Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87635
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬zh_TW
dc.contributor.advisorChii-Wann Linen
dc.contributor.author許晉懷zh_TW
dc.contributor.authorJin-Huai Xuen
dc.date.accessioned2023-06-20T16:29:18Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2022-
dc.date.submitted2022-11-02-
dc.identifier.citation[1] P. S. Clifford Harding, "Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing," Volume 113, Issue 2, 15 June 1983, Pages 650-658, Journal vol. 113, no. 2, pp. 650-658, 15 June 1983, doi: https://doi.org/10.1016/0006-291X(83)91776-X.
[2] R. M. A. Johnstone, M; Hammond, J R; Orr, L; Turbide, C, "Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)," Journal of Biological Chemistry, vol. 262, no. 19, pp. 9412-9420, 5 July 1987, doi: https://doi.org/10.1016/S0021-9258(18)48095-7.
[3] S. Gurung, D. Perocheau, L. Touramanidou, and J. Baruteau, "The exosome journey: from biogenesis to uptake and intracellular signalling," Cell Communication and Signaling, vol. 19, no. 1, 2021, doi: 10.1186/s12964-021-00730-1.
[4] M. Frydrychowicz, A. Kolecka-Bednarczyk, M. Madejczyk, S. Yasar, and G. Dworacki, "Exosomes - Structure, Biogenesis and Biological Role in Non-Small-Cell Lung Cancer," Scandinavian Journal of Immunology, vol. 81, no. 1, pp. 2-10, 2015, doi: 10.1111/sji.12247.
[5] M. Tschuschke et al., "Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular Exosomes," Journal of Clinical Medicine, vol. 9, no. 2, p. 436, 2020, doi: 10.3390/jcm9020436.
[6] C. M. Kenific, H. Zhang, and D. Lyden, "An exosome pathway without an ESCRT," Cell Research, vol. 31, no. 2, pp. 105-106, 2021, doi: 10.1038/s41422-020-00418-0.
[7] D. Wu et al., "Profiling surface proteins on individual exosomes using a proximity barcoding assay," Nature Communications, vol. 10, no. 1, 2019, doi: 10.1038/s41467-019-11486-1.
[8] C. Aslan et al., "Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope," BMC Biotechnology, vol. 21, no. 1, 2021, doi: 10.1186/s12896-021-00683-w.
[9] B. Zhou et al., "Application of exosomes as liquid biopsy in clinical diagnosis," Signal Transduction and Targeted Therapy, vol. 5, no. 1, 2020, doi: 10.1038/s41392-020-00258-9.
[10] M. Aga et al., "Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes," Oncogene, vol. 33, no. 37, pp. 4613-4622, 2014, doi: 10.1038/onc.2014.66.
[11] Y. Zhang, Y. Liu, H. Liu, and W. H. Tang, "Exosomes: biogenesis, biologic function and clinical potential," Cell & Bioscience, vol. 9, no. 1, 2019, doi: 10.1186/s13578-019-0282-2.
[12] M. Prieto-Vila, Y. Yoshioka, and T. Ochiya, "Biological Functions Driven by mRNAs Carried by Extracellular Vesicles in Cancer," Frontiers in cell and developmental biology., vol. 9, 2021, doi: 10.3389/fcell.2021.620498.
[13] J. Maia, S. Caja, M. C. Strano Moraes, N. Couto, and B. Costa-Silva, "Exosome-Based Cell-Cell Communication in the Tumor Microenvironment," Frontiers in cell and developmental biology., vol. 6, 2018, doi: 10.3389/fcell.2018.00018.
[14] T. E. Ichim et al., "Exosomes as a tumor immune escape mechanism: possible therapeutic implications," Journal of Translational Medicine, vol. 6, no. 1, p. 37, 2008, doi: 10.1186/1479-5876-6-37.
[15] W. Olejarz, G. Kubiak-Tomaszewska, A. Chrzanowska, and T. Lorenc, "Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers," International Journal of Molecular Sciences, vol. 21, no. 16, p. 5840, 2020, doi: 10.3390/ijms21165840.
[16] M. Osaki and F. Okada, "Exosomes and Their Role in Cancer Progression," Yonago Acta Medica, vol. 62, no. 2, pp. 182-190, 2019, doi: 10.33160/yam.2019.06.002.
[17] E. Yang, X. Wang, Z. Gong, M. Yu, H. Wu, and D. Zhang, "Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression," Signal Transduction and Targeted Therapy, vol. 5, no. 1, 2020, doi: 10.1038/s41392-020-00359-5.
[18] M. Paolillo and S. Schinelli, "Integrins and Exosomes, a Dangerous Liaison in Cancer Progression," Cancers (Basel), vol. 9, no. 8, p. 95, 2017, doi: 10.3390/cancers9080095.
[19] T. Hu, R. Zhou, Y. Zhao, and G. Wu, "Integrin α6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy," Scientific Reports, vol. 6, no. 1, p. 33376, 2016, doi: 10.1038/srep33376.
[20] L. K. Diaz et al., "β4 integrin subunit gene expression correlates with tumor size and nuclear grade in early breast cancer," Modern Pathology, vol. 18, no. 9, pp. 1165-1175, 2005, doi: 10.1038/modpathol.3800411.
[21] T. L. Davis, A. E. Cress, B. L. Dalkin, and R. B. Nagle, "Unique expression pattern of the ?6?4 integrin and laminin-5 in human prostate carcinoma," The Prostate, vol. 46, no. 3, pp. 240-248, 2001, doi: 10.1002/1097-0045(20010215)46:3<240::aid-pros1029>3.0.co;2-0.
[22] G.-Y. Yang, "Integrin αvβ6 sustains and promotes tumor invasive growth in colon cancer progression," World Journal of Gastroenterology, vol. 21, no. 24, p. 7457, 2015, doi: 10.3748/wjg.v21.i24.7457.
[23] A. S. Berghoff et al., "αvβ3, αvβ5 and αvβ6 integrins in brain metastases of lung cancer," Clinical & Experimental Metastasis, vol. 31, no. 7, pp. 841-851, 2014, doi: 10.1007/s10585-014-9675-0.
[24] M. D. Khushman et al., "Exosomal markers (CD63 and CD9) expression and their prognostic significance using immunohistochemistry in patients with pancreatic ductal adenocarcinoma," Journal of Gastrointestinal Oncology, vol. 10, no. 4, pp. 695-702, 2019, doi: 10.21037/jgo.2018.07.02.
[25] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, "Cancer statistics, 2022," CA: A Cancer Journal for Clinicians, vol. 72, no. 1, pp. 7-33, 2022, doi: 10.3322/caac.21708.
[26] P. M. Alli, M. L. Pinn, E. M. Jaffee, J. M. McFadden, and F. P. Kuhajda, "Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice," Oncogene, vol. 24, no. 1, pp. 39-46, 2005, doi: 10.1038/sj.onc.1208174.
[27] M. Arnedos, C. Bihan, S. Delaloge, and F. Andre, "Triple-negative breast cancer: are we making headway at least?," Therapeutic Advances in Medical Oncology, vol. 4, no. 4, pp. 195-210, 2012, doi: 10.1177/1758834012444711.
[28] M. Maqbool, F. Bekele, and G. Fekadu, "Treatment Strategies Against Triple-Negative Breast Cancer: An Updated Review," Breast Cancer: Targets and Therapy, vol. Volume 14, pp. 15-24, 2022, doi: 10.2147/bctt.s348060.
[29] G. Bianchini, C. De Angelis, L. Licata, and L. Gianni, "Treatment landscape of triple-negative breast cancer — expanded options, evolving needs," Nature Reviews Clinical Oncology, vol. 19, no. 2, pp. 91-113, 2022, doi: 10.1038/s41571-021-00565-2.
[30] A. Hoshino et al., "Tumour exosome integrins determine organotropic metastasis," Nature, vol. 527, no. 7578, pp. 329-335, 2015, doi: 10.1038/nature15756.
[31] 劉惠文, "基於表面電漿子共振生物感測器之適體結構最佳化工程應用於偵測轉移性癌症胞泌體整合素蛋白," 2020.
[32] R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396-402, 1902.
[33] J. Homola, "Electromagnetic theory of surface plasmons," in Surface plasmon resonance based sensors: Springer, 2006, pp. 3-44.
[34] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," nature, vol. 424, no. 6950, pp. 824-830, 2003.
[35] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398-410, 1968.
[36] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, no. 12, pp. 2135-2136, 1968.
[37] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers," Journal of the American Chemical Society, vol. 115, no. 21, pp. 9389-9401, 1993.
[38] M. Cohen-Atiya and D. Mandler, "Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements," Journal of Electroanalytical Chemistry, vol. 550, pp. 267-276, 2003.
[39] B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and actuators, vol. 4, pp. 299-304, 1983.
[40] D. R. Shankaran, K. V. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 158-177, 2007.
[41] Z. Wang, S. Zong, J. Yang, J. Li, and Y. Cui, "Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells," Biosensors and Bioelectronics, vol. 26, no. 6, pp. 2883-2889, 2011.
[42] C. Liu et al., "Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis," ACS sensors, vol. 3, no. 8, pp. 1471-1479, 2018.
[43] G. Di Noto et al., "Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes," Biosensors and Bioelectronics, vol. 77, pp. 518-524, 2016.
[44] D. Raghu et al., "Nanoplasmonic pillars engineered for single exosome detection," PloS one, vol. 13, no. 8, p. e0202773, 2018.
[45] N. Bellassai, R. D'Agata, V. Jungbluth, and G. Spoto, "Surface plasmon resonance for biomarker detection: advances in non-invasive cancer diagnosis," Frontiers in chemistry, vol. 7, p. 570, 2019.
[46] U. Jönsson et al., "Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology," Biotechniques, vol. 11, no. 5, pp. 620-627, 1991.
[47] T. Sannomiya, H. Dermutz, C. Hafner, J. Vörös, and A. B. Dahlin, "Electrochemistry on a localized surface plasmon resonance sensor," Langmuir, vol. 26, no. 10, pp. 7619-7626, 2010.
[48] E. Ouellet, C. Lausted, T. Lin, C. W. T. Yang, L. Hood, and E. T. Lagally, "Parallel microfluidic surface plasmon resonance imaging arrays," Lab on a Chip, vol. 10, no. 5, pp. 581-588, 2010.
[49] J.-F. Masson, "Surface plasmon resonance clinical biosensors for medical diagnostics," ACS sensors, vol. 2, no. 1, pp. 16-30, 2017.
[50] S. M. Manohar, P. Shah, and A. Nair, "Flow cytometry: principles, applications and recent advances," Bioanalysis, vol. 13, no. 3, pp. 181-198, 2021, doi: 10.4155/bio-2020-0267.
[51] F. com Vendas, "Measuring environmental impact of nanomaterial wastes and contaminants using Nanoparticle Tracking Analysis."
[52] M. Franquesa et al., "Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells," Frontiers in immunology, vol. 5, p. 525, 2014.
[53] W. Chen et al., "Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon," Journal of nanobiotechnology, vol. 19, no. 1, pp. 1-10, 2021.
[54] B. Kudłak and M. Wieczerzak, "Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives," Critical Reviews in Environmental Science and Technology, vol. 50, no. 8, pp. 816-867, 2020.
[55] C. Tuerk and L. Gold, "Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase," science, vol. 249, no. 4968, pp. 505-510, 1990.
[56] A. D. Ellington and J. W. Szostak, "In vitro selection of RNA molecules that bind specific ligands," nature, vol. 346, no. 6287, pp. 818-822, 1990.
[57] R. Porter, "The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain," Biochemical Journal, vol. 73, no. 1, p. 119, 1959.
[58] L. Pauling, "A theory of the structure and process of formation of antibodies," Journal of the American Chemical Society, vol. 62, no. 10, pp. 2643-2657, 1940.
[59] N. S. Lipman, L. R. Jackson, L. J. Trudel, and F. Weis-Garcia, "Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources," ILAR journal, vol. 46, no. 3, pp. 258-268, 2005.
[60] M. Reth, "Matching cellular dimensions with molecular sizes," Nature immunology, vol. 14, no. 8, pp. 765-767, 2013.
[61] M. M. Harmsen and H. J. De Haard, "Properties, production, and applications of camelid single-domain antibody fragments," Applied Microbiology and Biotechnology, vol. 77, no. 1, pp. 13-22, 2007, doi: 10.1007/s00253-007-1142-2.
[62] P. Dhar, R. M. Samarasinghe, and S. Shigdar, "Antibodies, Nanobodies, or Aptamers—Which Is Best for Deciphering the Proteomes of Non-Model Species?," International Journal of Molecular Sciences, vol. 21, no. 7, p. 2485, 2020, doi: 10.3390/ijms21072485.
[63] 林瑋瑩, "恆溫無酵素放大技術於 SARS-CoV-2 的應用," 2021.
[64] 夏晨軒, "表面電漿子共振感測器之自動化角度掃描式影像分析系統," 2019.
[65] D. J. Pike, N. Kapur, P. A. Millner, and D. I. Stewart, "Flow cell design for effective biosensing," Sensors, vol. 13, no. 1, pp. 58-70, 2012.
[66] K. Berg, T. Lange, F. Mittelberger, U. Schumacher, and U. Hahn, "Selection and Characterization of an α6β4 Integrin blocking DNA Aptamer," Molecular therapy., vol. 5, no. 3, p. e294, 2016, doi: 10.1038/mtna.2016.10.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87635-
dc.description.abstract外泌體的特徵大小為40-160納米的細胞外囊泡,已被證明有很大潛力作為早期或復發癌症預後的生物標誌物。然而,外泌體研究的發展對準確性、有限的樣品量和檢測等成本提出了更高的要求。表面電漿子共振(SPR)具有高靈敏度、即時性和非標記性等優點。本研究應用了影像SPR系統,並將其與設計的細胞培養管相連。 然後應用IDA-B適體探針檢測外泌體表面的特定亞型整合素Alpha6beta4,主要來自4175-LuT細胞系(實驗組)與MDA-MB-231細胞系(對照組)。方法:首先,通過三維建模設計並製作細胞培養管連結SPR系統,並使用NTA、基因表達和細胞形態學分析初步討論細胞和Alpha6beta4外泌體在15和40微升/分鐘的流速所產生的剪切力下和預先設計好的細胞培養管中的生長代謝狀態。其次,用IDA-B適體測量對照組和實驗組之間通過納米顆粒追蹤分析(NTA)定量的相同濃度整合素Alpha6beta4外泌體之SPR信號的差異。再次,將一種新設計的具有不同結構且不能捕獲Alpha6beta4的適體IDA-GC與IDA-B進行Alpha6beta4外泌體捕獲,從而證明IDA-B特異性結合性能。最後,分別使用適體IDA-B和IDA-GC對細胞培養基中的外泌體進行連續檢測測試。結果:影像SPR可以穩定地測量出對照組和試驗組培養基中整合素Alpha6beta4外泌體的信號差異。同時,細胞代謝不會受到剪切力的影響初步驗證了連接表面電漿子共振系統與細胞培養管的進行連續檢測外泌體之可行性。討論:基於表面電漿子共振的特點,SPR可以即時測量比其他方法更低濃度的樣品。同時SPR系統是一種很有前途的可以與其他系統整合成新的生物感測器系統,例如可以與細胞培養系統和藥物或化合物篩選機合作。zh_TW
dc.description.abstractExosomes, with a feature size of 40 - 160 nm and one of the extracellular vesicles, have been shown to have great potential as biomarkers for early or relapse cancer prognosis. However, the development of exosome research has put forward higher requirements in accuracy, limited sample volumes, and cost. On the other hand, surface plasmon resonance (SPR) has advantages in high sensitivity, real-time, and non-labeling. This research applies an imaging SPR system and connects it to a cell culture tube. And then, the IDA-B aptamers are used to detect a specific sub-type integrin alpha6beta4 on the surface of exosomes, which are mainly from test group 4175-LuT cell lines vs. control group MDA-MB-231 cell lines. Methods: First, cell culture tubes were designed and fabricated by 3D modeling linked to the SPR system, and nanoparticle tracking analysis (NTA), gene expression, and cell morphology analyses were used to initially discuss the state of cells and alpha6beta4 exosomes under the shear forces of flow rates of 15 µl/min and 40 µl/min under the designed cell culture tube. Then, the difference between the control and test group of integrin alpha6beta4 exosome signals, which were also quantified by NTA, was measured by imaging SPR with IDA-B aptamers. After that, to verify the IDA-B performance of integrin alpha6beta4 exosomes binding ability, new aptamers, IDA-GC, with different structures which could not capture integrin alpha6beta4 exosomes, were designed to compare. Finally, the aptamer IDA-B and IDA-GC were applied to continuously detect the exosomes from the cell culture medium. Results: The imaging SPR system could stably measure the signal difference of integrin alpha6beta4 exosomes between the control and the test group. At the same time, the shear force did not affect cell metabolism in this experiment. This result initially verified the feasibility of the imaging SPR system connecting with the cell culture tube. Discussion: Compared with other detected methods, SPR allows real-time and sensitive measurement of exosomes under lower concentrations. Meanwhile, the SPR system is robust and can be integrated with other systems, such as cell culture systems and drug/compound screening machines, to form new biosensor systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:29:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:29:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS
誌 謝 i
中文摘要 iii
ABSTRACT iv
LIST OF FIGURES x
LIST OF TABLES xi
Chapter 1 INTRODUCTION 1
1.1 Tumor Cell Exosomes 1
1.1.1 Exosome biogenesis 1
1.1.2 Exosome architecture 2
1.1.3 Exosome communication 3
1.1.4 Clinical potential of exosome 4
1.1.5 Alpha6Beta4 Integrin with Triple-Negative breast cancer 4
1.2 Surface Plasmon Resonance 6
1.2.1 Fundamental principles of surface plasmon resonance 6
1.2.2 Surface chemical modification method 9
1.2.3 Surface plasmon resonance-based biomedical sensing 10
1.2.4 Surface plasmon resonance & multi-functional system 12
1.3 Other Exosomes Detection Methods 12
1.3.1 Enzyme-linked immunosorbent assay 13
1.3.2 Western blotting 13
1.3.3 Flow cytometry 14
1.3.4 Nanoparticle tracking analysis 14
1.3.5 Other exosomes detection methods compared with SPR 14
1.4 Aptamers 16
1.4.1 Fundamentals of aptamers 16
1.4.2 Antibodies and nanobodies 16
1.4.3 Compare aptamers with antibodies and nanobodies 18
1.5 Research Aim 19
Chapter 2 MATERIALS AND METHODS 20
2.1 Surface Plasmon Resonance System 20
2.1.1 Basic information on SPR system 20
2.1.2 System operation process 21
2.2 Cell Culture Tube 23
2.2.1 Foundational information of cell culture tube 23
2.2.2 Cell culture tube design 23
2.3 Cell Culture and Exosomes Collection 25
2.3.1 Exosome-free, serum-free, and cell culture medium preparation 25
2.3.2 Cell culture 26
2.3.3 Exosomes collection 26
2.4 Cell Adherence and Fluid Shear Stress Test 27
2.4.1 Cell adherence test 27
2.4.2 Cell fluid shear stress test 28
2.5 Aptamer 29
2.6 Detection of Cell Exosomes Expression 30
2.6.1 Quantitative particles preparation 30
2.6.2 SPR system exosomes detection 31
2.7 Exosome Continuous Detection 32
2.8 Statistical Analysis 32
Chapter 3 RESULTS 33
3.1 Exosomes Preparation 33
3.1.1 Cell characteristic 33
3.1.2 Cell culture medium comparison 33
3.2 Cell Culture Tube 35
3.2.1 Cell culture tube design 35
3.2.2 Cell culture tube performance 36
3.2.3 Shear force test 39
3.3 Detection of Cell Exosomes Expression 40
3.3.1 Probe modification 40
3.3.2 Signal comparison between 4175-LuT and MDA-MB-231 41
3.3.3 Exosomes detection statistical analysis 44
3.4 Aptamer Comparison 45
3.5 Exosome Continuous Detection 46
Chapter 4 DISCUSSION 49
4.1 Exosomes Preparation 49
4.2 Cell Culture Tube 50
4.3 Continues exosomes SPR detection 51
4.3.1 Detection of Cell Exosomes Expression 51
4.3.2 Continues monitoring 51
4.4 Aptamer 52
4.5 Further Studies 53
Chapter 5 CONCLUSION 54
APPENDICES 55
REFERENCES 56
-
dc.language.isoen-
dc.subject整合素Alpha6beta4zh_TW
dc.subject外泌體zh_TW
dc.subject表面電漿子共振zh_TW
dc.subject細胞培養zh_TW
dc.subjectCell Cultureen
dc.subjectSPRen
dc.subjectExosomeen
dc.subjectIntegrin Alpha6beta4en
dc.title基於影像表面電漿子共振生物感測器的連續監測腫瘤細胞系外泌體研究zh_TW
dc.titleContinuous monitoring of exosomes from cancer cell lines by automatic imaging surface plasmon resonanceen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林致廷;彭盛裕zh_TW
dc.contributor.oralexamcommitteeChih-Ting Lin;Sheng-Yu Pengen
dc.subject.keyword表面電漿子共振,細胞培養,外泌體,整合素Alpha6beta4,zh_TW
dc.subject.keywordSPR,Cell Culture,Exosome,Integrin Alpha6beta4,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202210023-
dc.rights.note未授權-
dc.date.accepted2022-11-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
10.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved