Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87677
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張子璿zh_TW
dc.contributor.advisorTzu-Hsuan Changen
dc.contributor.author林嶸騰zh_TW
dc.contributor.authorRong-Teng Linen
dc.date.accessioned2023-07-11T16:16:34Z-
dc.date.available2025-09-27-
dc.date.copyright2023-07-11-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationMoore, G., Moore’s law. Electronics Magazine, 1965. 38(8): p. 114.
2. Yang, Y., Thermal conductivity, in Physical properties of polymers handbook. 2007, Springer. p. 155-163.
3. Kuhn, K.J. Moore's Law Past 32nm: Future Challenges in Device Scaling. in 2009 13th International Workshop on Computational Electronics. 2009. IEEE.
4. Vinet, M., et al. Monolithic 3D integration: A powerful alternative to classical 2D scaling. in 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). 2014. IEEE.
5. Wu, J., et al., A nanotechnology enhancement to Moore's law. Applied Computational Intelligence and Soft Computing, 2013. 2013.
6. Bailey, C. Thermal management technologies for electronic packaging: current capabilities and future challenges for modelling tools. in 2008 10th Electronics Packaging Technology Conference. 2008. IEEE.
7. Lau, J.H. and T.G. Yue. Thermal management of 3D IC integration with TSV (through silicon via). in 2009 59th Electronic Components and Technology Conference. 2009. IEEE.
8. McCluskey, P., et al., Reliable use of commercial technology in high temperature environments. Microelectronics Reliability, 2000. 40(8-10): p. 1671-1678.
9. Johnson, R.W., et al., The changing automotive environment: high-temperature electronics. IEEE transactions on electronics packaging manufacturing, 2004. 27(3): p. 164-176.
10. Lau, J., Thermal stress and strain in microelectronics packaging. 2012: Springer Science & Business Media.
11. Khazaka, R., et al., Survey of high-temperature reliability of power electronics packaging components. IEEE Transactions on power Electronics, 2014. 30(5): p. 2456-2464.
12. Liu, H.-W., et al. Warpage characterization of panel fan-out (P-FO) package. in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). 2014. IEEE.
13. Chien, H.-C., et al. Thermal evaluation and analyses of 3D IC integration SiP with TSVs for network system applications. in 2012 IEEE 62nd Electronic Components and Technology Conference. 2012. IEEE.
14. Kim, J., et al. Fan-out panel level package with fine pitch pattern. in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). 2018. IEEE.
15. Zhao, J., et al. Mechanism of adhesive film popcorn in electronic packaging. in 2007 Proceedings 57th Electronic Components and Technology Conference. 2007. IEEE.
16. Yao, S., et al. An equivalent radiation source based on artificial neural network for EMI prediction. in 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). 2018. IEEE.
17. Kim, K., et al. Graphene-based EMI shielding for vertical noise coupling reduction in 3D mixed-signal system. in 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems. 2012. IEEE.
18. Cao, M., et al., Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. Journal of Materials Chemistry C, 2018. 6(17): p. 4586-4602.
19. Sung, T., et al. Electrical analyses of TSV-RDL-bump of interposers for high-speed 3D IC integration. in 2012 IEEE 62nd Electronic Components and Technology Conference. 2012. IEEE.
20. Shen, B., W. Zhai, and W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Advanced Functional Materials, 2014. 24(28): p. 4542-4548.
21. Yu, G., et al., Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano letters, 2011. 11(7): p. 2905-2911.
22. He, X. and Y. Wang, Recent advances in the rational design of thermal conductive polymer composites. Industrial & Engineering Chemistry Research, 2021. 60(3): p. 1137-1154.
23. Chen, H., et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 2016. 59: p. 41-85.
24. Han, Z. and A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in polymer science, 2011. 36(7): p. 914-944.
25. Guo, B., Z. Tang, and L. Zhang, Transport performance in novel elastomer nanocomposites: Mechanism, design and control. Progress in Polymer Science, 2016. 61: p. 29-66.
26. Mehra, N., et al., Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018. 12: p. 92-130.
27. Nfawa, S.R., A.A. Basri, and S.U. Masuri, Novel use of MgO nanoparticle additive for enhancing the thermal conductivity of CuO/water nanofluid. Case Studies in Thermal Engineering, 2021. 27: p. 101279.
28. Huang, X., P. Jiang, and T. Tanaka, A review of dielectric polymer composites with high thermal conductivity. IEEE Electrical Insulation Magazine, 2011. 27(4): p. 8-16.
29. Wang, M., et al., Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon, 2021. 177: p. 377-402.
30. Pang, H., et al., An electrically conducting polymer/graphene composite with a very low percolation threshold. Materials Letters, 2010. 64(20): p. 2226-2229.
31. Rezić, I., T. Haramina, and T. Rezić, Metal nanoparticles and carbon nanotubes—perfect antimicrobial nano-fillers in polymer-based food packaging materials, in Food packaging. 2017, Elsevier. p. 497-532.
32. Arik, M. and S. Weaver. Chip-scale thermal management of high-brightness LED packages. in Fourth International Conference on Solid State Lighting. 2004. SPIE.
33. Bowlby, R., The DIP may take its final bows: The dual-in-line package, the reigning IC package for several generations, is losing position to newcomers for packaging advanced chips. IEEE Spectrum, 1985. 22(6): p. 37-42.
34. Lau, J., et al., Experimental and analytical studies of 28-pin thin small outline package (TSOP) solder-joint reliability. 1992.
35. Lau, J., et al., Solder joint reliability of a thin small outline package (TSOP). Circuit World, 1993.
36. Rosten, H., et al. Development, validation and application of a thermal model of a plastic quad flat pack. in 1995 Proceedings. 45th Electronic Components and Technology Conference. 1995. IEEE.
37. Lau, J.H., et al., Warpage and thermal characterization of fan-out wafer-level packaging. IEEE transactions on components, packaging and manufacturing technology, 2017. 7(10): p. 1729-1738.
38. Rao, V.S., et al. Development of high density fan out wafer level package (HD FOWLP) with multi-layer fine pitch RDL for mobile applications. in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). 2016. IEEE.
39. Yoon, S.W., et al. 3D TSV processes and its assembly/packaging technology. in 2009 IEEE International Conference on 3D System Integration. 2009. IEEE.
40. Tu, K.-N., Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523.
41. Tsai, M., et al. Alternative Low Cost EMI Shielding Solutions on SiP Module for 5G mmWave Applications. in 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC). 2021. IEEE.
42. Werner, J., P. Kashyap, and J. Kinnear. Shielding Effectiveness of ESD Protective Packaging. in 2020 42nd Annual EOS/ESD Symposium (EOS/ESD). 2020. IEEE.
43. Fonseca, M.A., et al., Wireless micromachined ceramic pressure sensor for high-temperature applications. Journal of microelectromechanical systems, 2002. 11(4): p. 337-343.
44. Wan, J., W.-J. Zhang, and D. Bergstrom, Recent advances in modeling the underfill process in flip-chip packaging. Microelectronics Journal, 2007. 38(1): p. 67-75.
45. Adli, A.R. and K.M. Jansen, Numerical investigation and experimental validation of residual stresses building up in microelectronics packaging. Microelectronics Reliability, 2016. 62: p. 26-38.
46. Liu, C.-Y., et al. Enhanced Reliability of a RF-SiP with Mold Encapsulation and EMI Shielding. in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 2019. IEEE.
47. Boinovich, L., DLVO forces in thin liquid films beyond the conventional DLVO theory. Current opinion in colloid & interface science, 2010. 15(5): p. 297-302.
48. Zhang, F., Y. Feng, and W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Materials Science and Engineering: R: Reports, 2020. 142: p. 100580.
49. Xu, X., J. Chen, and B. Li, Phonon thermal conduction in novel 2D materials. Journal of Physics: Condensed Matter, 2016. 28(48): p. 483001.
50. Burger, N., et al., Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science, 2016. 61: p. 1-28.
51. Zhang, Y., et al., Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon, 2019. 142: p. 445-460.
52. Song, N., et al., Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. Journal of Materials Chemistry C, 2016. 4(2): p. 305-314.
53. Lu, X.-y., T.-C. Hua, and Y.-p. Wang, Thermal analysis of high power LED package with heat pipe heat sink. Microelectronics Journal, 2011. 42(11): p. 1257-1262.
54. Hsu, P.-Y., H.-T. Chen, and T. Hwang, Stacking signal TSV for thermal dissipation in global routing for 3-D IC. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014. 33(7): p. 1031-1042.
55. Nuvoli, D., et al., High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 2011. 21(10): p. 3428-3431.
56. Kozbial, A., et al., Study on the surface energy of graphene by contact angle measurements. Langmuir, 2014. 30(28): p. 8598-8606.
57. Peng, X., et al., A mechanically strong and sensitive CNT/rGO–CNF carbon aerogel for piezoresistive sensors. Journal of Materials Chemistry A, 2018. 6(46): p. 23550-23559.
58. Yang, W., et al., Strong and highly conductive graphene composite film based on the nanocellulose-assisted dispersion of expanded graphite and incorporation of poly (ethylene oxide). ACS Sustainable Chemistry & Engineering, 2019. 7(5): p. 5045-5056.
59. Nie, S., et al., Ultra-high thermal-conductive, reduced graphene oxide welded cellulose nanofibrils network for efficient thermal management. Carbohydrate Polymers, 2020. 250: p. 116971.
60. Nuriel, S., et al., Direct measurement of multiwall nanotube surface tension. Chemical Physics Letters, 2005. 404(4-6): p. 263-266.
61. Cervin, N.T., et al., Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams. Biomacromolecules, 2015. 16(3): p. 822-831.
62. Lotya, M., et al., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009. 131(10): p. 3611-3620.
63. Bourlinos, A.B., et al., Liquid‐phase exfoliation of graphite towards solubilized graphenes. small, 2009. 5(16): p. 1841-1845.
64. Narayan, R. and S.O. Kim, Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2015. 2(1): p. 1-19.
65. Çelik, Y., E. Flahaut, and E. Suvacı, A comparative study on few-layer graphene production by exfoliation of different starting materials in a low boiling point solvent. FlatChem, 2017. 1: p. 74-88.
66. Villar-Rodil, S., et al., Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry, 2009. 19(22): p. 3591-3593.
67. De, S. and J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS nano, 2010. 4(5): p. 2713-2720.
68. Wu, B., et al., Fabrication and electrochemical properties of flexible transparent supercapacitor electrode materials based on cellulose nanofibrils and reduced graphene oxide. Polymer Composites, 2020. 41(3): p. 1135-1144.
69. Jorio, A., et al., Measuring disorder in graphene with the G and D bands. physica status solidi (b), 2010. 247(11‐12): p. 2980-2982.
70. Osman, M.A. and A. Atallah, Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer, 2006. 47(7): p. 2357-2368.
71. Hong, R., et al., Surface‐modified silica nanoparticles for reinforcement of PMMA. Journal of Applied Polymer Science, 2007. 105(4): p. 2176-2184.
72. Tjong, S.C., Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties. Advanced engineering materials, 2007. 9(8): p. 639-652.
73. Xiang, J. and L.T. Drzal, Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon, 2011. 49(3): p. 773-778.
74. Lin, Z., et al., Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS applied materials & interfaces, 2013. 5(15): p. 7633-7640.
75. Lee, J., et al., Boron Nitride Nanosheets (BNNSs) Chemically Modified by “Grafting‐From” Polymerization of Poly (caprolactone) for Thermally Conductive Polymer Composites. Chemistry–An Asian Journal, 2016. 11(13): p. 1921-1928.
76. Cho, H.-B., et al., Thermal anisotropy of epoxy resin-based nano-hybrid films containing BN nanosheets under a rotating superconducting magnetic field. Materials Chemistry and Physics, 2013. 139(2-3): p. 355-359.
77. Tian, X., et al., Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Scientific reports, 2013. 3(1): p. 1-6.
78. Jung, H., et al., High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube. ACS applied materials & interfaces, 2015. 7(28): p. 15256-15262.
79. Luo, F., et al., Anisotropic thermal conductivity and flame retardancy of nanocomposite based on mesogenic epoxy and reduced graphene oxide bulk. Composites Science and Technology, 2016. 132: p. 1-8.
80. Gong, J., et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2016. 87: p. 290-296.
81. Mai, C.-K., et al., Anisotropic thermal transport in thermoelectric composites of conjugated polyelectrolytes/single-walled carbon nanotubes. Macromolecules, 2016. 49(13): p. 4957-4963.
82. Ding, P., et al., Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Composites Science and Technology, 2015. 109: p. 25-31.
83. Wicklein, B., et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature nanotechnology, 2015. 10(3): p. 277-283.
84. Hsieh, C.-T., et al., Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets. Nanoscale, 2015. 7(44): p. 18663-18670.
85. Song, T., et al. Analysis of TSV-to-TSV coupling with high-impedance termination in 3D ICs. in 2011 12th International Symposium on Quality Electronic Design. 2011. IEEE.
86. Morgen, M., et al., Low dielectric constant materials for ULSI interconnects. Annual Review of Materials Science, 2000. 30(1): p. 645-680.
87. Gupta, T.K. and J.-H. Jean, Principles of the development of a silica dielectric for microelectronics packaging. Journal of materials research, 1996. 11(1): p. 243-263.
88. Maier, G., Low dielectric constant polymers for microelectronics. Progress in polymer science, 2001. 26(1): p. 3-65.
89. Kim, J.M., et al., Electrical conductivity and EMI shielding effectiveness of polyurethane foam–conductive filler composites. Journal of Applied Polymer Science, 2017. 134(5).
90. Cao, M.-S., et al., Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2015. 3(26): p. 6589-6599.
91. Archambeault, B.R. and J. Drewniak, PCB design for real-world EMI control. Vol. 696. 2013: Springer Science & Business Media.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87677-
dc.description.abstract隨著製程技術的提升,積體電路在近年迅速微縮,目前元件尺寸可達到奈米尺度。根據摩爾定律(Moore’s Law),積體電路上電晶體數量,大約每隔18個月便會加倍[1],為達成這個需求,積體電路的結構已從平面變成垂直方向的整合。隨著積體電路的元件數量提升,這也代表著電腦的工作效率越高。但越多的運算便會導致更多的熱能產生,且隨著晶片的微縮,晶片間的電磁干擾也越發嚴重。因此,研發一個可同時具有高散熱且具有電磁屏蔽效果之複合材料,並且同時可以進行量產應用於實際封裝是一件非常重要的事。高分子聚合物是目前常見應用於封裝的材料,其質量輕、價格便宜且方便加工,但高分子聚合物的散熱效果非常差,即便添加大量導熱填料,熱傳導也只能達到 ~3W/m·K[2],無法有效解決電子三維結構的積體電路熱聚集的問題;而應用於電磁波屏蔽的封裝技術中,常將金屬粉末與高分子聚合物進行混和,但此類複合材料通常需要耗費較高的成本,且有漏電得疑慮。
在本篇論文中,我們成功的研究出一種同時具有高散熱及電磁屏蔽效果的複合材料,目標是將同時具有超高導熱及導電能力的二維材料石墨烯(Graphene)與奈米纖維進行混和後,均勻散佈於高分子聚合物中;但由於石墨烯惰性的邊緣結構,難以和奈米纖維直接鍵結,因此我們運用一種新的混和技術,『溶液替換法』,藉由將石墨烯轉移到適合的溶液裡面,在與奈米纖維進行混和,形成具有高導電效果的薄膜,再將其散佈於高分子聚合物中,形成連續的散熱網路,並藉由高分子聚合物內均勻分散的片狀導電材料,提供電磁波屏蔽的效果。我們所研發的複合材料將高分子聚合物的熱傳導從原本的0.2 W/m·K提高至54 W/m·K,除此之外,由於我們將導電填料均勻分散於聚合物中,使得我們的複合材料在垂直方向擁有可調變的閾值電壓(1.5V~5V),因此當外界有突發的ESD事件時,我們的複合材料將開啟保護機制;我們已經實際將複合材料進行封裝,並證實其真的有防護ESD事件的效果。不僅如此,由於其內部導電結構分布均勻的特性,也為其提供良好的屏蔽效果,在X-Band的波段應用下,可以達到34dB,在Near field也可以提供40%以上的屏蔽效果,且生產過程是使用微型混鍊射出機,可以大量生產,適合用於商業化的封裝材料。最後,我們將複合材料實際封裝在裝有IC(M1511)的晶片載具中,在封裝後,我們可以用熱顯像儀(TVS-500EX)發現其元件所產生的熱能被有效的消散,且電特性也有提升的現象。
zh_TW
dc.description.abstractScaling of integrated circuits (IC) scaling has become exceptionally challenging in recent years, especially reaching the level of nanometers, that can accommodate billions of transistors. To keep up with the Moore's law, where the density of transistors doubles every 18 months, the design of IC has headed toward three-dimensional integration. Nevertheless, thermal issues and the electromagnetic interference (EMI) between the devices would become more severe in 3DICs. Therefore, it is very important to develop a novel strategy to address such problems, where packaging material with high thermal conductivity and EMI shielding effects might be a great solution.
Commercial packaging material, such as polypropylene and epoxy would be light, cheap, and easy to process, but these polymers have low thermal conductivity, and did not exhibit EMI shielding abilities. Adding metal powders in polymers is a common method, but it usually increases the cost while causes concerns about the leakage current.
In this paper, we successfully developed novel composites that have high thermal conductivity and EMI shielding effect, where we adopted a thermally and electrically conductive filler. Inside the filler, graphene provided excellent thermal as well as electrical conductivity, where the structure and mechanical properties of the filler were maintained by cellulose nanofibers (CNF), due to its ultra-high aspect ratios. Considering the difficulty of directly bonding graphene to CNF, we invented a new mixing technique, "solution replacement", by transferring graphene in a suitable solution, and mixed with CNF to form a graphene/CNF film with high electrical and thermal conductivity. The graphene/CNF film, which provides EMI shielding effect was uniformly dispersed in the polymer to serve as sheet-like conductive filler that construct a continuous heat dissipation network. By introducing the graphene/CNF filler, the thermal conductivity of polypropylene was increased 250 times (from 0.2 W/m·K to 54W/m·K). Our composite could also achieve an EMI shielding effect up to 32 dB and a controllable threshold voltage (1.2V~3.1V) in the vertical direction thanks to the 3D conductive network of graphene/CNF filler. In addition, a commercial IC (M1511) was packaged with our composites, where we further confirmed outstanding thermal dissipation and EMI shielding effect of our composites.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:16:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-11T16:16:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
Contents v
List of Figures x
List of Tables xv
Chapter 1: Introduction 1
1.1 Moore’s Law and development of 3DIC 2
1.2 Importance of thermal management for packaging 3
1.3 Thermal management issues 5
1.4 What is EMI shielding and its importance to 2.5D/3D IC packaging structure 7
1.5 2D material reinforced thermal conductivity of composites and its progress 9
1.6 Premixed process was invented by Chien-Liang Chen 12
1.7 Conductive filler and their novelty in electrical properties 13
1.8 Conclusion 14
Chapter 2: Issues for composites processing and packaging 16
2.1 Introduction to chip packaging 16
2.1.1 The importance of chip-packaging 17
2.1.2 Traditional packaging technology 17
2.1.3 Advanced packaging technology 18
2.1.4 Packaging types and packaging materials 19
2.2 Basic physics parameter of packaging materials 22
2.2.1 Thermal conductivity 22
2.2.2 Real part and imaginary part of dielectric constant and tangle loss 23
2.2.3 Viscosity of packaging material 24
2.2.4 Coefficient of thermal expansion (CTE) in packaging 25
2.3 EMI shielding packaging materials application in antenna-in-package (AiP) 25
2.4 Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of colloid stability 26
2.5 Improving the thermal conductivity of polymer by adding filler material 29
2.6 Recently progress of blending 2D materials with CNF 31
2.7 Conclusion 32
Chapter 3: Enhancement the thermal conductive of polymer by added pre-mix Graphene/CNF 34
3.1 Envision future of thermal management in 3DIC 34
3.2 Enhancing thermal conductivity of polymer by adding pre-processed Graphene /CNF film 35
3.3 Experiment setup 37
3.3.1 Replacement solution method 38
3.3.2 Fabrication of the Graphene/CNF/PP composites 39
3.3.3 Electric properties of graphene/CNF film 40
3.3.4 Raman spectroscopy of graphene/CNF film 42
3.3.5 Mixture, injection molding, and hot pressing 43
3.3.6 Packaging new composite materials in chip carrier 45
3.4 Thermal conductivity 45
3.5 Validation of heat dissipation effect 46
3.5.1 Validation of heat dissipation effect through infrared thermal camera 47
3.6 Mechanical properties of Graphene/CNF/PP composites material 48
3.7 Conclusion 50
Chapter 4: Electromagnetic interference shielding properties of graphene/CNF composites 52
4.1 Applications of Graphene/CNF composite over the IC packaging 53
4.2 Dielectric properties of graphene/CNF/PP composites 53
4.3 Electromagnetic Interference and Shielding Effectiveness of graphene composites 54
4.4 EMI shielding effectiveness of device(M1511B) packaging in chip carrier 57
4.5 Conclusion 60
Chapter 5: Assisting ESD protection with graphene/CNF composite packaging 62
5.1 Fabrication the vertical direction metal pad on the composite 62
5.2 Vertical electrical properties of composites in DC test 63
5.3 DC measurement of LED Driver IC(M1511B) packaging in chip carrier 65
5.4 Conclusion and future work 66
Reference 68
-
dc.language.isoen-
dc.subject石墨烯zh_TW
dc.subject電磁波屏蔽zh_TW
dc.subject電子封裝材料zh_TW
dc.subjectIC散熱zh_TW
dc.subject二維材料zh_TW
dc.subjectThermal managementen
dc.subject2D materialsen
dc.subjectGrapheneen
dc.subjectIC packagingen
dc.subjectElectromagnetic shieldingen
dc.title研究石墨烯複合材料與其可調變電性之封裝應用zh_TW
dc.titleStudy of High Thermal Conductive Graphene-based Composites and Its Controllable Electrical Application on Device Packagingen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉建豪zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;Chih-Ting Lin;Chien-Hao Liuen
dc.subject.keywordIC散熱,電子封裝材料,電磁波屏蔽,二維材料,石墨烯,zh_TW
dc.subject.keywordThermal management,IC packaging,Electromagnetic shielding,2D materials,Graphene,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202204161-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-09-27-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved