion and future work 68
REFERENCE 71
APPENDIX 76
1.1 Schottky contact problem for lock-in measurement 76
1.2 Main devices properties 77
1.3 The discrepancy in FET and Hall mobilities 78
-
dc.language.isoen-
dc.subject自旋—軌道耦合zh_TW
dc.subject弱反定域效應zh_TW
dc.subject硒化銦zh_TW
dc.subjectindium selenideen
dc.subjectspin-orbit couplingen
dc.subjectweak antilocalizationen
dc.title二維硒化銦電子系統的量子干涉現象zh_TW
dc.titleQuantum interference in two-dimensional indium selenide electronic systemsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.coadvisor王偉華zh_TW
dc.contributor.coadvisorWei-Hua Wangen
dc.contributor.oralexamcommittee葉勝玄zh_TW
dc.contributor.oralexamcommitteeSheng-Shiuan Yehen
dc.subject.keyword自旋—軌道耦合,弱反定域效應,硒化銦,zh_TW
dc.subject.keywordspin-orbit coupling,weak antilocalization,indium selenide,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202203887-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-29-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2024-09-28-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved