Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷zh_TW
dc.contributor.advisorChuan-Kai Hoen
dc.contributor.author蕭獻鴻zh_TW
dc.contributor.authorXian-Hong Xiaoen
dc.date.accessioned2023-06-20T16:28:36Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2023-
dc.date.submitted2023-02-08-
dc.identifier.citationBanks, C. (1962). "Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae Scop. on bean plants." Annals of Applied Biology 50: 669-679. https://doi.org/10.1111/j.1744-7348.1962.tb06067.x
Barton, B. T. and A. R. Ives (2014). "Direct and indirect effects of warming on aphids, their predators, and ant mutualists." Ecology 95: 1479-1484. https://www.jstor.org/stable/43493752
Brown, M. E. and C. C. Funk (2008). "Food security under climate change." Science 319: 580-581. https://doi.org/10.1073/pnas.0701976104
Buckley, R. (1987). "Interactions involving plants, Homoptera, and ants." Annual review of Ecology and Systematics: 111-135. https://www.jstor.org/stable/2097127
Catunda, K. L., et al. (2022). "Short‐term drought is a stronger driver of plant morphology and nutritional composition than warming in two common pasture species." Journal of Agronomy and Crop Science 208: 841-852. https://doi.org/10.1111/jac.12531
Chen, C.-Y., et al. (2013). "Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora." Bulletin of Entomological Research 103: 406-413. https://doi.org/10.1017/S0007485312000867
Commission, E. (2019). "The European green deal." Eur. Comm. 53: 24. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
Cook, B. I., et al. (2014). "Global warming and 21st century drying." Climate Dynamics 43: 2607-2627. https://doi.org/10.1007/s00382-014-2075-y
Dai, A. (2013). "Increasing drought under global warming in observations and models." Nature climate change 3: 52-58. https://doi.org/10.1038/nclimate1633
Dale, A. G. and S. D. Frank (2017). "Warming and drought combine to increase pest insect fitness on urban trees." PloS one 12: e0173844. https://doi.org/10.1371/journal.pone.0173844
Evans, E., et al. (2013). "Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch." Journal of Applied Entomology 137: 383-391. https://doi.org/10.1111/jen.12028
Fahad, S., et al. (2017). "Crop production under drought and heat stress: plant responses and management options." Frontiers in plant science 8: 1147. https://doi.org/10.3389/fpls.2017.01147
Farooq, M., et al. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212 https://doi.org/10.1051/agro:2008021
Fischer, G., et al. (2005). "Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080." Philosophical Transactions of the Royal Society B: Biological Sciences 360: 2067-2083. https://doi.org/10.1098/rstb.2005.1744
Fischer, G., et al. (2002). "Climate change and agricultural vulnerability." IIASA, Laxenburg, Austria.
Gely, C., et al. (2020). "How do herbivorous insects respond to drought stress in trees?" Biological Reviews 95: 434-448. https://doi.org/10.1111/brv.12571
Harvey, J. A., et al. (2020). "Climate change‐mediated temperature extremes and insects: From outbreaks to breakdowns." Global change biology 26: 6685-6701. https://doi.org/10.1111/gcb.15377
Hitz, S. and J. Smith (2004). "Estimating global impacts from climate change." Global Environmental Change 14: 201-218. https://doi.org/10.1016/j.gloenvcha.2004.04.010
Hussain, M., et al. (2008). "Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower." Journal of Agronomy and Crop Science 194: 193-199. https://doi.org/10.1111/j.1439-037X.2008.00305.x
Islam, Y., et al. (2021). "Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature." Scientific Reports 11: 1-13. https://doi.org/10.1038/s41598-021-92954-x
Jamieson, M. A., et al. (2017). "Global change effects on plant–insect interactions: the role of phytochemistry." Current opinion in insect science 23: 70-80. https://doi.org/10.1016/j.cois.2017.07.009
Jumrani, K. and V. S. Bhatia (2018). "Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean." Physiology and Molecular biology of Plants 24: 37-50. https://doi.org/10.1007/s12298-017-0480-5
Layman, M. L. and J. G. Lundgren (2015). "Mutualistic and antagonistic trophic interactions in canola: the role of aphids in shaping pest and predator populations." Biological Control 91: 62-70. https://doi.org/10.1016/j.biocontrol.2015.07.008
Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.) (2021). IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
Mooney, E., et al. (2021). "Early snowmelt reduces aphid abundance (Aphis asclepiadis) by creating water-stressed host plants (Ligusticum porteri) and altering interactions with ants." Arthropod-Plant Interactions 15: 33-46. https://doi.org/10.1007/s11829-020-09793-2
Moss, E. D., et al. (2021). "Investigating the impacts of climate change on ecosystem services in UK agro-ecosystems: An application of the DPSIR framework." Land use policy 105: 105394. https://doi.org/10.1016/j.landusepol.2021.105394
Naumann, G., et al. (2018). "Global changes in drought conditions under different levels of warming." Geophysical Research Letters 45: 3285-3296. https://doi.org/10.1002/2017GL076521
Phillips, B. B., et al. (2018). "Drought reduces floral resources for pollinators." Global change biology 24: 3226-3235. https://doi.org/10.1111/gcb.14130
Rao, M. S., et al. (2018). "Tritrophic interactions of cowpea [Vigna unguiculata subsp unguiculata (L.)], aphids [Aphis craccivora (Koch)] and coccinellids [Menochilus sexmaculatus (Fab.)] under eCO2 and eTemp." Journal of Asia-Pacific Entomology 21: 531-537. https://doi.org/10.1016/j.aspen.2018.03.003
Robinson, A., et al. (2017). "Multitrophic interactions mediate the effects of climate change on herbivore abundance." Oecologia 185: 181-190. https://doi.org/10.1007/s00442-017-3934-0
Schmidhuber, J. and F. N. Tubiello (2007). "Global food security under climate change." Proceedings of the National Academy of Sciences 104: 19703-19708. https://doi.org/10.1073/pnas.0701976104
Sattar, A., et al. (2020). "Individual and combined effect of terminal drought and heat stress on allometric growth, grain yield and quality of bread wheat." Pak. J. Bot 52: 405-412. http://dx.doi.org/10.30848/PJB2020-2(5)
Tian, Y., et al. (2012). "Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China." Field Crops Research 134: 193-199. https://doi.org/10.1016/j.fcr.2012.05.013
Toby Kiers, E., et al. (2010). "Mutualisms in a changing world: an evolutionary perspective." Ecology letters 13: 1459-1474. https://doi.org/10.1111/j.1461-0248.2010.01538.x
Tubiello, F. N., et al. (2007). "Crop and pasture response to climate change." Proceedings of the National Academy of Sciences 104: 19686-19690. https://doi.org/10.1073/pnas.0701728104
Vidal, M. C., et al. (2021). "The variable effects of global change on insect mutualisms." Current opinion in insect science 47: 46-52. https://doi.org/10.1016/j.cois.2021.03.002
Walter, J., et al. (2012). "How do extreme drought and plant community composition affect host plant metabolites and herbivore performance?" Arthropod-Plant Interactions 6: 15-25. https://doi.org/10.1007/s11829-011-9157-0
Way, M. J. (1963). "Mutualism between ants and honeydew-producing Homoptera." Annual review of entomology 8: 307-344. https://doi.org/10.1146/annurev.en.08.010163.001515
Wheeler, T. and J. von Braun (2013). "Climate change impacts on global food security." Science 341: 508-513. https://doi.org/10.1126/science.1239402
White, T. (1969). "An index to measure weather‐induced stress of trees associated with outbreaks of psyllids in Australia." Ecology 50: 905-909. https://doi.org/10.2307/1933707
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87633-
dc.description.abstract氣候變遷(如暖化和乾旱)在本世紀會更加顯著,但它們對糧食安全(如作物生產)和作物上物種交互作用(如食草動物、共生、捕食和敵對關係)的影響有待釐清。為回答以上這些問題,本研究探討兩種氣候變遷事件(暖化和乾旱)是否會交互影響 1)作物的生長和生產,以及 2)作物上的物種關係(例如共生和捕食)。本研究著重在臺灣的作物系統,實驗物種包括大豆植株 (Glycine max)、蚜蟲 (Aphis glycines)、瓢蟲 (Cheilomenes sexmaculata) 和螞蟻 (Anoplolepis gracilipes)。我們的室內實驗為 2×2×2×2 的複因子實驗設計,實驗處理包含溫度(控制/+3°C 升溫)、土壤含水量(控制/乾旱)、螞蟻(存在/不存在)和瓢蟲(存在/不存在),每種處理組合皆包含用絹網圈養的大豆植物及蚜蟲。我們記錄的數據包括作物表現、蚜蟲數量以及螞蟻和瓢蟲的死亡率。實驗結果顯示:1)暖化和乾旱常會交互影響物種關係與作物的生長和生產,暗示著重在個別氣候變遷因子的評估可能無法反映真實的作物反應。2)在暖化下,瓢蟲可以顯著地抑制蚜蟲的數量,暗示暖化可以加強天敵(瓢蟲)控制害蟲(蚜蟲)的生物防治效果。3)在暖化下,瓢蟲的存在會增加螞蟻的死亡率,暗示暖化可能會加劇瓢蟲與螞蟻的敵對關係(瓢蟲捕食害蟲vs.螞蟻保護害蟲並與其共生)。根據以上實驗結果,本研究建議評估糧食安全時應考慮非生物(氣候變遷)和生物(物種關係)因子間的交互作用。zh_TW
dc.description.abstractClimate change events, such as warming and drought, will occur more often in this century, but their interactive effects on food security (e.g., crop production) and species interactions (e.g., herbivory, mutualism, predation, and antagonism) remain to be investigated. To help fill this knowledge gap, this study investigated how two climate change events (warming and drought) may interactively affect 1) crop growth, defense, and production, and 2) species interactions (e.g., herbivory, mutualism, predation, and antagonism) on crop plants. Specifically, this study focused on a crop system in Taiwan, including soybean plants (Glycine max), aphids (Aphis glycines), lady beetles (Cheilomenes sexmaculata), and ants (Anoplolepis gracilipes). We conducted a laboratory experiment with a 2×2×2×2 factorial design, including the temperature (control/+3°C warming), soil water content (control/drought), ant (presence/absence), and lady beetle (presence/absence) treatments. Note that each replicate of a treatment combination at least had aphids on a caged soybean plant. We recorded crop performance, aphid populations, and ant and lady beetle mortality. The results show the following: 1) Warming and drought commonly interacted with each other and species interactions, consequently affecting crop growth and production. This suggests that an estimation on crop production based on individual factors only may not reflect the reality. 2) Warming enhanced the suppression of aphid populations by lady beetles, implying that biocontrol of pests (aphids) by natural enemies (lady beetles) may become more efficient under warming. 3) Under warming, ant mortality increased with lady beetle presence, suggesting that warming may intensify the antagonism between lady beetles and ants (i.e., predation on pests vs. mutualism with pests). Taken together, the results suggest that evaluating food security this century should consider the interplay between abiotic (climate change) and biotic (species interaction) factors.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:28:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:28:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ........................................................................................................................................i
致謝 .......................................................................................................................................................... ii
中文摘要 ................................................................................................................................................. iii
Abstract ..................................................................................................................................................iv
Introduction .............................................................................................................................................1
Material and Methods..............................................................................................................................4
Species .......................................................................................................................................................... 4
Experimental design ..................................................................................................................................... 4
Experimental procedure ................................................................................................................................ 6
Data collection .............................................................................................................................................. 8
Statistical analysis....................................................................................................................................... 12
Results .................................................................................................................................................... 14
Lady beetle and ant performance ................................................................................................................ 14
Aphid performance ..................................................................................................................................... 15
Plant performance - Growth........................................................................................................................ 16
Plant performance - Defense....................................................................................................................... 19
Plant performance - Reproduction .............................................................................................................. 19
Discussion ..............................................................................................................................................22 Summary..................................................................................................................................................... 22
Effect of climate change events (abiotic factors) on species interactions and crop performance ............... 23
Interactive effect of abiotic and biotic factors on crop performance........................................................... 25
Implications for agriculture......................................................................................................................... 26
Potential caveats ......................................................................................................................................... 26
Reference ...............................................................................................................................................28
Appendix ................................................................................................................................................ 97
-
dc.language.isoen-
dc.title暖化和乾旱對大豆表現與害蟲(蚜蟲)、害蟲保護者(螞蟻)、害蟲天敵(瓢蟲)互動關係的影響zh_TW
dc.titleEffects of warming and drought on soybean performance and soybean aphid-ant-lady beetle interactionsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張智涵;林柏安;林宗岐;郭奇芊zh_TW
dc.contributor.oralexamcommitteeChih-Han Chang;Po-An Lin;Chung-Chi Lin;Chi-Chien Kuoen
dc.subject.keyword氣候變遷,暖化,乾旱,物種交互作用,互利共生,掠食,糧食危機,zh_TW
dc.subject.keywordclimate change,warming,drought,species interaction,mutualism,predation,food security,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202300322-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-02-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2028-02-07-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
9.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved