請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87672
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃榮南 | zh_TW |
dc.contributor.advisor | Rong-Nan Huang | en |
dc.contributor.author | 林宥孜 | zh_TW |
dc.contributor.author | Yu-Tzu Lin | en |
dc.date.accessioned | 2023-07-11T16:14:52Z | - |
dc.date.available | 2024-06-30 | - |
dc.date.copyright | 2023-07-11 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 衛生福利部疾病管制署, 2021。登革熱/屈公病防治工作指引。衛生福利部疾病管制署。5-10頁。
Arumugam G, Swamy MK, Sinniah UR. 2016. Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21: 369. Attaran A, Maharaj R. 2000. Ethical debate: doctoring malaria, badly: the global campaign to ban DDT. BMJ. 321: 1403-1405. Bar A, Andrew J. 2013. Morphology and morphometry of Aedes aegypti larvae. Annu. Res. Rev. Biol. 1-21. Benke GM, Cheever KL, Mirer FE, Murphy SD. 1974. Comparative toxicity, anticholinesterase action and metabolism of methyl parathion and parathion in sunfish and mice. Toxicol. Appl. Pharmacol. 28: 97-109. Borrero-Landazabal MA, Duque JE, Mendez-Sanchez SC. 2020. Model to design insecticides against Aedes aegypti using in silico and in vivo analysis of different pharmacological targets. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 229: 108664. Boyland E, Chasseaud LF. 1967. Enzyme-catalysed conjugations of glutathione with unsaturated compounds. Biochem. J. 104: 95-102. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Cao JQ, Pang X, Guo SS, Wang Y, Geng ZF, Sang Yl, Guo PJ, Du SS. 2019. Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. Int. Biodeterior. Biodegrad. 140: 1-8. Castillo-Morales RM, Carreno Otero AL, Mendez-Sanchez SC, Da Silva MAN, Stashenko EE, Duque JE. 2019. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 221: 29-37. Chiu YJ, Huang TH, Chiu CS, Lu TC, Chen YW, Peng WH, Chen CY. 2012. Analgesic and antiinflammatory activities of the aqueous extract from Plectranthus amboinicus (Lour.) Spreng, both in vitro and in vivo. J. Evidence-Based Complementary Altern. Med. 2012: 508137. Clark AG, Shamaan NA. 1984. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pestic. Biochem. Physiol. 22: 249-261. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. 2015. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene beta-caryophyllene from the essential oil of Aquilaria crassna. Molecules 20: 11808-11829. Dell Chism B, Apperson CS. 2003. Horizontal transfer of the insect growth regulator pyriproxyfen to larval microcosms by gravid Aedes albopictus and Ochlerotatus triseriatus mosquitoes in the laboratory. Med. Vet. Entomol. 17: 211-220. Dermauw W, Van Leeuwen T. 2014. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45: 89-110. Dharmagadda VS, Naik SN, Mittal PK, Vasudevan P. 2005. Larvicidal activity of tagetes patula essential oil against three mosquito species. Bioresour Technol 96: 1235-1240. El Mokni R, Majdoub S, Chaieb I, Jlassi I, Joshi RK, Hammami S. 2019. Chromatographic analysis, antimicrobial and insecticidal activities of the essential oil of Phlomis floccosa D. Don. Biomed. Chromatogr. 33: e4603. Enayati AA, Ranson H, Hemingway J. 2005. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 14: 3-8. Faull KJ, Williams CR. 2015. Intraspecific variation in desiccation survival time of Aedes aegypti (L.) mosquito eggs of Australian origin. J. Vector Ecol. 40: 292-300. Farouk SA, Barahim N, Hamzah SN. 2021. The detoxification enzymes activity profile in susceptible Aedes and Culex mosquitoes. IOP Conference Series: Earth Environ. Sci. 711. Feyereisen R. 2005. Insect cytochrome P450. Compr. Mol. Insect Sci. 4: 1–77. Feyereisen R. 2006. Evolution of insect P450. Biochem. Soc. Trans. 34: 1252-1255. Francomano F, Caruso A, Barbarossa A, Fazio A, La Torre C, Ceramella J, Mallamaci R, Saturnino C, Iacopetta D, Sinicropi MS. 2019. β-Caryophyllene: a sesquiterpene with countless biological properties. Appl. Sci. 9: 5420. Gong Y, Diao Q. 2017. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicol. 26: 1-12. Habig WH, Pabst M J, Jakoby WB. 1974. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 22: 7130-7139. Hafeez M, Ullah F, Khan MM, Li X, Zhang Z, Shah S, Imran M, Assiri MA, Fernandez-Grandon GM, Desneux N, Rehman M, Fahad S, Lu Y. 2022. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. Environ. Sci. Pollut. Res. Int. 29: 1746-1762. Hissin PJ, Hilf R. 1976. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74: 214-226. Hodgson E, Levi PE. 1996. Pesticides: an important but underused model for the environmental health sciences. Environ. Health Perspect. 1: 97-106. Huang HT, Lin CC, Kuo TC, Chen SJ, Huang RN. 2019. Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta. 250: 59-68. Huang RN, Lee TC. 1996. Arsenite efflux is inhibited by verapamil, cyclosporin A, and GSH-depletingagents in arsenite-resistant chinese hamster ovary cells. Toxicol. Appl. Pharmacol. 141: 17-22. Jayaraman M, Senthilkumar A, Venkatesalu V. 2015. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol. Res. 114: 1511-1518. Jensen S, Johnels AG, Olsson M, Otterlind G. 1969. DDT and PCB in marine animals from Swedish waters. Nature 224: 247-250. Khan MCPI. 2013. Current trends in coleus aromaticus: an important medicinal plant. Bookango: 58. Komagata O, Kasai S, Tomita T. 2010. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40: 146-152. Kulkarni RR, Pawar PV, Joseph MP, Akulwad AK, Sen A, Joshi SP. 2013. Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles sfttephensi and Culex quinquefasciatus. J. Pestic. Sci. 86: 713-718. Kusumoto IT, Nakabayashi T, Kida H, Miyashiro H, Hattori M, Namba T, Shimotohno K. 1995. Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother. Res. 9: 180-184. Lumjuan N, McCarroll L, Prapanthadara LA, Hemingway J, Ranson H. 2005. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem. Mol. Biol. 35: 861-871. Ma S, Jia R, Guo M, Qin K, Zhang L. 2020. Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind. Crops Prod. 150: 112403. Matsumura F. 1985. Metabolism of insecticides by animals and plants. Toxicol. Insectic. 203-298. McPartland J, Di Marzo V, De Petrocellis L, Mercer A, Glass M. 2001. Cannabinoid receptors are absent in insects. J. Comp. Neurol. 436: 423-429. Miccadei S, Kyle ME, Gilfor D, Farber JL. 1988. Toxic consequence of the abrupt depletion of glutathione in cultured rat hepatocytes. Arch. Biochem. Biophys. 265: 311-320. Mosquito Reviews. 2022. Statistics for mosquito-borne diseases & deaths, https://mosquitoreviews.com/learn/disease-death-statistics, asscessed on 22 February 2022. Muniandy K, Hassan Z, Isa MHM. 2014. The action of Coleus aromaticus as a potential wound healing agent in experimentally induced diabetic mice. Perintis. Ej. 4: 1–30. Murthy PS, Ramalakshmi K, Srinivas P. 2009. Fungitoxic activity of Indian borage (Plectranthus amboinicus) volatiles. Food Chem. 114: 1014-1018. Muturi EJ, Hay WT, Doll KM, Ramirez JL, Selling G. 2020. Insecticidal activity of Commiphora erythraea essential oil and its emulsions against larvae of three mosquito species. J. Med. Entomol. 57: 1835-1842. Naqqash MN, Gokce A, Bakhsh A, Salim M. 2016. Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res. 115: 1363-1373. Nauen R, Bass C, Feyereisen R, Vontas J. 2022. The role of cytochrome P450s in insect toxicology and resistance. Annu. Rev. Entomol. 67: 105-124. Nguyen LT, Mysliveckova Z, Szotakova B, Spicakova A, Lnenickova K, Ambroz M, Kubicek V, Krasulova K, Anzenbacher P, Skalova L. 2017. The inhibitory effects of beta-caryophyllene, beta-caryophyllene oxide and alpha-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem. Biol. Interact. 278: 123-128. Ojha S, Javed H, Azimullah S, Haque ME. 2016. beta-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of parkinson disease. Mol. Cell Biochem. 418: 59-70. Oliveira, IF. 2014. Caracterização molecular de membros de glutationa S-transferase da classe epsilon em processos biológicos de Aedes aegypti e Culex quinquefasciatus (Diptera: Culicidae). Attena Repositório Digtial da UFPE. 79 pp. Pavela R. 2005. Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76: 691-696. Pavela R. 2015. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 76: 174-187. Pimprikar GD, Georghiou GP. 1979. Mechanisms of resistance to diflubenzuron in the house fly, Musca domestica (L.). Pestic. Biochem. Physiol. 12: 10-22. Plastina P, Apriantini A, Meijerink J, Witkamp R, Gabriele B, Fazio A. 2018. In vitro anti-inflammatory and radical scavenging properties of Chinotto (Citrus myrtifolia Raf.) Essential Oils. Nutr. 10: 783. Rabbani M, Sajjadi SE, Vaezi A. 2015. Evaluation of anxiolytic and sedative effect of essential oil and hydroalcoholic extract of Ocimum basilicum L. and chemical composition of its essential oil. Res. Pharm. Sci. 10: 535-543. Rajkumar V, Gunasekaran C, Christy IK, Dharmaraj J, Chinnaraj P, Paul CA. 2019. Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pestic. Biochem. Physiol. 156: 138-144. Ramade F. 1987. Proposal of ecotoxicological criteria for the assessment of the impact of pollution on environmental quality. Toxicol. Environ. Chem. 13: 189-203. Ramalakshmi P, Subramanian N, Saravanan R, Mohanakrishnan H, Muthu M. 2014. Anticancer effect of Coleus amboinicus (Karpooravalli) on human lung cancer cell line (A549). Int. J. Dev. Res. 4: 2442-2449. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R. 2002. Evolution of supergene families associated with insecticide resistance. Science 298: 179-181. Ratcliffe DA. 1970. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some british birds. J. Appl. Ecol. 7: 67-115. Regnault-Roger C, Vincent C, Arnason JT. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57: 405-424. Roshan P, Naveen M, Manjul PS, Gulzar A, Anita S, Sudarshan S. 2010. Plectranthus amboinicus (Lour) spreng: an overview. Pharm. Res. 4: 1–15. Russo A, Perri M, Cione E, Di Gioia ML, Nardi M, Cristina Caroleo M. 2017. Biochemical and chemical characterization of Cynara cardunculus L. extract and its potential use as co-adjuvant therapy of chronic myeloid leukemia. J. Ethnopharmacol. 202: 184-191. Kiran S, Prakash B. 2015. Toxicity and biochemical efficacy of chemically characterized Rosmarinus officinalis essential oil against Sitophilus oryzae and Oryzaephilus surinamensis. Ind. Crops Prod. 74: 817-823. Saavedra-Rodriguez K, Strode C, Flores AE, Garcia-Luna S, Reyes-Solis G, Ranson H, Hemingway J, Black WCt. 2014. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. Insect Mol. Biol. 23: 199-215. Salinas AE, Wong MG. 1999. Glutathione S-transferases – A review. Current Med. Chem. 6: 279–309. Satongrod B, Wanna R. 2020. Chemical composition and bioactivity of essential oil from Indian borage (Plectranthus amboinicus (Lour.) Spreng) against Callosobruchus maculatus (F.). Int. J. Agric. Technol. 16: 1243-1256. Schmitt D, Levy R, Carroll B. 2016. Toxicological evaluation of beta-caryophyllene Oil: subchronic toxicity in rats. Int. J. Toxicol. 35: 558-567. Senthilkumar A, Venkatesalu V. 2010. Chemical composition and larvicidal activity of the essential oil of Plectranthus amboinicus (Lour.) Spreng against Anopheles stephensi: a malarial vector mosquito. Parasitol. Res. 107: 1275-1278. Sousa OV, Silverio MS, Del-Vechio-Vieira G, Matheus FC, Yamamoto CH, Alves MS. 2008. Antinociceptive and anti-inflammatory effects of the essential oil from Eremanthus erythropappus leaves. J. Pharm. Pharmacol. 60: 771-777. Tolle MA. 2009. Mosquito-borne diseases. Curr. Probl. Pediatr. Adolesc. Health Care. 39: 97-140. Vijayan VA, Sathish Kumar BY, Ganesh KN, Urmila J, Fakoorziba MR, Makkapati AK. 2007. Efficacy of piperonyl butoxide (PBO) as a synergist with deltamethrin on five species of mosquitoes. J. Commun. Dis. 39: 159-163. Vivekanandhan P, Senthil-Nathan S, Shivakumar MS. 2018. Larvicidal, pupicidal and adult smoke toxic effects of Acanthospermum hispidum (DC) leaf crude extracts against mosquito vectors. Physiol. Mol. Plant Pathol. 101: 156-162. Viveros-Paredes JM, Gonzalez-Castaneda RE, Gertsch J, Chaparro-Huerta V, Lopez-Roa RI, Vazquez-Valls E, Beas-Zarate C, Camins-Espuny A, Flores-Soto ME. 2017. Neuroprotective effects of beta-caryophyllene against dopaminergic neuron injury in a murine model of parkinson's disease induced by MPTP. Pharm. (Basel) 10: 60. WHO G. 1996. Report of the WHO informal consultation on the evaluation and testing of insecticides. World Health Organization Geneva. WHO. 2005. Guidelines for laboratory and field testing of mosquito larvicides (No. WHO/CDS/WHOPES/GCDPP/2005.13). World Health Organization. WHO. 2009. Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization. Yadav S, Mittal PK, Saxena PN, Singh RK. 2008. Effect of synergist piperonyl butoxide (PBO) on the toxicity of some essential oils against mosquito larvae. J. Commun. Dis. 4: 263-268. Yakob L, Dunning R, Yan G. 2011. Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms. J. R. Soc. Interface. 8: 799-806. Yoo HJ, Jwa SK. 2018. Inhibitory effects of beta-caryophyllene on Streptococcus mutans biofilm. Arch. Oral. Biol. 88: 42-46. Yu SJ, Abo-Elghar GE. 2000. Allelochemicals as inhibitors of glutathione S-transferases in the fall armyworm. Pestic. Biochem. Physiol. 68: 173-183. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87672 | - |
dc.description.abstract | 蚊蟲是許多疾病的傳播媒介,包含瘧疾、登革熱和茲卡病毒感染症。蚊蟲的防治策略通常依賴合成殺蟲劑,但合成殺蟲劑常產生抗藥性,也有環境污染問題,因此,必須尋找嶄新的防治策略,而精油是一種環境友善防治害蟲很好的替代方案。實驗室先前研究顯示相較於埃及斑蚊幼蟲,熱帶家蚊幼蟲對左手香精油較敏感,而β-石竹烯有可能是造成左手香精油對埃及斑蚊及熱帶家蚊幼蟲毒性不同的主要成分。本研究的目的為探討左手香精油對埃及斑蚊及熱帶家蚊幼蟲毒性差異機制。細胞色素P450 (CYP) 及穀胱甘肽S-轉移酶 (GST) 在蚊蟲對抗殺蟲劑的過程中扮演重要角色,實驗結果顯示埃及斑蚊幼蟲GSTe2及CYP6M family的表現量均較熱帶家蚊幼蟲高,尤其GSTe2的表現量於埃及斑蚊幼蟲更顯著高於於熱帶家蚊幼蟲。胡椒基丁醚 (細胞色素P450抑制劑) 及1-氟-2,4-二硝基苯 (GSH抑制劑) 均可提升埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯的敏感性,但以1-氟-2,4-二硝基苯對埃及斑蚊幼蟲的影響較對熱帶家蚊幼蟲顯著。顯示GSH的含量與埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯的敏感度有關,為造成左手香精油對埃及斑蚊及熱帶家蚊幼蟲毒性差異的主要原因。 | zh_TW |
dc.description.abstract | Mosquitoes are vectors for many diseases, including malaria, dengue fever, and Zika virus infection. Strategies for mosquito control mainly rely on synthetic insecticides which always results in insecticide resistance and environmental pollution. Therefore, development of eco-friendly strategies for vector control is urgent and essential oil (EO) is an alternative method for pest control. Previous studies have shown larva of Culex quinquefasciatus was more sensitive than that of Aedes aegypti to Plectranthus amboinicus EOs. β-caryophyllene might be the major component responsible for the differential toxicity of P. amboinicus EOs, as indicated by the significant differences in its LC50 values toward both mosquitoes. This thesis aims to delineate the mechanisms responsible for the differential toxicity of P. amboinicus EOs toward both mosquito larvae. The currrent results showed that the relative expression levels of GSTe2 (as well as GSH contents) and CYP6M family in Ae. aegypti larvae were higher than that in Cx. quinquefasciatus larvae. In particular, the difference of GSTe2 is more significant than that of CYP6M family in both mosquito larvae. Though both piperonyl butoxide (PBO, an inhibitor of cytochrome P450) and 1-fluoro-2,4-dinitrobenzene (DNFB, a GSH-depleting agents) treatment potentiated the sensitivity of Ae. aegypti and Cx. quinquefasciatus larvae to β-caryophyllene, DNFB imposed more significant effect in Ae. aegypti larvae than to Cx. quinquefasciatus larvae. These results suggested both GSH contents and GSTs level are the major factors contributing to the different sensitivity of Ae. aegypti and Cx. quinquefasciatus to β-caryophyllene and the mechanism responsible for the differential toxicity of P. amboinicus essential oils toward Aedes and Culex mosquito larvae. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:14:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-11T16:14:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目 錄
論文口試委員會審定書…………………………………………………………………i 摘要……………………………………………………………………………………...ii Abstract……………………………………………………………………………........iii 目錄……………………………………………………………………………………...v 圖目錄…………………………………………………………………………………...x 壹、 緒言………………………………………………………………………………...1 貳、 材料與方法……………………………………………………………………….13 2.1 試驗昆蟲飼養…………………………………………………………………..13 2.1.1 埃及斑蚊及熱帶家蚊飼養………………………………………………...13 2.1.2蚊蟲餵血……………………………………………………………….……13 2.2 β-石竹烯處理埃及斑蚊及熱帶家蚊幼蟲………………………………………14 2.3 埃及斑蚊與熱帶家蚊CYP、GST及Cyt C Oxidase基因表現………………....14 2.3.1 埃及斑蚊與熱帶家蚊幼蟲RNA萃取…………………………….……….14 2.3.2 反轉錄RNA (Reverse transcription, RT) 至cDNA………………………..15 2.3.3 聚合酶連鎖反應 (Polymerase chain reaction, PCR)………………………15 2.3.4 PCR產物分析分析…………………………………………………………16 2.4 固定抑制劑濃度處理不同濃度β-石竹烯實驗…………………………..…….16 2.5 改變抑制劑濃度處理50 ppm β-石竹烯濃度實驗……………………………..17 2.6 埃及斑蚊及熱帶家蚊幼蟲GSH含量分析………………………….…………18 2.6.1 DNFB對兩種幼蟲GSH含量影響試驗……………………….…………...18 2.6.2 DNFB及β-石竹烯對幼蟲GSH含量影響試驗……………………………18 2.6.3 蛋白質定量………………………………………………………………...18 2.6.4 GSH含量測定…………………………………..………………………......19 2.7 數據分析………………………………………………………………………...19 參、 結果……………………………………………………………………………….20 3.1 β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲毒性……………………………………20 3.2 埃及斑蚊及熱帶家蚊CYP 6M、GSTe2及Cyt C Oxidase基因表現……..……20 3.3 β-石竹烯與抑制劑對幼蟲毒性之影響…………………………………...…….20 3.3.1 同時處理β-石竹烯與PBO對埃及斑蚊幼蟲毒性之影響………………...21 3.3.2 同時處理β-石竹烯與PBO對熱帶家蚊幼蟲毒性之影響………………...21 3.3.3同時處理β-石竹烯與PBO對埃及斑蚊與熱帶家蚊幼蟲毒性提升幅度………………………………………………………………………………….21 3.3.4 同時處理β-石竹烯與DEM對埃及斑蚊幼蟲毒性之影響………………..22 3.3.5 同時處理β-石竹烯與DEM對熱帶家蚊幼蟲毒性之影響………………..22 3.3.6 同時處理β-石竹烯與DNFB對埃及斑蚊幼蟲毒性之影響…………...….22 3.3.7 同時處理β-石竹烯與DNFB對熱帶家蚊幼蟲毒性之影響……….…..….23 3.3.8 同時處理β-石竹烯與DNFB埃及斑蚊及熱帶家蚊幼蟲毒性提升幅度………………………………………………………………………………….23 3.4 抑制劑前處理對β-石竹烯殺幼蟲毒性之影響………………………………..23 3.4.1 PBO前處理對β-石竹烯毒殺埃及斑蚊幼蟲毒性之影響…………….……23 3.4.2 PBO前處理對β-石竹烯毒殺熱帶家蚊幼蟲毒性之影響……………….…24 3.4.3 PBO前處理影響β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲死亡率提升幅度………………………………………………………………………………….24 3.4.4 DEM前處理對β-石竹烯毒殺埃及斑蚊幼蟲毒性之影響………………...25 3.4.5 DEM前處理對 β-石竹烯毒殺熱帶家蚊幼蟲毒性之影響……………….25 3.4.6 DNFB前處理對β-石竹烯毒殺埃及斑蚊幼蟲毒性之影響……………….25 3.4.7 DNFB前處理對β-石竹烯毒殺熱帶家蚊幼蟲毒性之影響……………….25 3.4.8 DNFB前處理影響β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲死亡率提升幅度………………………………………………………………………………….26 3.5 抑制劑濃度對β-石竹烯毒性之影響……………………………………….…..26 3.5.1 同時處理不同濃度PBO對β-石竹烯毒殺埃及斑蚊幼蟲之影響………...26 3.5.2 同時處理不同濃度PBO對β-石竹烯毒殺熱帶家蚊幼蟲之影響………...26 3.5.3 同時處理不同濃度DEM對β-石竹烯毒殺埃及斑蚊幼蟲之影響……….27 3.5.4 同時處理不同濃度DEM對β-石竹烯毒殺熱帶家蚊幼蟲之影響……….27 3.5.5 同時處理不同濃度DNFB對β-石竹烯毒殺埃及斑蚊幼蟲之影響………………………………………………………………………………….27 3.5.6 同時處理不同濃度DNFB對β-石竹烯毒殺熱帶家蚊幼蟲之影響………………………………………………………………………………….27 3.5.7 同時處理不同濃度DNFB提升β-石竹烯毒性倍率比較……………...….28 3.6 不同濃度抑制劑前處理對β-石竹烯毒性影響…………………………….…..28 3.6.1不同濃度PBO前處理影響β-石竹烯對埃及斑蚊幼蟲毒性………………28 3.6.2不同濃度PBO前處理影響β-石竹烯對熱帶家蚊幼蟲毒性………………28 3.6.3不同濃度DEM前處理影響β-石竹烯對埃及斑蚊幼蟲毒性……………...29 3.6.4不同濃度DEM前處理影響β-石竹烯對熱帶家蚊幼蟲毒性……………...29 3.6.5不同濃度DNFB前處理影響β-石竹烯對埃及斑蚊幼蟲毒性……………..29 3.6.6不同濃度DNFB前處理影響β-石竹烯對熱帶家蚊幼蟲毒性………….….30 3.6.7 提升DNFB濃度影響β-石竹烯對埃及斑蚊及熱帶家蚊毒性提升倍率比較………………………………………………………………………………….30 3.7 DNFB與β-石竹烯對蚊幼蟲GSH含量影響……………………………………30 3.7.1 DNFB對埃及斑蚊及熱帶家蚊GSH含量影響……………………..……..31 3.7.2 DNFB處理埃及斑蚊及熱帶家蚊幼蟲GSH含量下降幅度比較……..…..31 3.7.3 同時處理DNFB及β-石竹烯對埃及斑蚊及熱帶家蚊GSH含量影響………………………………………………………………………………….31 3.7.4 DNFB及β-石竹烯對埃及斑蚊及熱帶家蚊GSH含量下降幅度比較………………………………………………………………………………….32 肆、 討論……………………………………………………………………………….33 伍、 參考文獻………………………………………………………………………….38 陸、 附錄……………………………………………………………………………….73 附錄一、本研究使用之引子清單………………………………………………….73 附錄二、PBO同時處理埃及斑蚊及熱帶家蚊幼蟲6小時對β-石竹烯毒性提升倍 率…………………………………………………………………………………….74 附錄三、PBO同時處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍 率………………………………………………………………………………….…75 附錄四、PBO前處理埃及斑蚊及熱帶家蚊幼蟲6小時對β-石竹烯毒性提升倍率…………………………………………………………………………………….76 附錄五、PBO前處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率…………………………………………………………………………………….77 附錄六、DNFB同時處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率………………………………………………………………………………….78 附錄七、DNFB同時處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率………………………………………………………………………………….79 附錄八、DNFB前處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率…………………………………………………………………………………….80 圖目錄 圖一、β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲的毒性………………………….……...44 圖二、埃及斑蚊及熱帶家蚊CYP 6M家族基因表現比較……………………………45 圖三、埃及斑蚊及熱帶家蚊GSTe2基因表現比較………………………………..….46 圖四、埃及斑蚊及熱帶家蚊Cyt C Oxidase基因表現比較………………………….47 圖五、PBO與β-石竹烯同時處理對埃及斑蚊及熱帶家蚊幼蟲毒性的影響……………………………………………………………………………………….48 圖六、PBO同時處理埃及斑蚊及熱帶家蚊幼蟲6小時對β-石竹烯毒性提升倍率……………………………………………………………………………………….49 圖七、PBO同時處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率……………………………………………………………………………………….50 圖八、DEM與β-石竹烯同時處理對埃及斑蚊及熱帶家蚊幼蟲毒性的影響…………………………………………………………………………………….…51 圖九、DNFB與β-石竹烯同時處理對埃及斑蚊及熱帶家蚊幼蟲毒性的影響……………………………………………………………………………………….52 圖十、DNFB同時處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率……………………………………………………………………………………….53 圖十一、DNFB同時處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率………………………………………………………………………………...……..54 圖十二、PBO前處理影響β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲的毒性………………………………………………………….……………………………55 圖十三、PBO前處理埃及斑蚊及熱帶家蚊幼蟲6小時對β-石竹烯毒性提升倍率……………………………………………………………………………………….56 圖十四、PBO前處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率……………………………………………………………………………………….57 圖十五、DEM前處理影響β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲的毒性……………………………………………………………………………………….58 圖十六、DNFB前處理影響β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲的毒性…………………………………………………………………………….…………59 圖十七、DNFB前處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率………………………………………………………………………………...……..60 圖十八、不同濃度PBO同時處理埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯毒性的影響…………………………………………………………………….…………………61 圖十九、不同濃度DEM同時處理埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯毒性的影響…………………………………………………………………………………….....62 圖二十、不同濃度DNFB同時處理埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯毒性的影響……………………………………………………………………………………….63 圖二十一、不同濃度DNFB同時處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率…………………………………………………………....…………….64 圖二十二、不同濃度PBO前處理埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯毒性的影響……………………………………………………………………………………….65 圖二十三、不同濃度DEM前處理埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯毒性的影響……………………………………………………………………………………….66 圖二十四、不同濃度DNFB前處理埃及斑蚊及熱帶家蚊幼蟲對β-石竹烯毒性的影響……………………………………………………………………………………….67 圖二十五、不同濃度DNFB前處理埃及斑蚊及熱帶家蚊幼蟲12小時對β-石竹烯毒性提升倍率………………………………………………………………….…………68 圖二十六、DNFB對埃及斑蚊及熱帶家蚊幼蟲GSH含量影響……………………...69 圖二十七、DNFB處理埃及斑蚊及熱帶家蚊幼蟲GSH含量下降幅度……………...70 圖二十八、DNFB及β-石竹烯對埃及斑蚊及熱帶家蚊幼蟲GSH含量影響…………………………………………………………………………………….…71 圖二十九、DNFB及β-石竹烯處理埃及斑蚊及熱帶家蚊幼蟲GSH含量下降幅度………………………………………………………………………….……………72 | - |
dc.language.iso | zh_TW | - |
dc.title | 左手香精油對埃及斑蚊及熱帶家蚊幼蟲差異毒性機制研究 | zh_TW |
dc.title | The study of mechanism for the differential toxicity of Plectranthus amboinicus essential oils toward Aedes aegypti and Culex quinquefasciatus larvae | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃旌集 | zh_TW |
dc.contributor.oralexamcommittee | Kun-Hsien Tsai;Ju-Chun Hsu;Chin-Gi Huang | en |
dc.subject.keyword | 埃及斑蚊,熱帶家蚊,左手香精油,β-石竹烯,細胞色素P450,穀胱甘肽S-轉移酶, | zh_TW |
dc.subject.keyword | Aedes aegypti,Culex quinquefasciatus,Plectranthus amboinicus essential oils,β-caryophyllene,Cytochrome P450,Glutathione-S-transferase, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202200821 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-05-31 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 昆蟲學系 | - |
dc.date.embargo-lift | 2024-06-30 | - |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。