請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君 | zh_TW |
| dc.contributor.advisor | I-Chun Cheng | en |
| dc.contributor.author | 陳竑儒 | zh_TW |
| dc.contributor.author | Hong-Ru Chen | en |
| dc.date.accessioned | 2023-07-11T16:15:52Z | - |
| dc.date.available | 2024-09-25 | - |
| dc.date.copyright | 2023-07-11 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Q. A. Akkerman, G. Raino, M. V. Kovalenko, and L. Manna, “Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals,” Nat. Mater, vol. 17, no. 5, pp. 394-405, 2018, doi: 10.1038/s41563-018-0018-4. [2] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of The American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009. [3] H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, and N. G. Park, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett., vol. 13, no. 6, pp. 2412-2417, 2013, doi: 10.1021/nl400286w. [4] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” SCIENCE, vol. 342, no. 6156, pp. 341-344, 2013. [5] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett., vol. 15, no. 6, pp. 3692-3696, 2015, doi: 10.1021/nl5048779. [6] M. K. Assadi, S. Bakhoda, R. Saidur, and H. Hanaei, “Recent progress in perovskite solar cells,” Renewable and Sustainable Energy Reviews, vol. 81, 2812-2822, 2018, doi: 10.1016/j.rser.2017.06.088. [7] J.Liu, Y. Xue, Z. Wang, Z. Q. Xu, C. Zheng, B. Weber, and Q. Bao, “Two-Dimensional CH3NH3PbI3 Perovskite: Synthesis and Optoelectronic Application,” ACS Nano., vol. 10, no. 3, pp. 3536-3542, 2016, doi: 10.1021/acsnano.5b07791. [8] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol, vol. 9, no. 9, pp. 687-692, 2014, doi: 10.1038/nnano.2014.149. [9] Z. Wang, J. Liu, Z. Q. Xu, Y. Xue, L. Jiang, J. Song, and Q. Bao, “Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires,” Nanoscale, vol. 8, no. 12, pp. 6258-6264, 2016, doi: 10.1039/c5nr06262d. [10] X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, “Lead iodide perovskite light-emitting field-effect transistor,” Nat. Commun., vol. 6, no. 7383, 2015 doi: 10.1038/ncomms8383. [11] D. Lee, and H. N. Lee, “Controlling Oxygen Mobility in Ruddlesden-Popper Oxides,” Materials, vol. 10, no. 4, 2017, doi: 10.3390/ma10040368. [12] Y. Zhou, F. Wang, Y. Cao, J. P. Wang, H. H. Fang, M. A. Loi, and C. P. Wong, “Benzylamine-Treated Wide-Bandgap Perovskite with High Thermal-Photostability and Photovoltaic Performance,” Advanced Energy Materials, vol. 7, no. 22, 2017, doi: 10.1002/aenm.201701048. [13] F. Liu, L. Wang, J. Wang, F. Wang, Y. Chen, S. Zhang, and C. Jiang, “2D Ruddlesden–Popper Perovskite Single Crystal Field‐Effect Transistors,” Advanced Functional Materials, vol. 31, no. 1, 2020, doi: 10.1002/adfm.202005662. [14] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, and T. Ding, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” SCIENCE, vol. 349, no. 6255, pp. 1518-1521, 2015. [15] K. Leng, W. Fu, Y. Liu, M. Chhowalla, and K. P. Loh, “From bulk to molecularly thin hybrid perovskites,” Nature Reviews Materials, vol. 5, no. 7, pp. 482-500, 2020, doi: 10.1038/s41578-020-0185-1. [16] G. Konstantatos, and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol, vol. 5, no. 6, pp. 391-400, 2010, doi: 10.1038/nnano.2010.78. [17] M. Long, P. Wang, H. Fang, and W. Hu, “Progress, Challenges, and Opportunities for 2D Material Based Photodetectors,” Advanced Functional Materials, vol. 29, no. 19, 2018, doi: 10.1002/adfm.201803807. [18] J. Y. Choi, and S. Y. Lee, “Comprehensive review on the development of high mobility in oxide thin film transistors,” Journal of the Korean Physical Society, vol. 71, no. 9, pp. 516-527, 2017, doi: 10.3938/jkps.71.516. [19] F. Haque, R. N. Bukke, and M. Mativenga, “Reduction of Hysteresis in Hybrid Perovskite Transistors by Solvent-Controlled Growth,” Materials, vol. 14, no. 10, 2017, doi: 10.3390/ma14102573. [20] T. Miyasaka, “Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives,” Bulletin of the Chemical Society of Japan, vol. 91, no. 7, pp. 1058-1068, 2018, doi: 10.1246/bcsj.20180071. [21] M. Caputo, N. Cefarin, A. Radivo, N. Demitri, L. Gigli, J. R. Plaisier, and A. Goldoni, “Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment,” Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-50108-0. [22] X. Y. Zhu, and V. Podzorov, “Charge Carriers in Hybrid Organic-Inorganic Lead Halide Perovskites Might Be Protected as Large Polarons,” J. Phys. Chem. Lett., vol. 6, no. 23, pp. 4758-4761, 2015, doi: 10.1021/acs.jpclett.5b02462. [23] A. D. Sheikh, V. Vhanalakar, A. Katware, K. Pawar, and P. S. Patil, “Two‐Step Antisolvent Precipitated MAPbI3‐Pellet‐Based Robust Room‐Temperature Ammonia Sensor,” Advanced Materials Technologies, vol. 4, no. 9, 2019, doi: 10.1002/admt.201900251. [24] M. A. Pérez-Osorio, R. L. Milot, M. R. Filip, J. B. Patel, L. M. Herz, M. B. Johnston, and F. Giustino, “Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra,” The Journal of Physical Chemistry C, vol. 119, no. 46, pp. 25703-25718, 2015, doi: 10.1021/acs.jpcc.5b07432. [25] T. M. Brenner, Y. Rakita, Y. Orr, E. Klein, I. Feldman, M. Elbaum, and G. Hodes, “Conversion of Single Crystalline PbI2 to CH3NH3PbI3: Structural Relations and Transformation Dynamics,” Chemistry of Materials, vol. 28, no. 18, pp. 6501-6510, 2016, doi: 10.1021/acs.chemmater.6b01747. [26] W. Kong, A. Rahimi-Iman, G. Bi, X. Dai, and H. Wu, “Oxygen Intercalation Induced by Photocatalysis on the Surface of Hybrid Lead Halide Perovskites,” The Journal of Physical Chemistry C, vol. 120, no. 14, pp. 7606-7611, 2016, doi: 10.1021/acs.jpcc.6b00496. [27] Y. Dong, Y. Zhao, S. Zhang, Y. Dai, L. Liu, Y. Li, and Q. Chen, “Recent advances toward practical use of halide perovskite nanocrystals,” Journal of Materials Chemistry A, vol. 6, no. 44, pp. 21729-21746, 2018, doi: 10.1039/c8ta06376a. [28] C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, and M. G. Kanatzidis, “Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors,” Chemistry of Materials, vol. 28, no. 8, pp. 2852-2867, 2016, doi: 10.1021/acs.chemmater.6b00847. [29] X. Li, W. Ke, B. Traore, P. Guo, I. Hadar, M. Kepenekian, and M. G. Kanatzidis, “Two-Dimensional Dion-Jacobson Hybrid Lead Iodide Perovskites with Aromatic Diammonium Cations,” J. Am. Chem. Soc., vol. 141, no. 32, pp. 12880-12890, 2019, doi: 10.1021/jacs.9b06398. [30] Y. Li, J. V. Milic, A. Ummadisingu, J. Y. Seo, J. H. Im, H. S. Kim, and M. Gratzel, “Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion-Jacobson Two-Dimensional Perovskite Solar Cells,” Nano Lett., vol. 19, no. 1, pp. 150-157, 2019, doi: 10.1021/acs.nanolett.8b03552 [31] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, “A layered hybrid perovskite solar-cell absorber with enhanced moisture stability,” Angew. Chem. Int. Ed. Engl., vol. 53, no. 42, pp. 11232-11235, 2014, doi: 10.1002/anie.201406466. [32] C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu, J. Xia, and W. Huang, “Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films,” Nature Energy, vol. 6, no. 1, pp. 38-45, 2020, doi: 10.1038/s41560-020-00721-5. [33] P. Wangyang, H. Sun, X. Zhu, D. Yang, and X. Gao, “Mechanical exfoliation and Raman spectra of ultrathin PbI2 single crysta,” Materials Letters, vol. 168, pp. 68-71, 2016, doi: 10.1016/j.matlet.2016.01.034. [34] Y. Gao, E. Shi, S. Deng, S. B. Shiring, J. M. Snaider, C. Liang, and L. Dou, “Molecular engineering of organic-inorganic hybrid perovskites quantum wells,” Nat. Chem., vol. 11, no. 12, pp. 1151-1157, 2019, doi: 10.1038/s41557-019-0354-2. [35] Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, and Q. Zhang, “Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden-Popper Perovskite Engineered by Inorganic Layer Thickness,” Adv. Mater., vol. 31, no 39, pp. 1903030, 2019, doi: 10.1002/adma.201903030. [36] X. Liu, S. Li, Z. Li, Y. Zhang, W. Yang, Z. Li, and X. Fang, “Boosted Responsivity and Tunable Spectral Response in B-Site Substituted 2D Ca2Nb3−xTaxO10 Perovskite Photodetectors,” Advanced Functional Materials, vol. 31, no. 20, pp. 2101380, 2021, doi: 10.1002/adfm.202101480. [37] T. Yin, B. Liu, J. Yan, Y. Fang, M. Chen, W. K. Chong, and Z. X. Shen, “Pressure-Engineered Structural and Optical Properties of Two-Dimensional (C4H9NH3)2PbI4 Perovskite Exfoliated nm-Thin Flakes,” J. Am. Chem. Soc., vol. 141, no. 3, pp. 1235-1241, 2019, doi: 10.1021/jacs.8b07765. [38] L. Li, J. Li, S. Lan, G. Lin, J. Wang, H. Wang, and D. Li, (2018). “Two-Step Growth of 2D Organic-Inorganic Perovskite Microplates and Arrays for Functional Optoelectronics,” J. Phys. Chem. Lett., vol. 9, no. 16, pp. 4532-4538, 2018, doi: 10.1021/acs.jpclett.8b01861. [39] Z. Li, J. Li, H. Cao, Y. Qian, J. Zhai, Y. Qiu, and S. Yin, “Surface-Orientation Elimination of Vapor-Deposited PbI2 Flakes for Efficient Perovskite Synthesis on Curved Solar Cells,” ACS Appl. Mater. Interfaces., vol. 13, no. 38, pp. 45496-45504, 2021, doi: 10.1021/acsami.1c12283. [40] W. Zheng, R. Lin, Z. Zhang, Q. Liao, J. Liu, and F. Huang, (2017). “An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic-inorganic perovskite nanoflake,” Nanoscale, vol. 9, no. 34, pp. 12718-12726, 2017, doi: 10.1039/c7nr04395c. [41] Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, and J. Huang, “Thin single crystal perovskite solar cells to harvest below-bandgap light absorption,” Nat. Commun., vol. 8, no. 1, pp. 1890-1897, 2017, doi: 10.1038/s41467-017-02039-5. [42] X. He, Y. Wang, K. Li, X. Wang, P. Liu, Y. Yang, and H. Fu, “Oriented growth of ultrathin single crystals of 2D Ruddlesden–Popper hybrid lead iodide perovskites for high-performance photodetectors,” ACS Applied Materials & Interfaces, vol. 11, no. 17, pp. 15905-15912, 2019. [43] L. Niu, Q. Zeng, J. Shi, C. Cong, C. Wu, F. Liu, and Z. Liu, “Controlled Growth and Reliable Thickness-Dependent Properties of Organic-Inorganic Perovskite Platelet Crystal,” Advanced Functional Materials, vol. 26, no. 29, pp. 5263-5270, 2016, doi: 10.1002/adfm.201601392. [44] X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, and Y. Xie, “High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite,” Advanced Functional Materials, vol. 24, no. 46, pp. 7373-7380, 2014, doi: 10.1002/adfm.201402020. [45] H. Xiao, T. Liang, J. Xu, and M. Xu, “Solution‐Processed Monolithic CH3 NH3PbI3/PbI2 Vertical Heterostructure for High‐Performance Flexible and Broadband Photodetector,” Advanced Optical Materials, vol. 9, no. 17, 2021, doi: 10.1002/adom.202100664. [46] J. Wang, J. Li, S. Lan, C. Fang, H. Shen, Q. Xiong, and D. Li, “Controllable Growth of Centimeter-Sized 2D Perovskite Heterostructures for Highly Narrow Dual-Band Photodetectors,” ACS Nano, vol. 13, no. 5, pp. 5473-5484, 2019, doi: 10.1021/acsnano.9b00259. [47] Y. Xue, J. Yuan, J. Liu, and S. Li, “Controllable Synthesis of 2D Perovskite on Different Substrates and Its Application as Photodetector,” Nanomaterials, vol. 8, no. 8, 2018, doi: 10.3390/nano8080591. [48] Y. Mei, C. Zhang, Z. V. Vardeny, and O. D. Jurchescu, “Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature,” MRS Communications, vol. 5, no. 2, pp. 297-301, 2015, doi: 10.1557/mrc.2015.21. [49] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem., vol. 52, no. 15, pp. 9019-9038, 2013, doi: 10.1021/ic401215x. [50] S. Poncé, M. Schlipf, and F. Giustino, ”Origin of Low Carrier Mobilities in Halide Perovskites,” ACS Energy Letters, vol. 4, no. 2, pp. 456-463, 2019, doi: 10.1021/acsenergylett.8b02346. [51] D. Li, G. Wang, H. C. Cheng, C. Y. Chen, H. Wu, Y. Liu, and X. Duan, (2016). “Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals,” Nature communications, vol. 7, no. 1, 2016, doi: 10.1038/ncomms11330. [52] Q. Chen, N. De Marco, Y. Yang, T. B. Song, C. C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, “Under the spotlight: The organic—inorganic hybrid halide perovskite for optoelectronic applications,” Nano Today, vol. 10, pp. 355-396, 2015, doi: 10.1016/j.nantod.2015.04.009. [53] T. Matsushima, S. Hwang, A. S. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, and C. Adachi, “Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities,” Adv. Mater., vol. 28, pp. 10275-10281, 2016, doi: 10.1002/adma.201603126 [54] S. P. Senanayak, M. Abdi-Jalebi, V. S. Kamboj, R. Carey, R. Shivanna, T. Tian, and D. Di Nuzzo, “A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors,” Science advances, vol. 6, no. 15, 2020, doi: 10.1126/sciadv.aaz4948. [55] H. Zhu, A. Liu, T. Zou, H. Jung, S. Heo, and Y. Y. Noh, “A Lewis base and boundary passivation bifunctional additive for high performance lead-free layered-perovskite transistors and phototransistors,” Materials Today Energy, vol. 21, 2021, doi: 10.1016/j.mtener.202. [56] Y. Reo, H. Zhu, J. Y. Go, K. In Shim, A. Liu, T. Zou, and Y. Y. Noh, (2021). “Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films,” Chemistry of Materials, vol. 33, no. 7, pp. 2498-2505, 2021, doi: 10.1021/acs.chemmater.0c04786. [57] Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, and S. T. Han, “Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing,” Adv. Mater., vol. 30, no. 38, 2018, doi: 10.1002/adma.201802883. [58] H. Cho, Y. H. Kim, C. Wolf, H. D. Lee, and T. W. Lee, “Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes,” Adv. Mater., vol. 30, no. 42, 2018, doi: 10.1002/adma.201704587 [59] L. M. Herz, “Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits,” ACS Energy Letters, vol. 2, no. 7, pp. 1539-1548, 2017, doi: 10.1021/acsenergylett.7b00276 [60] T. Saha-Dasgupta, “Double perovskites with 3d and 4d/5d transition metals: compounds with promises,” Materials Research Express, vol. 7, no. 1, 2020, doi: 10.1088/2053-1591/ab6293. [61] Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, “Qualifying composition dependent p and n self-doping in CH3NH3PbI3,” Applied Physics Letters, vol. 105, no. 16, 2014, doi: 10.1063/1.4899051. [62] S. Xiong, Z. Hou, S. Zou, X. Lu, J. Yang, T. Hao, and Q. Bao, “Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency,” Joule, vol. 5, no. 2, pp, 467-480, 2021, doi: 10.1016/j.joule.2020.12.009. [63] S. Jana, E. Carlos, S. Panigrahi, R. Martins, and E. Fortunato, “Toward Stable Solution-Processed High-Mobility p-Type Thin Film Transistors Based on Halide Perovskites,” ACS Nano, vol. 14, no. 11, pp. 14790-14797, 2020, doi: 10.1021/acsnano.0c02862. [64] Y. Wu, J. Li, J. Xu, Y. Du, L. Huang, J. Ni, and J. Zhang, “Organic–inorganic hybrid CH3NH3PbI3 perovskite materials as channels in thin-film field-effect transistors,” RSC Advances, vol. 6, no. 20, pp. 16243-16249, 2016, doi: 10.1039/c5ra24154e. [65] H. Zhu, A. Liu, K. I. Shim, H. Jung, T. Zou, Y. Reo, and Y. Y. Noh, “High-performance hysteresis-free perovskite transistors through anion engineering,” Nat. Commun., vol. 13, no. 1, 2022, doi: 10.1038/s41467-022-29434-x. [66] H. Khachatryan, K. B. Kim, and M. Kim, “CH3NH3PbI3-based Perovskite Material Patterning and Thin-Film Transistor Fabrication,” Applied Science and Convergence Technology, vol. 31, no. 1, pp.23-27, 2022, doi: 10.5757/asct.2022.31.1.23. [67] X. J.She, C. Chen, G. Divitini, B. Zhao, Y. Li, J. Wang, and H. Sirringhaus, “A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors,” Nature Electronics, vol. 3, no. 11, pp. 694-703, 2020, doi: 10.1038/s41928-020-00486-5. [68] H. Zhu, A. Liu, K. I. Shim, J. Hong, J. W. Han, and Y. Y. Noh, “High-Performance and Reliable Lead-Free Layered-Perovskite Transistors,” Adv. Mater., vol. 32, no. 31, 2020, doi: 10.1002/adma.202002717. [69] F. Haque, N. T. T. Hoang, J. Ji, and M. Mativenga, “Effect of Precursor Composition on Ion Migration in Hybrid Perovskite CH3NH3PbI3,” IEEE Electron Device Letters, vol. 40, no. 11, pp. 1756-1759, 2019, doi: 10.1109/led.2019.2939363. [70] N. D. Canicoba, N. Zagni, F. Liu, G. McCuistian, K. Fernando, H. Bellezza, and A. D. Mohite, “Halide Perovskite High-k Field Effect Transistors with Dynamically Reconfigurable Ambipolarity,” ACS Materials Letters, vol. 1, no. 6, pp. 633-640, 2019, doi: 10.1021/acsmaterialslett.9b00357. [71] W. Yu, F. Li, L. Yu, M. R. Niazi, Y. Zou, D. Corzo, and M. L. Tietze, “Single crystal hybrid perovskite field-effect transistors,” Nature communications, vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-07706-9. [72] T. Matsushima, S. Hwang, A. S. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, and C. Adachi, “Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities,” Adv. Mater., vol. 28, no. 46, pp. 10275-10281, 2016, doi: 10.1002/adma.201603126. [73] Jelight, “UVO-Cleaner,” Retrieved August 30, 2022, from https://www.jelight.com/uvo-cleaner/. [74] X. J. Zhang, and K. Hoshino, “Fundamentals of nano/microfabrication and scale effect,” Molecular Sensors and Nanodevices, pp. 43-111, 2019. [75] mBRAUN, “Glove box,” Retrieved August 30, 2022, from https://www.mbraun.com/en/products/glovebox-workstations.html. [76] Laurell, “Spin coater,” Retrieved August 30, 2022, from http://www.laurell.com/spin-coater/?model=WS-650-23B. [77] 國立台灣科技大學貴重儀器中心, “多功能高功率X光繞射儀,” Retrieved August 30, 2022, from https://sppic.ntust.edu.tw/p/405-1058-81296,c5703.php?Lang=zh-tw. [78] Supplies S, “Copper Grids,” Retrieved August 30, 2022, from https://www.2spi.com/item/2130c-xa/grids-cu-square/. [79] J. Chen, C. Zhang, X. Liu, L. Peng, J. Lin, and X. Chen, “Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra,” Photonics Research, vol. 9, no. 2, 2021, doi: 10.1364/prj.410290. [80] Y. H. Chang, J. C. Lin, Y. C. Chen, T. R. Kuo, and D.Y. Wang, “Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties,” Nanoscale Res. Lett., vol. 13, no. 1, 2018, doi: 10.1186/s11671-018-2664-5. [81] Q. Zhang, L. Chu, F. Zhou, W. Ji, and G. Eda, “Excitonic Properties of Chemically Synthesized 2D Organic-Inorganic Hybrid Perovskite Nanosheets,” Adv Mater, vol. 30, no. 18, 2018, doi: 10.1002/adma.201704055. [82] D. Meggiolaro, E. Mosconi, and F. De Angelis, “Modeling the Interaction of Molecular Iodine with MAPbI3: A Probe of Lead-Halide Perovskites Defect Chemistry,” ACS Energy Letters, vol. 3, no. 2, pp. 447-451, 2018, doi: 10.1021/acsenergylett.7b01244. [83] D. Meggiolaro, and F. De Angelis, “First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues,” ACS Energy Letters, vol. 3, no. 9, pp. 2206-2222, 2018, doi: 10.1021/acsenergylett.8b01212. [84] G. N. Derry, M. E. Kern, and E. H. Worth, “Recommended values of clean metal surface work functions,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 33, no. 6, 2015. [85] B. Ofuonye, J. Lee, M. Yan, C. Sun, J. M. Zuo, and I. Adesida, “Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures,” Semiconductor Science and Technology, vol. 29, no. 9, 2014, doi: 10.1088/0268-1242/29/9/095005. [86] S. Alborghetti, J. M. D. Coey, and P. Stamenov, “Dependence of charge carrier injection on the interface energy barrier in short-channel polymeric field effect transistors,” Applied Physics Letters, vol. 100, no. 14, 2012, doi: 10.1063/1.3701271. [87] P. Schulz, J. O. Tiepelt, J. A. Christians, I. Levine, E. Edri, E. M. Sanehira, and A. Kahn, “High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic-Inorganic Perovskite Solar Cells,” ACS Appl. Mater. Interfaces, vol. 8, no. 46, pp. 31491-31499, 2016, doi: 10.1021/acsami.6b10898. [88] A. Di Vito, A. Pecchia, M. Auf der Maur, and A. Di Carlo, “Nonlinear Work Function Tuning of Lead‐Halide Perovskites by MXenes with Mixed Terminations,” Advanced Functional Materials, vol. 30, no. 47, 2020, doi: 10.1002/adfm.201909028. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87675 | - |
| dc.description.abstract | 本研究提出將三維結構有機無機混和型鈣鈦礦的厚度降低至數奈米的實驗方法以及後續將其製作成元件觀察鈣鈦礦薄片的光電特性。在本研究中,有別於其他文獻常使用的化學氣相沉積法,使用溶液的方式,藉由調整實驗條件,例如:轉速、旋轉時間、是否臭氧清洗機處理等,來獲得碘化鉛薄片,再將其轉換為鈣鈦礦薄片。利用此方法製作的碘化鉛薄片最薄可以到2.6nm,而後續本研究製作出轉換前碘化鉛薄片厚度為4nm的鈣鈦礦薄片電晶體。並確認鈣鈦礦薄片,如同其他研究,在室溫下呈現四方晶系。並且越薄的薄片,其出平面分子振動模式強度越低。而透過量測光致發光光譜,越薄的鈣鈦礦薄片的光致發光峰值會有藍移的現象,對應其具有越大的能隙。 後續,本研究將鈣鈦礦薄片製作成光偵測器與電晶體。對於光偵測器而言,越厚的鈣鈦礦薄片有越明顯的光電流變化,從光偵測器的電流開關比可以看到研究中最厚的薄片可以達到最薄的2.5倍,這是因為厚度較厚的鈣鈦礦薄片載子數量較多以及厚度足以吸收較多的入射光。而電晶體方面,較厚的薄片具有雙極性,較薄的薄片呈現P型。而厚度變薄遲滯現象變小、臨界電壓絕對量值變大的現象。 | zh_TW |
| dc.description.abstract | In this thesis, an experimental method to reduce the thickness of organic-inorganic hybrid perovskite flakes to several nanometers was proposed, and electrical and optoelectronic properties of perovskite nanoflakes were investigated. Different from the chemical vapor deposition method commonly used in the literatures, a solution method was adopted to obtain lead iodide flakes by adjusting the experimental conditions, such as: rotation speed, rotation time, whether to treat with an ozone cleaning machine, etc. After that, lead iodide flakes were converted into perovskite with solution method, too. The thinnest lead iodide flakes synthesized by this method can reach 2.6 nm. Perovskite flake transistors were subsequently fabricated. The perovskite flakes, like other researches, were tetragonal phase at room temperature. The thinner the flake, the weaker the out-of-plane vibrational mode. Blue shift, corresponding to a larger energy bandgap was observed in the photoluminescence peak as the perovskite flake becomes thinner. As the active layer of photodetectors, thicker perovskite flakes show more obvious changes in photocurrents. The on/off ratio of the photodetector with the thickest flake could reach 2.5 times of that of the thinnest counterpart. This is because the carrier concentration was larger and the flake was thick enough to absorb the incident light sufficiently. As the channel layer of the field-effect transistors, thicker flakes are bipolar and thinner flakes are p-type. Also, the thinner the flakes, the smaller the hysteresis phenomenon, and the larger the absolute value of threshold voltage. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:15:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-11T16:15:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄 口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 鈣鈦礦研究背景 1 1.3 研究動機 4 1.4 論文架構 5 第二章 理論基礎與文獻回顧 7 2.1 光偵測器簡介 7 2.1.1 光二極體偵測器 7 2.1.2 光導體偵測器 7 2.1.3 光偵測器相關參數[17] 8 2.2 場效電晶體簡介 11 2.2.1 電晶體結構[18] 11 2.2.2 薄膜電晶體相關原理 13 2.2.3 薄膜電晶體相關參數 14 2.3 鈣鈦礦材料簡介 17 2.4 準二維與鈣鈦礦薄片材料簡介 21 2.4.1 準二維鈣鈦礦材料 21 2.4.2 鈣鈦礦薄片材料與元件發展 23 2.5 鈣鈦礦電晶體簡介 29 第三章 實驗方法與步驟 36 3.1 樣品製作相關實驗儀器及方法 36 3.1.1 濕式蝕刻製程 36 3.1.2 紫外光臭氧清洗機 37 3.1.3 電子束蒸鍍系統 38 3.1.4 手套箱 40 3.1.5 旋轉塗佈機 41 3.2 量測相關實驗儀器及方法 42 3.2.1 光學顯微鏡 42 3.2.2 原子力顯微鏡 42 3.2.3 X光繞射分析 43 3.2.4 微拉曼光譜儀 44 3.2.5 光致發光光譜分析儀 44 3.2.6 光電特性量測系統及光源 46 3.2.7 光偵測器量測設定 47 3.2.8 電晶體量測設定 48 3.3 實驗溶液配製 49 3.3.1 碘化鉛溶液配製 49 3.3.2 甲基碘化銨溶液配製 49 3.4 實驗元件製作 50 3.4.1 鈣鈦礦薄片製作 50 3.4.2 鈣鈦礦薄片光偵測器及電晶體製作 51 第四章 結果與討論 54 4.1 PbI2薄片製作 54 4.1.1 薄片成長情形 55 4.1.2 厚度變化 60 4.2 薄片特性研究 62 4.2.1 PbI2及MAPbI3之X光繞射譜 64 4.2.2 PbI2及MAPbI3之微拉曼光譜 66 4.2.3 MAPbI3光致發光光譜和時間解析光致發光量測 68 4.3 鈣鈦礦薄片光偵測器特性研究 72 4.3.1 光電流和響應率隨厚度變化 74 4.3.2 響應時間隨厚度變化 77 4.4 鈣鈦礦薄片電晶體特性分析研究 79 第五章 結論與未來展望 87 5.1 結論 87 5.2 未來展望 88 A.附錄 89 A.1 光致發光光譜與微拉曼光譜之晶體厚度 89 A.2 鈣鈦礦薄片光偵測器與電晶體之主動層晶體厚度 91 A.3 薄片元件之顯微影像 93 A.4 各薄片電晶體轉換特性曲線放大圖 95 A.5 各薄片電晶體輸出特性曲線放大圖 97 A.6 過去嘗試的實驗方法與缺點 99 A.6.1 預先製作汲極、源極 99 A.6.2 黃光微影製程 99 A.6.3 定義下閘極圖案 99 REFERENCES 101 圖目錄 圖 1.1 鈣鈦礦晶體結構示意圖[1]。 1 圖 1.2 不同n對應的Ruddlesden–Popper perovskites晶體結構[11]。 2 圖 2.1 薄膜電晶體結構示意圖,依序為:(a)下閘極堆疊型、(b)下閘極共平面型、(c)上閘極堆疊型、(d)上閘極共平面型[18]。 12 圖 2.2 鈣鈦礦電晶體的雙極性特性,依序為:(a)轉換特性曲線、(b)輸出特性曲線[10]。 13 圖 2.3 MAPbI3的軌域分布、晶體結構以及不同軌域的貢獻。下圖中,綠色實線為I 5p、紅色實線為Pb 6p、灰色點為Pb 6s[20]。 17 圖 2.4 依序為MAPbI3、MAI和PbI2粉末的X光繞射譜[23]。 18 圖 2.5 由層狀的PbI2轉換為三為結構的MAPbI3示意圖[25]。 19 圖 2.6 MAPbI3中的PbI3分子振動模式,並以藍線區隔以遠紅外光激發(IR-active, IR)和拉曼激發(Raman-active, R)[24]。 19 圖 2.7 PbI2以及MAPbI3的拉曼光譜比較。其中,A、C、D處的拉曼位移與平面內振動相關、而B處則是與平面外振動相關[26]。 20 圖 2.8 二維結構的鈣鈦礦材料。(a)RPPVK、(b)DJPVK[30]。 22 圖 2.9 (a)不同層數的二維鈦鈣礦PL光譜,除了n=1以外,其他都會出現不同的鈣鈦礦層數的特徵峰。(b)更換實驗方法之後,改善不均勻的現象[32]。 23 圖 2.10 製作鈣鈦礦薄片的不同方法[15]。 25 圖 2.11 (a)薄片[40]和(b)塊狀[44]鈣鈦礦光偵測器的響應時間差異。 28 圖 2.12 鈣鈦礦電晶體的轉換特性曲線具有明顯的遲滯現象[51]。 29 圖 2.13 藉由改變結構來改善鈣鈦礦電晶體的表現。(a)為基本的結構、(b)為加入一組裝層的結構、(c)為加入自組裝層和MoOx改善電極和半導體層的介面[53]。 30 圖 2.14 加入入其他材料,例如金屬,來修復晶界降低遲滯現象[56]。 31 圖 2.15 (a)鈣鈦礦結構與(b)雙鈣鈦礦結構示意圖[60]。 32 圖 2.16 (a)P型[63]與(b)N型[64]鈣鈦礦電晶體的轉換特性曲線。 33 圖 3.1 紫外光臭氧清洗機示意圖[73]。 37 圖 3.2 電子束蒸鍍系統示意圖[74]。 39 圖 3.3 手套箱示意圖[75]。 40 圖 3.4 旋轉塗佈機示意圖[76]。 41 圖 3.5 多功能高功率X光繞射儀[77]。 43 圖 3.6 光致發光示意圖。 45 圖 3.7 透過(紅線)與沒透過(黑線)觀景窗玻璃的氙燈光譜。 46 圖 3.8 實驗流程圖。 50 圖 3.9 銅網示意圖[78]。 52 圖 3.10 鈣鈦礦薄片電晶體結構示意圖。 53 圖 4.1 顯微鏡影像圖依序為:(a)樣品I,未經過臭氧清洗機處理(5x)、(b)樣品I,未經過臭氧清洗機處理(20x)、(c)樣品III,經過臭氧處理(5x)、(d) 樣品III,經過臭氧處理(20x)。 56 圖 4.2 顯微鏡影像依序為:(a)樣品IV,500 rpm,5 s (5x)、(b)樣品IV,500 rpm,5 s (20x)、(c)樣品VII,500 rpm,10 s (5x)、(d) 樣品VII,500 rpm,10 s (20x)、(e) 樣品VIII,500 rpm,15 s (5x)、(f)樣品VIII,500 rpm,15 s (20x)、(g)樣品V,1000 rpm,5 s (5x)、(h)樣品V,1000 rpm,5 s (20x)、(i)樣品VI,1000 rpm,10 s (5x)、(j)樣品VI,1000 rpm,10 s (10x)。 58 圖 4.3 顯微鏡影像(a) 樣品II,500 rpm,5 s (5x)、(b) 樣品II,500 rpm,5 s (20x)。 59 圖 4.4 顯微鏡影像與AFM掃描結果比對。圖(b)和圖(c)分別為圖(a)中紅色方框與黃色方框範圍內的掃描結果。 60 圖 4.5 對比度與厚度關係圖。 61 圖 4.6 樣品IX和樣品X的OM影像。 62 圖 4.7 樣品IX和樣品X不同厚度晶體對應的(a)面積和(b)個數關係圖。 64 圖 4.8 PbI2和不同厚度的MAPbI3X光繞射譜比較。 65 圖 4.9 微拉曼光譜,依序為(a) PbI2和MAPbI3的比較、(b)不同厚度的MAPbI3比較、(c)針對95 cm-1和110 cm-1的特徵峰放大。 67 圖 4.10 晶體厚度與特徵峰比例關係圖。 67 圖 4.11 光致發光光譜隨厚度變化關係圖。 68 圖 4.12 光致發光峰值和能隙隨厚度變化關係圖。 69 圖 4.13 (a)樣品IX和(b)樣品X的OM影像(10x)、(c)樣品IX和(d)樣品X的TRPL結果。 70 圖 4.14 不同厚度二維結構鈣鈦礦薄片的TRPL量測結果變化[81]。 71 圖 4.15 元件示意圖。 73 圖 4.16 不同厚度的鈣鈦礦薄片光偵測器在不同光功率密度下的光電流變化。依序對應樣品:(a)厚度23 nm的樣品XII、(b)厚度20 nm的樣品XIII、(c)厚度11 nm的樣品XIV、(d)厚度8.8 nm的樣品XV、(e)厚度8.4 nm的樣品XVI、(f)厚度7 nm的樣品XVII、(g)厚度5.7 nm的樣品XVIII、(a)厚度4 nm的樣品XVIV。 75 圖 4.17 (a)偏壓為10 V時,不同厚度晶體的光偵測器在不同光功率密度下的電流比較。(b)偏壓為10 V時,不同厚度晶體的光偵測器在不同光功率密度下的響應率。 76 圖 4.18 不同厚度晶體的光偵測器在響應時間的表現。分別對應(a) 20 nm的樣品XIII、(b)11 nm的樣品XIV、(c)7 nm的樣品XVII、(d)4 nm的樣品XVIV。 78 圖 4.19 不同厚度的鈣鈦礦薄片電晶體的轉換特性曲線變化。依序對應樣品:(a)厚度23nm的樣品XII、(b)厚度20nm的樣品XIII、(c)厚度11nm的樣品XIV、(d)厚度8.8nm的樣品XV、(e)厚度8.4nm的樣品XVI、(f)厚度7nm的樣品XVII、(g)厚度5.7nm的樣品XVIII、(a)厚度4nm的樣品XVIV。 80 圖 4.20 各缺陷多寡及費米能階的位置關係圖[83]。 82 圖 4.21 電晶體臨界電壓變化與晶體厚度關係圖。 84 圖 4.22 不同厚度的鈣鈦礦薄片電晶體的輸出特性曲線。依序對應樣品:(a)厚度23nm的樣品XII、(b)厚度20nm的樣品XIII、(c)厚度11nm的樣品XIV、(d)厚度8.8nm的樣品XV、(e)厚度8.4nm的樣品XVI、(f)厚度7nm的樣品XVII、(g)厚度5.7nm的樣品XVIII、(a)厚度4nm的樣品XVIV。 86 圖 A.1 AFM掃瞄範圍。 89 圖 A.2 對應黃色區域的AFM量測結果。 89 圖 A.3 對應綠色區域的AFM量測結果。 90 圖 A.4 對應紅色區域的AFM量測結果。 90 圖 A.5 晶體量測結果,依序為:(a)樣品XI、(b)樣品XII和樣品XVIII、(c)樣品XIII、(d)樣品XIV、(e)樣品XV、(f)樣品XVI、(g)樣品XVII。 92 圖A.6 不同元件的顯微鏡影像。依序對應樣品:(a)樣品XII、(b)樣品XIII、(c)樣品XIV、(d)樣品XV、(e)樣品XVI、(f)樣品XVII、(g)樣品XVIII、(a)樣品XVIV。 94 圖 A.7 不同厚度的鈣鈦礦薄片電晶體的轉換特性曲線。依序對應樣品:(a)樣品XII、(b)樣品XIII、(c)樣品XIV、(d)樣品XV、(e)樣品XVI、(f)樣品XVII、(g)樣品XVIII、(a)樣品XVIV。 96 圖 A.8 不同厚度的鈣鈦礦薄片電晶體的輸出特性曲線。依序對應樣品:(a)樣品XII、(b)樣品XIII、(c)樣品XIV、(d)樣品XV、(e)樣品XVI、(f)樣品XVII、(g)樣品XVIII、(a)樣品XVIV。 98 圖 A.9 在有定義閘極位置的表面使用(a)旋塗過程烤乾和(b)在加熱板上靜止烤乾溶液的方法製作薄片。 100 表目錄 表 2..1 不同製作奈米級鈣鈦礦的方法比較,包含三維結構與二維結構。 26 表 2.2 近年各種類鈣鈦礦光偵測器相關文獻整理。 28 表 2.3 近年各種類鈣鈦礦電晶體相關文獻整理。 34 表 3.1 光偵測器量測設定。 47 表 3.2 電晶體相關量測設定。 48 表 4.1 樣品名稱對應的實驗參數。 55 表 4.2 量測項目和對應的量測材料。 62 表 4.3 樣品對於12.7 °、14 °的強度關係。 65 表 4.4 相對厚薄樣品的TRPL量測相關結果。 70 表 4.5 不同元件對應的晶體厚度和量測項目。 72 表 4.6 不同厚度的光偵測器的暗電流和光功率密度為9.93 μw/cm2下的電流,以及電流開關比。 74 表 4.7 不同厚度的電晶體電性表現。 83 表A.1 各元件晶體通道寬度。 94 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 有機無機混和型鈣鈦礦 | zh_TW |
| dc.subject | 奈米薄片 | zh_TW |
| dc.subject | 光偵測器 | zh_TW |
| dc.subject | 電晶體 | zh_TW |
| dc.subject | 溶液製程 | zh_TW |
| dc.subject | Organic-inorganic hybrid perovskites | en |
| dc.subject | solution processes | en |
| dc.subject | transistors | en |
| dc.subject | photodetectors | en |
| dc.subject | nanosheets | en |
| dc.title | 鈣鈦礦奈米薄片之光電特性及電晶體研究 | zh_TW |
| dc.title | Optoelectronic Properties and Transistor Studies of Perovskite Nanoflakes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李偉立 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Zhang Chen;Yu-Chiang Chao;Wei-Li Lee | en |
| dc.subject.keyword | 有機無機混和型鈣鈦礦,奈米薄片,光偵測器,電晶體,溶液製程, | zh_TW |
| dc.subject.keyword | Organic-inorganic hybrid perovskites,nanosheets,photodetectors,transistors,solution processes, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202204002 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-27 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2024-09-25 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 6.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
