請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87647
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李昆達 | zh_TW |
dc.contributor.advisor | Kung-Ta Lee | en |
dc.contributor.author | 蔣尚伶 | zh_TW |
dc.contributor.author | Shan-Ling Chiang | en |
dc.date.accessioned | 2023-07-11T16:06:25Z | - |
dc.date.available | 2023-07-12 | - |
dc.date.copyright | 2023-07-11 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Aye, A., Jeon, Y.-D., Lee, J.-H., Bang, K.-S., & Jin, J.-S. (2019). Anti-inflammatory activity of ethanol extract of leaf and leaf callus of basil (Ocimum basilicum L.) on RAW 264.7 macrophage cells. Oriental Pharmacy and Experimental Medicine, 19(2), 217-226.
Bakkali, A., Jaziri, M., Foriers, A., Vander Heyden, Y., Vanhaelen, M., & Homes, J. (1997). Lawsone accumulation in normal and transformed cultures of henna, Lawsonia inermis. Plant cell, tissue and organ culture, 51(2), 83-87. Bedir, E., Khan, I., & Moraes, R. M. (2002). Bioprospecting for podophyllotoxin. Paper presented at the Trends in new crops and new uses. Proceedings of the Fifth National Symposium, 10-13. Brintnall, S. B., & Molly, C.-o. (1986). Economic Botany: Plants in our world: Mcgraw hill International Book Company. Bulgakov, V. P., Inyushkina, Y. V., & Fedoreyev, S. A. (2012). Rosmarinic acid and its derivatives: biotechnology and applications. Critical Reviews in Biotechnology, 32(3), 203-217. Canel, C., Dayan, F. E., Ganzera, M., Khan, I. A., Rimando, A., Burandt Jr, C. L., & Moraes, R. M. (2001). High yield of podophyllotoxin from leaves of Podophyllum peltatum by in situ conversion of podophyllotoxin 4-O-β-D-glucopyranoside. Planta Medica, 67(01), 97-99. Chen, N., Yu, Z.-H., & Xiao, X.-G. (2017). Cytosolic and Nuclear Co-localization of Betalain Biosynthetic Enzymes in Tobacco Suggests that Betalains Are Synthesized in the Cytoplasm and/or Nucleus of Betalainic Plant Cells. Frontiers in Plant Science, 8. Chilton, M.-D., Tepfer, D. A., Petit, A., David, C., Casse-Delbart, F., & Tempé, J. (1982). Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature, 295(5848), 432-434. Chumakov, M. (2013). Protein apparatus for horizontal transfer of agrobacterial T-DNA to eukaryotic cells. Biochemistry (Moscow), 78(12), 1321-1332. Corbin, C., Drouet, S., Mateljak, I., Markulin, L., Decourtil, C., Renouard, S., . . . Hano, C. (2017). Functional characterization of the pinoresinol–lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta, 246(3), 405-420. Eich, E., Schulz, J., Kaloga, M., Merz, H., Schröder, H., & Müller, W. (1991). Interference of epipodophyllotoxins and natural lignanolides with topoisomerase II: a proposed molecular mechanism. Planta Medica, 57(S 2), A7-A8. Esmaeilzadeh Bahabadi, S., Sharifi, M., Behmanesh, M., Safaie, N., Murata, J., Araki, R., . . . Satake, H. (2012). Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. Journal of plant physiology, 169(5), 487-491. Espíndola, K. M. M., Ferreira, R. G., Narvaez, L. E. M., Silva Rosario, A. C. R., da Silva, A. H. M., Silva, A. G. B., . . . Monteiro, M. C. (2019). Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Frontiers in Oncology, 9. Gelvin, S. B. (2009). Agrobacterium in the genomics age. Plant Physiology, 150(4), 1665-1676. Georgiev, M. I., Agostini, E., Ludwig-Müller, J., & Xu, J. (2012). Genetically transformed roots: from plant disease to biotechnological resource. Trends in biotechnology, 30(10), 528-537. Hanhineva, K., Rogachev, I., Aura, A.-M., Aharoni, A., Poutanen, K., & Mykkänen, H. (2012). Identification of novel lignans in the whole grain rye bran by non-targeted LC–MS metabolite profiling. Metabolomics, 8(3), 399-409. Hemmati, S., von Heimendahl, C. B., Klaes, M., Alfermann, A. W., Schmidt, T. J., & Fuss, E. (2010). Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Medica, 76(09), 928-934. Häkkinen, S. T., Moyano, E., Cusido, R. M., Palazon, J., Pinol, M. T., & Oksman-Caldentey, K.-M. (2005). Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. Journal of Experimental Botany, 56(420), 2611-2618. Jakovljević, D., Stanković, M., Warchoł, M., & Skrzypek, E. (2022). Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: a review. Plant Cell, Tissue and Organ Culture, 149(1), 61-79. Jdey, A., Falleh, H., Jannet, S. B., Hammi, K. M., Dauvergne, X., Ksouri, R., & Magné, C. (2017). Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. South African Journal of Botany, 112, 508-514. Kim, Y., Wyslouzil, B. E., & Weathers, P. J. (2002). Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular & Developmental Biology-Plant, 38(1), 1-10. Koroch, A. R., Simon, J. E., & Juliani, H. R. (2017). Essential oil composition of purple basils, their reverted green varieties (Ocimum basilicum) and their associated biological activity. Industrial Crops and Products, 107, 526-530. Kuo, H.-J., Wei, Z.-Y., Lu, P.-C., Huang, P.-L., & Lee, K.-T. (2014). Bioconversion of pinoresinol into matairesinol by use of recombinant Escherichia coli. Applied and environmental microbiology, 80(9), 2687-2692. Lau, W., & Sattely, E. S. (2015). Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science, 349(6253), 1224-1228. Lee, J., & Scagel, C. (2013). Chicoric acid: chemistry, distribution, and production. Frontiers in Chemistry, 1. Lee, M. T. (2021). RNAi-Mediated Silencing of Rosmarinic Acid Synthase in Hairy Roots of Ocimum basilium. (Master). National Taiwan University, LI, H.-Y. (2020). Cloning and expression analysis of PLR gene in Schisandra chinensis. Chinese Traditional and Herbal Drugs, 4747-4754. Min, T., Kasahara, H., Bedgar, D. L., Youn, B., Lawrence, P. K., Gang, D. R., . . . Davin, L. B. (2003). Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. Journal of biological chemistry, 278(50), 50714-50723. Mussolino, C., & Cathomen, T. (2013). RNA guides genome engineering. Nature biotechnology, 31(3), 208-209. Nakatsubo, T., Mizutani, M., Suzuki, S., Hattori, T., & Umezawa, T. (2008). Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. Journal of biological chemistry, 283(23), 15550-15557. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature biotechnology, 31(8), 691-693. Nijveldt, R. J., Van Nood, E., Van Hoorn, D. E., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American journal of clinical nutrition, 74(4), 418-425. Nomani, M., Sadat Noori, S. A., Tohidfar, M., & Ramshini, H. (2019). Overexpression of TPS2 gene to increase thymol content using Agrobacterium tumefaciens-mediated transformation in Trachyspermum ammi (Qom ecotype). Industrial Crops and Products, 130, 63-70. Piras, A., Gonçalves, M. J., Alves, J., Falconieri, D., Porcedda, S., Maxia, A., & Salgueiro, L. (2018). Ocimum tenuiflorum L. and Ocimum basilicum L., Two spices of Lamiaceae family with bioactive essential oils. Industrial Crops and Products, 113, 89-97. Raices, M., & D'Angelo, M. A. (2012). Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nature Reviews Molecular Cell Biology, 13(11), 687-699. Sağlam Yılmaz, S., Khawar, K. M., & Çiftçi, C. Y. (2022). Genetic transformation of common beans (Phaseolus vulgaris L.) through Agrobacterium tumefaciens carrying Cry1Ab gene. Molecular Biology Reports, 49(7), 7195-7203. Saslowsky, D. E., Warek, U., & Winkel, B. S. J. (2005). Nuclear Localization of Flavonoid Enzymes in Arabidopsis. Journal of biological chemistry, 280(25), 23735-23740. Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. International Journal of Food Properties, 23(1), 1961-1970. Srivastava, S., Conlan, X. A., Adholeya, A., & Cahill, D. M. (2016). Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell, Tissue and Organ Culture, 126(1), 19-32. Syed, T., Cheema, K., Khayyami, M., Ahmad, S., Ahmad, S., & Ahmad, S. (1995). Human leukocyte interferon-alpha versus podophyllotoxin in cream for the treatment of genital warts in males. Dermatology, 191(2), 129-132. Tada, H., Murakami, Y., Omoto, T., Shimomura, K., & Ishimaru, K. (1996). Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry, 42(2), 431-434. Tepfer, D. (1990). Genetic transformation using Agrobacterium rhizogenes. Physiologia Plantarum, 79(1), 140-146. Van Uden, W., Pras, N., & Malingré, T. M. (1990). On the improvement of the podophyllotoxin production by phenylpropanoid precursor feeding to cell cultures of Podophyllum hexandrum Royle. Plant cell, tissue and organ culture, 23(3), 217-224. Veluthambi, K., Ream, W., & Gelvin, S. B. (1988). Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. Journal of bacteriology, 170(4), 1523-1532. Wagner, A., Donaldson, L., & Ralph, J. (2012). Chapter 2 - Lignification and Lignin Manipulations in Conifers. In L. Jouanin & C. Lapierre (Eds.), Advances in Botanical Research, 61, 37-76. Wankhede, D. P., Biswas, D. K., Rajkumar, S., & Sinha, A. K. (2013). Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Protoplasma, 250(6), 1239-1249. Wetterauer, B., Wildi, E., & Wink, M. (2018). Production of the anticancer compound camptothecin in root and hairy root cultures of Ophiorrhiza mungos L. In Biotechnological approaches for medicinal and aromatic plants, 303-341. Wevar Oller, A. L., Agostini, E., Milrad, S. R., & Medina, M. I. (2009). In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: A precursor feeding study. Plant Science, 177(1), 28-34. Yin, D., Liu, W., Zhang, Y., & Sun, X. (2021). Differential expression of pinoresinol-lariciresinol reductase gene in relation to podophyllotoxin accumulation in different plant organs of endangered anticancer species Podophyllum peltatum. Pakistan Journal of Botany, 53(4). Yousefian, S., Lohrasebi, T., Farhadpour, M., & Haghbeen, K. (2020). Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures. Plant cell, tissue and organ culture, 142(2), 285-297. Zupan, J., Muth, T. R., Draper, O., & Zambryski, P. (2000). The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. The Plant Journal, 23(1), 11-28. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87647 | - |
dc.description.abstract | 鬼臼素是由鬼臼屬植物中分離出具有抗病毒能力的一種木脂素,其衍生物etoposide為可以抑制癌細胞的有絲分裂而做為化療藥物使用。鬼臼素在天然資源中相當少見,因此很難滿足對其日益增長的需求,因此,如何大量生產鬼臼毒素及其衍生物的新方法是一個迫在眉睫的問題。羅勒是一種富含酚酸和萜類化合物的草本植物,迷迭香酸、咖啡酸和綠原酸是羅勒中含量最豐富的酚類化合物,在先前的研究中曾進行迷迭香酸合成酶的RNA干擾(RASi)以增加苯基類丙烷化合物前驅物的累積,鬼臼素生合成的第一步是透過松脂醇-落葉松樹脂醇還原酶 (PLR)將松脂醇轉化為secoisolariciresinol。本研究於煙草葉片中進行八角蓮PLR瞬時表達,以了解其在植物細胞中的表現位置及活性。 PLR可同時在表皮細胞的細胞質和細胞核中被觀察到。在體外測試中則未檢測到PLR的催化活性。接著,將PLR轉形或與RASi一起轉形進羅勒毛狀根以生產開環異落葉松樹脂醇。在這些毛狀根的代謝物分析中,僅在PLR與RASi毛狀根中發現濃度為0.008 ppm/毫克乾重的松脂醇,在其它毛狀根中未觀察到PLR的其他產物落葉松樹脂醇和secoisolariciresinol。接下來將測量羅勒毛狀根中PLR的RNA和蛋白質表現量,並進一步分析其的代謝體學,以強化PLR的生產效率。 | zh_TW |
dc.description.abstract | Podophyllotoxin is a lignan isolated from Podophyllum species and has antivirus ability. The derivative, etoposide, is also used as a medication for chemotherapy to inhibit cancer cell mitosis. Podophyllotoxin is rare in the natural source so it is hard to satisfy the growing demand. A new strategy to produce podophyllotoxin and its derivatives is an urgent problem. Ocimum basilicum (basil) is a valuable herb that is rich in phenolic acids and terpenoids. Rosmarinic acid, caffeic acid, and chlorogenic acid are the most abundant phenolic compounds in basil. The RNA interference of rosmarinic acid synthase (RASi) was expressed in the previous study to enrich the phenylpropanoids precursor accumulation. The first step of podophyllotoxin biosynthesis is to convert pinoresinol into secoisolariciresinol by the enzyme pinoresinol-lariciresinol reductase (PLR). In this study, PLR from Podophyllum pleianthum transient expression in the leaves of Nicotiana benthamiana was conducted first to realize its subcellular localization and activity in plants. PLR was expressed in the cytoplasm and nucleus of epidermal cells simultaneously. However, the catalytic activity of PLR was not detected in the in vitro test. Then, PLR was transformed into the basil hairy roots individually or with the RASi construction to the synthesis of secoisolariciresinol. In the metabolic analysis of these hairy roots, only pinoresinol was found in the PLR with RASi hairy roots with a low concentration of 0.008 ppm/mg DW. Other products of PLR were not observed in the hairy roots. The RNA level and protein expression of PLR will be determined, and the metabolome of basil hairy root will be further analyzed in the next step to optimize PLR expression in hairy roots for podophyllotoxin biosynthesis. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:06:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-11T16:06:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
Abstract ii 中文摘要 iii Abbreviation iv Content vi List of Tables and Figures ix List of Appendixes x Chapter 1: Introduction 1 1.1 Ocimum basilicum (basil) 1 1.1.1 Ocimum basilicum 1 1.1.2 Metabolites and biosynthesis in Ocimum basilicum 1 1.2 Agrobacterium 2 1.2.1 Agrobacterium rhizogenes 2 1.2.2 Agrobacterium tumefaciens 2 1.3 Hairy roots 3 1.3.1 Hairy roots feature 3 1.3.2 Ocimum basilicum hairy roots 4 1.3.3 Rosmarinic acid synthase RNA interference (RASi) 5 1.4 Podophyllotoxin 5 1.4.1 Podophyllotoxin biosynthesis 5 1.4.2 Pinoresinol-lariciresinol reductase (PLR) 6 Chapter 2: Objective 9 Chapter 3: Materials and methods 10 3.1 Plant materials 10 3.1.1 Ocimum basilicum culture 10 3.1.2 Induction of Ocimum basilicum hairy roots 10 3.1.3 Confirmation of Ocimum basilicum hairy roots 10 3.1.4 Nicotiana benthamiana culture 11 3.2 DNA preparation 11 3.2.1 Plasmid extraction 11 3.2.2 DNA agarose gel electrophoresis 12 3.2.3 DNA purification 12 3.2.4 DNA quantification 12 3.2.5 Polymerase chain reaction (PCR) 12 3.3 Plasmid construction 13 3.3.1 Construction of PLR transient expression vector 13 3.3.2 Construction of PLR expression vector 13 3.3.3 Construction of PLR and RASi co-expression vector 14 3.3.4 Escherichia coli transformation 14 3.3.5 Agrobacterium competent cells preparation 14 3.3.6 Agrobacterium tumefaciens and Agrobacterium rhizogenes transformation 14 3.4 Transient expression 15 3.5 Enzyme activity analysis in vitro 15 3.6 Metabolites analysis 16 3.6.1 Metabolites extraction 16 3.6.2 HPLC analysis 16 3.6.3 LC-MS/MS analysis 16 Chapter 4: Results 17 4.1 PLR transient expression in Nicotiana benthamiana 17 4.1.1 Transient expression vector construction 17 4.1.2 PLR subcellular localization analysis 17 4.1.3 PLR enzyme activity analysis in vitro 17 4.2 PLR and PLR with RASi Ocimum basilicum hairy roots metabolites analysis 18 4.2.1 PLR and PLR with RASi expression vector construction 18 4.2.2 PLR and PLR with RASi Ocimum basilicum hairy roots induction 19 4.2.3 Ocimum basilicum hairy roots metabolites analysis by LC-MS/MS 19 Chapter 5: Discussion 23 5.1 PLR transient expression in Nicotiana benthamiana 23 5.1.1 PLRs from other species express in the cytosol 23 5.1.2 PpPLR expresses in the cytosol and nucleus 23 5.1.3 PLR did not present its catalytic activity in the leaves of N. benthamiana in vitro activity analysis 25 5.2 Metabolites analysis of the transgenic hairy roots 26 5.2.1 Lariciresinol m/z is not correspond to the prediction 26 5.2.2 The effect of RASi construction in the basil hairy roots 26 5.2.3 No product is catalyzed by PLR in the PLR with RASi combination hairy roots 27 5.3 Future work 28 Chapter 6: Conclusion 30 Tables 31 Figures 35 Appendixes 50 Reference 67 | - |
dc.language.iso | en | - |
dc.title | 八角蓮的松脂醇-落葉松樹脂醇還原酶於菸草葉片與羅勒毛狀根表現之研究 | zh_TW |
dc.title | Expression of pinoresinol-lariciresinol reductase from Podophyllum pleianthum in Nicotiana benthamiana leaves and Ocimum basilicum hairy roots | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 賴爾珉 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Chih Yang;Nai-Chun Lin;Hieng-Ming Ting;Erh-Min Lai | en |
dc.subject.keyword | 羅勒,毛狀根,松脂醇-落葉松樹脂醇還原酶,松脂醇,代謝工程, | zh_TW |
dc.subject.keyword | Ocimum basilimum,hairy roots,pinoresinol-lariciresinol reductase,pinoresinol,metabolic engineering, | en |
dc.relation.page | 73 | - |
dc.identifier.doi | 10.6342/NTU202202405 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-08-16 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科技學系 | - |
dc.date.embargo-lift | 2027-08-01 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 此日期後於網路公開 2027-08-01 | 4.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。