Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8766
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張新軒 | |
dc.contributor.author | Tung-Jung Tsai | en |
dc.contributor.author | 蔡東融 | zh_TW |
dc.date.accessioned | 2021-05-20T20:00:54Z | - |
dc.date.available | 2010-02-04 | |
dc.date.available | 2021-05-20T20:00:54Z | - |
dc.date.copyright | 2010-02-04 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-01-25 | |
dc.identifier.citation | 李春明,熊淑萍,趙巧梅,楊穎穎,馬新明。(2008)。有機無機肥配施對小麥冠層結構、產量和蛋白質含量的影響。中國農業科學,41(12):4287-4293。
林安秋。(1984)。作物之光合作用。臺灣商務印書館股份有限公司。台灣、台北。 劉素紅、劉新會、侯娟、遲光宇、崔保山。(2007)。植物光譜應用於白菜銅脅迫響應研究。中國科學,E輯:技術科學,37(5):693-699。 劉暢, 唐國勇, 童成立, 夏海鼇, 蔣平, 林蘊華。(2008)。不同施肥措施下亞熱帶稻田土壤碳、氮演變特徵及其耦合關係。應用生態學報19(6):1489-1493。 劉建玲,廖文華,王新軍,賈可,孟娜。(2006)。大量施用磷肥和有機肥對白菜產量和土壤磷積累的影響。中國農業科學,39(10):2147-2153。 徐明崗、于榮、孫小鳳、劉驊、王伯仁、李菊。(2006)。長期施肥對我國典型土壤活性有機質及碳庫管理指數的影響。植物營養與肥料學報,(4):459-465。 申雍、李佩玲。(1998)。應用SPOT衛星影像區分水稻旱害等級與受災範圍之初步研究。中華農業氣象,5:203-208。 安婷婷、汪景寬、李雙異、于樹、朱平。(2008)。施用有機肥對黑土團聚體有機碳的影響。應用生態學報,19(2):360-373。 眭曉蕾、毛勝、王立浩、張寶璽、張振賢。(2007)。弱光條件下辣椒幼苗葉片的氣體交換和葉綠素螢光特性。園藝學報,34(3):615-622。 黃國楨、王韻皓、焦國模。(1996)。植生指標於SPOT衛星影像之研究。臺灣林業。22(1):45-52。 楊秋忠。(1988)。坡地紅壤有機腐植質之增進。土壤肥料試驗報告。 楊純明。(1999)。光譜遙測在精準農業之應用。衛星資訊與精準農業作物生產系統研討會。 楊棋明、陳建璋、周昌弘。(2000)。地震崩塌地之生態研究:以衛星遙測與灰預測理論分析先鋒植被之恢復速度與空間分布。中央研究院「九二一災後重建相關研究計畫」執行報告書。第65~87頁。 蔡永暭。(2002)。「有機農業 14 年試驗成果報告」,高雄區農業專訊,42:15-16 蔡永暭、張耘誠、徐卉明。施肥對設施有機蔬菜穩定生產及土壤性質之影響研究高雄區農業改良場研究彙報,15(3):13-31。 郭士魁。1997。土壤學。之宜出版社。修訂八版。p127-157。 陳昶璋、許明晃、黃盟元、楊志維、楊棋明、黃文達。2008。關渡自然保留區蘆葦對土壤有機碳庫影響之研究。中華民國雜草學會會刊。 陳尊賢、許正一、蔡呈奇。(1998)。台灣農地土壤有機碳儲存量及其在永續性土壤管理系統之應用。土壤與環境,1:295-306。 許明晃。(2003)。甘藷葉片色素含量與反射光譜關係之研究。國立台灣大學農藝學系博士論文。 鍾仁賜。有機肥料對作物品質的影響。(1998)。行政院國家科學委員會專題研究成果報告「台灣土壤生態及生產力增進之研究」。http://140.112.114.62/handle/246246/29596。 曹林奎、陸貽通、林瑋。(2001)。生物有機肥料對溫室蔬菜硝酸鹽和土壤鹽分累積的影響。農村生態環境,17(3):45-47。 行政院農業委員會農糧署有機農業全球資訊網。(2009)。台灣有機農業面機歷年統計資料。http://info.organic.org.tw/supergood/front/bin/home.phtml。 Adams, M. L., Norvell, W. A., Peverly, J. H. and Philpot, W. D. (1993) Fluorescence and reflectance characteristics of manganese deficient soybean leaves: Effect of leaf age and choice of leaflet. Plant and Soil 155/156:235-238. Al-Abbas, A. H., Barr, R., Hall, J. D., Crane, F. L. and Baumgardner, M. F. (1974) Spectra of normal and nutrient-deficient maize leaves. Agron. J. 66:16-20. Arnon, D. J. (1969) Copper enzymes in isolated chloroplasts. Polyphenol-oxidases in Beta vulgaris. Plant Physiol. 24:1-5. Balesdent, J. and M. Balabane. 1992. Maize root-derived soil organic carbon estimated by natural 13C abundance. Soil Biol. Biochem. 24, 97-101 Baret, F., Champion, I., Guyot, G. and Podaire, A. (1987) Monitoring wheat canopies with high spectral resolution radiometer. Remote Sens. Environ. 22:367-378. Baret, F., Jacquemoud, S. and Guyot, G. (1992) Modeled analysis of the biophysical nature of spectral shift and comparison with information content of broad bands. Remote Sens. Environ. 41:133-142. Bauer, M. E. (1975) The role of remote sensing in determining the distribution and yield of crops. Adv. Agron. 27:271-304. Benedetti, H. M. and Swidler, R. (1961) Nondestructive method for estimating chlorophyll content of leaves. Science 133:2015-2016. Benedetti, R. and Rossini, R. (1993) On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ. 45:311-326. Bernard, R., Martin, P., Thony, J. L., Vauclin, M. and Vidal-Madjar, D. (1982) A C-band radar calibration for determining soil moisture. Remote Sens. Environ. 12:189-200. Blackmer, T. M., Schepers, J. S., Varvel, G. E. and Walter-Shea, E. A. (1996) Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 88:1-5. Buschmann, C. and Nagel, E. (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 14:711-722. Carter, G. A. (1993) Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80:239-243. Carter, G. A. (1994) Ratios of leaf reflectances in narrow wavebands as indicator of plant stress. Int. J. Remote Sens. 15:697-703. Chappelle, E. W., Kim, M. S. and McMurtrey III, J. E. (1992) Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 39:239-247. Chen, C. C., M. Y. Huang, W. D. Huang, Y. W. Wang, M. H. Hsu and C. M. Yang. (2007a) Effects of silver-grass and vetiver on soil carbon pools. (in Chinese) Weed Sci. Bull. 28:131-140. Chen, J. H., H. F. Tsai and Y. W. Lin. (2004) Evaluation of the suitability of three analysis methods for determining organic matter contents in fertilizers. (in Chinese) Taiwanese J. Agric. Chem. Food Sci. 42:116-124. Choudhury, B. J. (1994) Synergism of multispectral satellite observations for estimating regional land surface evaporation. Aven. Am. 49:264-274. Choudhury, B. J., Schmugge, T. J., Newton, R. W. and Chang, A. (1979) Effect of surface roughness on the microwave emission from soils. J. Geophy. Res. 84:5699-5706. Cihlar, J., St. Laurent, L. and Dyer, J. A. (1991). Relation between the normalized difference vegetation index and ecological variables. Remote Sens. Environ. 35:279-298. Curran, P. J., Dungan, J. L., Macler, B. A. and Plummer, S. E. (1991) The Effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ. 35:69-76. Dalal, R. C. and Henry, R. J. (1986) Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 50:120-123. Danks, S. M., Evans, E. H. and Wittaker, P. A. (1983) Photosynthetic Systems. Structure Function and Assembly, Wiley, New York. Diane Bourn and John Prescott (2002) A Comparison of the Nutritional Value, Sensory Qualities, and Food Safety of Organically and Conventionally Produced Foods. Critical Reviews in Food Science and Nutrition, 42(1):1–34 Elvidge, C. D. and Chen, Z. (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ. 54:38-48. Ercoli, L., Mariotti, M., Masoni, A. and Massantini, F. (1993) Relationship between nitrogen and chlorophyll content and spectral properties in corn leaves. Eur. J. Agron. 2:113-117. Fuchs, M. (1990) Canopy thermal infrared observations In: Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions (ed. by Goel, N. S. and Norman, J. M.). pp.323-333. Harwood Acad. Gardner, B. R. and Blad, B. L. (1986) Evaluation of spectral reflectance models to estimate corn leaf area while minimizing the influence of soil background effect. Remote Sens. Environ. 20:183-193. Gierloff-Emden, H. G. (1989) Fernerkundungs-Kartographie mit Satelliten–Aufnahmen, p. 588. Deuticke, Wien. Gilabert, M. A., Seggara, D. and Melia, J. (1990) A simplified algorithm for the evaluation of frost-affected citrus, application of chlorophyll fluorescence. Lichtenthaler, H. K. ed. pp.273-284. Gitelson, A. A. and Merzlyak, M. N. (1994a) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143:286-292. Gitelson, A. A. and Merzlyak, M. N. (1994b) Quantitative estimation of Chlorophyll a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. (B) 22:247-252. Gitelson, A. A. and Merzlyak, M. N. (1996) Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 148:494-500. Gitelson, A. A. and Merzlyak, M. N. (1997) Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 18:2691-2697. Gitelson, A. A., Merzlyak, M. N. and Lichtenthaler, H. K. (1996) Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 148:501-508. Glowa, W., (1974) Zirconium dioxide and cupric sulphate-new catalyst in the Kjeldahl method for total nitrogen determination. Journal of the Association of Official Agricultural Chemists 57, 5:1228–1230. Green, E. P., Mumby, P. J., Edwards, A. J., Clark, C. D. and Ellis, A. C. (1997) Estimating leaf area index of mangroves from satellite data. Aquat. Bot. Hardwick, K. and Baker, N. R. (1973) In vivo measurement of chlorophyll content of leaves. New Phytol. 72:51-54. Henderson, T. L., Baumgardner, M. F., Franzmeier, D. P., Stott, D. E. and Coster, D. C. (1992) High dimensional reflectance analysis of soil organic matter. Soil Sci. Soc. Am. J. 56:865-872. Henderson, T. L., Szilagyi, A., Baumgardner, M. F., Chen, C. C. T. and Landgrebe, D. L. (1989) Spectral band selection for classification of soil organic matter content. Soil Sci. Soc. Am. J. 53:1778-1784. Hendry, G. A. F., Houghton, J. D. and Brown, S. B. (1987) The degradation of chlorophyll – a biological enigma. New Phytol. 107:255-302. Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., Evans, A. D. (2005) Does organic farming benefit biodiversity? Biological Conservation 122:113–130 Holm, G. (1954) Chlorophyll mutations in barley. Acta Agric. Scand. 4:457-461. Hsu, M. H., Huang, W. D., Yang, Z. W., Tsai, Y. Z., Yang, C. M. and Chang, S. S. (2003) Study on the chlorophyll biosynthetic and degradative pathway in the leaves of three sweet potatoes. Chinese Agron. J. 13:87-98. Huete, A. R. (1987) Soil dependent spectral response in a developing plant canopy. Agron. J. 79:61-68. Inada, K. (1964) Studies on a method for the determining the deepness of green color and chlorophyll content of intact crop leaves and its practical application. 1. Principal for estimating the deepness of green color and chlorophyll content of whole leaves. Proc. Crop. Sci. Soc. Japan 32:301-308. Inoue, Y. (1990) Remote detection of physiological depression in crop plants with infrared thermal imagery. Jap. J. Crop. Sci. 59:762-768. Inoue, Y., Morinaga, S. and Shibayama, M. (1993) Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements. Jap. J. Crop. Sci. 62: 462-469. Jackson, R. D. (1982) Canopy temperature and crop water stress. Adv. Irrig. 1:43-85. Jakubauskas, M., Lulla, K. P. and Mausel, P. W. (1990) Assessment of vegetation change in a fire-altered forest landscape. Phonogramm. Eng. Remote Sens. 56:371-377. Johnson, J. M. F., R. R. Allmaras and D. C. Reicosky. (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron. J. 98:622-636. Kahn, V. M., N. Avivi-Bieise and Wettstein, D. von (1976) Genetic regulation of chlorophyll synthesis analyzed with double mutants in barley. In: Genetics and Biogenesis of Chloroplasts and Mitochondria. (ed. by Bhuchler, T.). pp.119-131. Elsevier/North-Holland Biomedical Press, Amsterdam. Kanemasu, E. T. (1974) Seasonal canopy reflectance patterns of wheat, sorghum, and soybean. Remote Sens. Environ. 3:43-47. Kanemasu, E. T., Demetrades-Shah, T. H., Su, H. and Lang, A. R. G. (1990) Estimating grassland biomass using remotely sensed data. In: Applications of remote sensing in agriculture. (ed. by Steven, M. D. and Clark, J. A.). pp.185-199. Butterworths. Kano, Y., McClure, W. E. and Skaggs, R. W. (1985) A near infrared reflectance soil moisture meter. Trans. ASAE 28:1852-1855. Krishnan, P., Alexander J. D., Butler, B. J. and Hummel, J. W. (1980) Reflectance technique for predicting soil organic matter. Soil Sci. Soc. Am. J. 44:1282-1285. Leblon, B., Guerif, M. and Baret, F. (1991) The use of remotely sensed data in estimation of PAR use efficiency and biomass production of flooded rice. Remote Sens. Environ. 38:147-158. Lemus, R. and R. Lal. 2005. Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 24:1-21. Liang, B. C., X. L. Wang and B. L. Ma. 2002. Maize root-induced change in soil organic carbon pools. Soil Sci. Soc. Am. J. 66: 845-847. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. Methods Enzymol. 148: 350-382. Lichtenthaler, H. K., Gitelson, A. A. and Lang, M. (1996) Non-destructive determination of chlorophyll concentration of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J. Plant Physiol. 148:483-493. Lillesand, T. M. and Kiefer, R. W. (1994) Remote sensing and image interpretation. 3rd ed. John Wiley & Sons. Ma, B. L., Morrison, M. J. and Dwyer, L. M. (1996a) Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J. 88:915-920. Maas, S. J. (1998) Estimating cotton canopy ground cover from remotely sensed scene reflectance. Agron. J. 90:384-388. Macnicol, P. K., Dudzinski, M. L. and Condon, B. N. (1976) Estimation of chlorophyll in tabacco leaves by direct photometry. Ann. Bot. 40:143-152. Mäder P., Fliessbach A., Dubois D., Gunst L., Fried P., Niggli U.. (2002) Soil Fertility and Biodiversity in Organic Farming. Science, 296(5573):1694-7. Magkos F., Arvaniti F., and Zampelas A. (2003) Organic food: nutritious food or food for thought? A review of the evidence. Int. J. Food Sci. Nutr.;54(5):357-71. Majumder, B., B. Mandal and P. K. Bandyopadhyay. (2008) Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice–berseem agroecosystem. Biol. Fertil. Soils 44:451-461. Malanson, G. P. and Trabaud, L. (1987) Post-fire development of canopy structure in a Mediterranean shrub, Quercus coccifera L. Phys. Geogr. 8:105-110. Masoni, A., Ercoli, L. and Mariotti, M. (1997) Spectral properties of leaves deficient in iron. Sulfur, Magnesium, and Manganese. Agron. J. 88:937-943. Matile, P., Duggelin, T., Schellenberg, M., Rentsch, D., Bortlik, K., Peisker, C. and Thomas, H. (1989). How and why is chlorophyll broken down in senescent leaves? Plant Physiol. Biochem. 27:595-604. Matile, P., Flach, B. M. -P. and Eller, B. M. (1992a) Autumn leaves of Ginkgo biloba L.: Optical properties, pigments and optical brighteners. Bot. Acta 105:13-17. Milton, N. M., Eiswerth, B. A. and Ager, C. M. (1991) Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants. Remote Sens. Environ. 36:121-127. Milton, N. M., Ager, C. M., Eiswerth, B. A. and Power, M. S. (1989) Arsenic- and selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sens. Environ. 30:263-269. Mitchell A. E., Hong Y. J., Koh E., Barrett D. M., Bryant D. E., Denison R. F., Kaffka S.. (2007) Ten-Year Comparison of the Influence of Organic and Conventional Crop Management Practices on the Content of Flavonoids in Tomatoes. J Agric Food Chem. 55(15):6154-9 Mojarro, F. (1988) Analysis of the effect of water, nitrogen and weather on growth, grain yield, biomass production and light use efficiency of winter wheat (Triticum aestivum L.). Ph. D. dissertation, Department of Agronomy, Kansas State University, Manhattan, Kansas. Nelson, A. J. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. Methods of Soil Analysis. Part 2. 2nd. ed. p. 539-579. In: A. L.Page, R. H. Miller, and D. T. Keeney. (Eds.) Agron. Monogr. 9. SSSA and ASA Press, Madison, WI, USA. Netto, A. T. , E. Campostrini, J. Gonc¸ A. D. Oliveira, R. E. Bressan-Smith. 2005. Scientia Horticulturae 104 (2005) 199–209 Oechel, W. C. and Reid, C. D. (1984) Photosynthesis and biomass of chaparral shrubs along fire-induced age gradient in southern California. Bull Soc. Bot. For. 131:399-409. Paulo Cezar Rezende Fontes and Charles de Araujo.(2006).Use of a chlorophyll meter and plant visual aspect for nitrogen management in tomato fertigation. Journal of Applied Horticulture, 8(1): 8-11 Peňuelas, J. R., Gamon, J. A., Griffin, K. L. and Field, C. B. (1993) Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ. 46:110-118. Peňuelas, J. R., Filella, I. I. And Araus, J. L. (1997) Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci. 37:198-202. Peterson, D. L., Spanner, M. A., Running, S. W. and Teuber, K. B. (1987) Relationships of thematic mapper simulation data to leaf area index of temperate coniferous forests. Remote Sens. Environ. 22:323-341. Pollock, R. B. and Kanemasu, E. T. (1979) Estimating leaf area index of wheat with Landsat data. Remote Sens. Environ. 8:307-312. Porra, R. J., Thompson, W. A. and Kriedelman, P. E. (1989) Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 975:384-394. Prevot, L., Champion, I. And Guyot, G. (1993) Estimating surface soil moisture and leaf area index of a wheat canopy using dual-frequency (C and X bands) scatterometer. Remote Sens. Environ. 46:331-339. Price, J. C. and Bausch, W. C. (1995) Leaf area index estimation from visible and near-infrared reflectance data. Remote Sens. Environ. 52:55-65. Richert, M., S. Saarnio, S. Juutinen, J. Silvola, J. Augustin and W. Merbach. (2000) Distribution of assimilated carbon in the system Phragmites australis- waterlogged peat soil after carbon-14 pulse labeling. Biol. Fertil. Soils 32:1-7. Sá, J. C. M., C. C. Cerri, W. A. Dick, R. Lal, S. P. Venske Filho, M. Piccolo and B. E. Feigl. 2001. Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian oxisol. Soil Sci. Soc. Am. J. 65:1486-1499. Shioi, Y. and Sasa, T. (1986) Purification of solubilized chlorophyllase from Chlorella protothecoides. Methods Enzymol. 123:421-427. Specht, R. L. (1981) Primary productivity in Mediterranean-climate ecosystems regenerating after fire. In: Mediterranean-type shrublands (ed. by Castri, D. W. F. and Specht, R. L.). pp.257-267. Elsevier, Amsterdam. Stewart, C. E., K. Paustian, R. T. Conant, A. F. Plante and J. Six. 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86:19-31. Sudduth, K. A. and Hummel, J. W. (1993) Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Trans. ASAE 36:1571-1582. Gomiero, T. Paoletti, M. G., and Pimentel, D. (2008) Energy and Environmental Issues in Organic and Conventional Agriculture. Critical Reviews in Plant Sciences, 27:239–254 Takano, Y. and Tsundo, S. (1970) Light reflection, transmission, and absorption rates of rice leaves in relation to their chlorophyll and nitrogen content. Tohoku J. Agric. Res. 21:111-117. Thenkabail, P. S., Ward, A. D. and Lyon, J. G. (1994) Impacts of agricultural management practices on soybean and corncrops evident in ground-truth data and thematic mapper vegetation indices. Trans. ASAE 37:989-995. Thomas, J. R. and Gausman, H. W. (1977) Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agron. J. 69:799-802. Tucker, C. J. (1979a) Monitoring corn and soybean development with hand-held radiometer spectral data. Remote Sens. Environ. 8:237-248. Ulaby, F. T., Batlivala, P. P. and Dobson, M. C. (1978) Microwave backscatter dependence on surface roughness, soil moisture, and soil texture; Part I-Bare soil. IEEE Trans. Geosci. Electronics GE-16:286-295. Ulaby, F. T., Cihlar, J. and Moore, R. K. (1974) Active microwave measurements of soil water content. Remote Sens. Environ. 3:185-203. Ulaby, F. T., Dobson, M. C. and Brunfeldt, D. T. (1983) Improvement on soil moisture estimation accuracy of vegetation-covered soil by combined active/passive remote sensing. IEEE Trans. Geosci. Remote Sens. GE-21:300-307. Viedma, O., Melia, J., Segarra, D. and Garcia, H. J. (1997) Modelling rates of ecosystem recover after fires by using Landsat TM data. Remote Sens. Environ. 61:383-398. Walsh, A., The application of atomic absorption spectra to chemical analysis, Spectrochim. Acta, 7 (1955), 108-117; erratum, ibid., p. 252. Worthington, V. (2001) Nutritional Quality of Organic Versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement Med. 7(2):161-73. Walburg, G., Bauer, M. E., Daughtry, C. S. and Housley, T. L. (1982) Effects of nitrogen on the growth, yield, and reflectance characteristics of corn. Agron. J. 74:677-683. Wallihan, E. F. (1973) Portable reflectance meter for estimating chlorophyll concentrations in leaves. Agron. J. 65:659-662. Whittaker, R. H. and Marks, P. L. (1975) Methods of assessing terrestrial productivity. Wu, J. , Wang D. , Rosen, C. J., Bauer M. E.. (2007) Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research 101: 96–103 In: Primary Productivity of the Biosphere (ed. by Lieth, H. and Whittaker, R. H.). pp.55-118. Springer-Verlag, New York. Yang, C. M., Chang, K. W., Yin, M. H. and Huang, H. M. (1998) Methods for the determination of the chlorophylls and their derivatives. Taiwania 43:116-122. Yang, C. M., Chen, J. C., Peng, L. L., Yang, J. S. and Chou C. H. (2002a) Chi-Chi earthquake-cause landslide: grey prediction model for pioneer vegetation recovery monitored by satellite images. Bot. Bull. Acad. Sin. 43:69-75. Yoder, B. J. and Pettigrew-Crosby, R. E. (1995) Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sens. Environ. 53:199-211. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8766 | - |
dc.description.abstract | 本論文係探討在長年的有機耕作管理下,對耕地土壤理化性質及作物生育的影響,並探討遙感探測科學所發展出的即時分析技術應用於改善有機農業的維護管理及生產品質的可行性;同時,在節能減碳議題受到關注的今日,也藉此試驗檢測有機耕作對於土壤有機碳庫(soil organic carbon, SOC)的蓄積能力。研究結果簡述如下:
(一)農地經過長期的有機耕作之後,其土壤酸鹼度有上升的趨勢(> pH=5.0);有機質、有機碳、有效性磷、交換性鉀、交換性鎂、交換性鈣皆隨有機耕作時間增長而逐漸增加。在溫室內土壤的電導度及有機質皆高於室外田區;有效性磷、交換性鈣、交換性鎂、鋅的含量在溫室內皆高於溫室外。顯示長年的有機耕作可以改善土壤的環境。 (二)有機耕作年期的增加,可以提高蔬菜的株高、乾物重;土壤有機值的增加,可以使各元素的吸收更趨穩定,除了可以提高蔬菜鉀與鋅元素含量,也降低了鈉的含量。藉此得以有效提升農作物本身之品質及經濟價值。 (三)有機栽培年期的增加,在蔬菜葉片反射光譜上,於可見光與近紅外光區的反射率可呈現特定規律,並與光合色素含量變化之趨勢一致;NDVI、SRVI、NDVIbroad 、SRVIbroad等植生指數及SPAD值可作為有機栽培蔬菜老化及葉綠素含量大幅降低時的指標。利用反射光譜計算植生指數,非破壞性地估算葉片色素含量之變化,進而監測作物生長狀況,於實際田間耕作上為一具應用潛力之可行方法。 (四)在不同有機栽培年期溫室區中,種植一期蔬菜前後,表土20 cm內之土壤有機碳增加約1 ~ 9 Mg ha-1,相當於固定了3.7 ~ 33 Mg CO2 ha-1。不同有機栽培年期(1~7年)溫室區土壤可貯存SOC量約31 ~ 56 Mg ha-1,相當於114 ~ 206 Mg CO2 ha-1。長年施行有機耕作每年平均可固定14 Mg CO2 ha-1,並於持續有機耕作5~7年後,達到最大SOC貯量。明顯地,在未來推廣有機耕作可達到CO2減量、提升農業經濟與農地保育等多重功能,在產量、品質、環境保護和永續農業之間找到平衡點。 | zh_TW |
dc.description.abstract | The major objects of this study is to find out the effect of long-term organic farming on the soil physic-chemical properties and the crop growth, and to investigate the feasibility of applying the real-time analysis, based on the remote-sensing science, to improve the organic agricultural management and the corp quality control. At the meantime, the issues of global warming and carbon reduction were highly-concerned; we also try to exam the capability of soil organic carbon (SOC) stock of the organic farming. The results of the study are shown as follows:
(1) After the long-term organic farming, the soil pH got a rising trend (> pH 5.0). The content of organic matter, organic carbon, bio-available phosphorus, exchangeable potassium, exchangeable magnesium, and exchangeable calcium are increased with the duration of the organic cultivation. These indicate the long-term organic farming can improve the soil condition. (2) The increasing of organic cultivation duration can raise the height and dry weight, in addition, can stabilize the plant absorption of the nutrimental elements. In addition to increase the content of the potassium and zinc in vegetables, it reduces the content of the sodium. (3) The increasing of organic farming duration can been shown by a specific regular pattern of the leaf spectral reflectance at the wavelength of visible light and near infra-red regions, and been coincided with the variation of the photosynthetic pigments content. The vegetation index, such as NDVI, SRVI, NDVIbroad and SRVIbroad, and the value of SPAD can be served as the pointers, when the senescence of the organic cultivated-plants and the reduction of the chloroplast are happened. By utilizing reflectance spectrum to calculate vegetation index and to measure the variation of the pigment content in leaves, and to monitor the whole crop growth condition, finally. (4) In the greenhouses with different duration of organic cultivation, the SOC content within 20 cm-depth from soil surface was increased about 100 to 900 Mg ha-1 (i.e. 370 to 3,300 Mg CO2 ha-1 was got fixed.) throughout a vegetable cultivating cycle. The soil in the greenhouse with different duration of organic farming (from 1 to 7 years) can stock 3,100 to 5,600 Mg ha-1 SOC, which is equivalent to 11,400 ~ 20,600 Mg CO2 ha-1. Under long-term organic cultivation, there is 1400 Mg CO2 ha-1 got fixed each year. The SOC could keep accumulated to the maximum amount while the organic farming was continued more than 5 to 7 years. Evidently, to popularize the organic agricultural management in the future will get benefit from CO2 reduction, promotion of the agricultural crop value, and maintenance of even more healthy cropping fields and products. Eventually, we wish to reach a balance between crop production / quality, environmental protection, and sustainable cultivating environment. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:00:54Z (GMT). No. of bitstreams: 1 ntu-99-R95621115-1.pdf: 3016714 bytes, checksum: 91b681b00b9966185e2e25120fbf990d (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄.............................................................................................................i
圖目錄.......................................................................................................iii 表目錄........................................................................................................v 摘要............................................................................................................1 Abstract.......................................................................................................3 第一章、前言.............................................................................................5 第二章、前人研究.....................................................................................8 第一節、台灣有機農業現況..............................................................8 第二節、有機耕作對土壤性質之影響..............................................8 一、有機肥的種類....................................................................7 二、有機肥對土壤一般性質之影響........................................8 三、有機耕作對土壤碳庫之影響............................................9 第三節、有機耕作對作物生育及營養成份之影響........................13 第四節、即時診斷技術在作物管理之應用....................................14 一、光譜遙測之原理與應用..................................................14 二、植生指數..........................................................................16 三、葉綠素與光譜遙測之估算..............................................18 四、SPAD應用現況...............................................................22 第三章、材料與方法...............................................................................24 第一節、試驗地點............................................................................24 第二節、試驗材料與進行步驟........................................................24 一、有機栽培年期對土壤性質之影響試驗..........................24 二、有機栽培年期對作物生育之影響試驗..........................25 第三節、試驗相關調查分析法........................................................26 第四節、統計分析............................................................................35 第四章、結果與討論...............................................................................36 第一節、有機耕作對土壤理化性質之影響....................................36 第二節、有機耕作對作物生育之影響............................................38 第三節、反射光譜與光合色素在有機耕作上之分析應用............43 第四節、有機耕作對土壤有機碳庫之影響....................................44 第五節、有機耕作對CO2減量之貢獻............................................46 參考文獻..................................................................................................87 | |
dc.language.iso | zh-TW | |
dc.title | 有機耕作年期對土壤與蔬菜之影響 | zh_TW |
dc.title | Effect of Organic Farming Duration on Soil and Vegetables | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 江明樹 | |
dc.contributor.oralexamcommittee | 黃文達,許明晃 | |
dc.subject.keyword | 有機栽培,光合色素,反射光譜,SPAD,元素分析,土壤有機碳, | zh_TW |
dc.subject.keyword | organic farming,photosynthesis pigment,reflective spectrum,SPAD,element analysis,soil organic carbon, | en |
dc.relation.page | 100 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-01-25 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
Appears in Collections: | 農藝學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-99-1.pdf | 2.95 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.