Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8762
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪治平(Jyhpyng Wang),陳賜原(Szu-Yuan Chen),林俊元(Jiunn-Yuan Lin)
dc.contributor.authorPing-Hsun Linen
dc.contributor.author林秉勳zh_TW
dc.date.accessioned2021-05-20T20:00:50Z-
dc.date.available2011-02-01
dc.date.available2021-05-20T20:00:50Z-
dc.date.copyright2010-02-01
dc.date.issued2010
dc.date.submitted2010-01-27
dc.identifier.citation[1] W. Roentgen, Nature 53, 274 (1896).
[2] T. H. Maiman, Stimulated optical radiation in ruby,' Nature 187, 493{494 (1960).
[3] US Departement of Energy (DOE) Report (2007).
[4] R. C. Elton, X-ray lasers (Academic Press, San Diego, CA, 1990).
[5] J. A. Bearden, X-ray wavelengths,' Rev. Mod. Phys. 39, 78 (1967).
[6] D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Inc., 2000 Corporate Blvd., N. W. ,Boca Raton, Florida 33431, 1993), 74th ed.
[7] Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, Generation of coherent soft x rays at 2.7 nm using high harmonics,' Phys. Rev. Lett. 79, 2967-2970 (1997).
[8] C. Winterfeldt, C. Spielmann, and G. Gerber, Colloquium: Optimal control of high-harmonic generation,' Rev. Mod. Phys. 80, 117-140 (2008).
[9] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, Observation of a train of attosecond pulses from high harmonic generation, Science 292, 1689-1692 (2001).
[10] J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carre, and P. Saliµeres, Extreme-ultraviolet high-order harmonic pulses in the microjoule range, Phys. Rev. A 66, 021,801 (2002).
[11] A. E. Siegman, Lasers (University Science Books, 55D Gate Five Road, Sausalito, CA 94965, USA, 1986).
[12] V. Ayvazyan et al., First operation of a free-electron laser generating GW power radiation at 32 nm wavelength,' Eur. Phys. J. D 37, 297-303 (2006).
[13] W. Ackermann et al., Operation of a free-electron laser from the extreme ultraviolet to the water window, Nat. Photonics 1, 336-342 (2007).
[14] from http://en.wikipedia.org/wiki/.
[15] J. J. Rocca, Table-top soft x-ray lasers, Rev. Sci. Instrum. 70, 3799-3827 (1999).
[16] D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and
T. A. Weaver, Demonstration of a soft x-ray amplifier, Phys. Rev. Lett. 54, 110-113 (1985).
[17] S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, and D. Voorhees, Amplification of stimulated soft-x-ray emission in a confined plasma column, Phys. Rev. Lett. 55, 1753-1756 (1985).
[18] M. A. Dugury and P. M. Rentzepis, Some approach to vacuum uv x-ray lasers, Appl. Phys. Lett. 10, 350-352 (1967).
[19] H. C. Kapteyn, Photoionization-pumped x-ray lasers using ultrashort-pulse excitation, Appl. Opt. 31, 4931-4939 (1992).
[20] B. A. Norton and N. J. Peacock, Population inversion in laser-produced plasmas by pumping with opacity-broadened lines, J. Phys. B 8, 989-996 (1975).
[21] W. B. Bridges, 'Ionized gas lasers' in Handbook of Laser Science and Technol. Sec. 2 (CRC Press, Inc., 2000 Corporate Blvd., N. W. Boca Raton, Florida 33431, 1982).
[22] M. A. Dunn and J. N. Ross, The argon ion laser, Prog. Quantum Electron. 4, 233 (1976).
[23] H. Daido, Review of soft x-ray laser researches and developments, Rep. Prog. Phys. 65, 1513-1576 (2002).
[24] Y. V. Afanas'ev and V. N. Shlyaptsev, Formation of a population inversion of transitions in Ne-like ions in steady-state and transient plasmas, Sov. J. Quantum Electron. 19, 1606-1612 (1989).
[25] P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. SchnÄurer, I. Will, and W. Sandner, Short pulse x-ray laser at 32.6 nm based on transient gain in ne-like titanium, Phys. Rev. Lett. 78, 2748-2751 (1997).
[26] J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev, and R. E. Stewart, Demonstration of x-ray amplification in transient gain nickel-like palladium scheme, Phys. Rev. Lett. 80, 2825-2828 (1998).
[27] M. P. Kalachnikov, P. V. Nickles, M. Schnurer, W. Sandner, V. N. Shlyaptsev, C. Danson, D. Neely, E. Wolfrum, J. Zhang, A. Behjat, A. Demir, G. J. Tallents, P. J. Warwick, and C. L. S. Lewis, Saturated operation of a transient collisional x-ray laser, Phys. Rev. A 57, 4778-4783 (1998).
[28] R. E. King, G. J. Pert, S. P. McCabe, P. A. Simms, A. G. MacPhee, C. L. S. Lewis, R. Keenan, R. M. N. O. G. J. Tallents, S. J. Pestehe, F. Strati, D. Neely, and R. Allott, Saturated x-ray lasers at 196 and 73 A, pumped by a picosecond traveling-wave excitation,' Phys. Rev. A 64, 053,810 (2001).
[29] P. B. Corkum and N. H. Burnett, Short-Wavelength Coherent Radiations: Genearion and Applications, R. W. Falcone and J. Kirz, eds. (OSA, 1988), vol. 2, p. 225.
[30] V. N. Shlyaptsev, J. Dunn, S. Moon, R. Smith, R. Keenan, J. Nilsen, K. Fournier, J. Kuba, A. L. Osterheld, J. J. G. Rocca, B. M. Luther, Y. Wang, and M. C. Marconi, Numerical studies of transient and capillary x-ray lasers and their applications, vol. 5197 of Proc. SPIE (2003), p. 221.
[31] R. Keenan, J. Dunn, P. K. Patel, D. F. Price, R. F. Smith, and V. N. Shlyaptsev, High-repetition-rate grazing-incidence pumped x-ray laser operating at 18.9 nm, Phys. Rev. Lett. 94, 103,901 (2005).
[32] J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortazar,D. Hartshorn, and J. L. A. Chilla, Demonstration of a discharge pumped table-top soft-x-ray laser, Phys. Rev. Lett. 73, 2192-2195 (1994).
[33] J. J. Rocca, D. P. Clark, J. L. A. Chilla, and V. N. Shlyaptsev, Energy extraction and achievement of the saturation limit in a discharge-pump table-top soft x-ray amplifier,' Phys. Rev. Lett. 77, 1476-1479 (1996).
[34] L. I. Gudzenko and L. A. Shelepin, Sov. Phys. Doki. 10, 147 (1965).
[35] G. J. Pert, Models of collitional-radiative recombination, J. Phys. B 23, 619-650 (1990).
[36] S. Suckewer and P. Jaegle, X-ray laser: past, present, and future, Laser Phys. Lett. 6, 411-436 (2009).
[37] Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, Soft-x-ray amplification of the Lyman-arpha transition
by optical-‾eld-induced ionization,' Phys. Rev. Lett. 71, 3774{3777
(1993).
[38] D. V. Korobkin, C. H. Nam, and S. Suckewer, Demonstration of soft
x-ray lasing to ground state in Li III,' Phys. Rev. Lett. 77, 5206{5209
(1996).
[39] B. E. Lemo®, C. P. J. Barty, and S. E. Harris, Femtosecond-
pulse-driven, electron-excited XUV lasers in eight-times-ionized noble
gases,' Opt. Lett. 19, 569{571 (1994).
[40] B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX, Phys. Rev. Lett. 74, 1574-1577 (1995).
[41] H.-H. Chu, H.-E. Tsai, M.-C. Chou, L.-S. Yang, J.-Y. Lin, C.-H. Lee, J. Wang, and S.-Y. Chen, Collisional excitation soft x-ray laser pumped by optical field ionization in a cluster jet, Phys. Rev. A 71, 061804 (2005).
[42] M.-C. Chou, P.-H. Lin, T.-S. Hung, J.-Y. Lin, J.Wang, and S.-Y. Chen, Experimental investigation of the parameter space for optical-field-ionization cluster-jet x-ray lasers, Phys. Rev. A 74, 023804 (2006).
[43] S. Sebban, R. Haroutunian, P. Balcou, G. Grillon, A. Rousse, S. Kazamias, T. Marin, J. P. Rousseau, L. Notebaert, M. Pittman, J. P. Chambaret, A. Antonetti, D. Hulin, D. Ros, A. Klisnick, A. Carillon, P. Jaegle, G. Jamelot, and J. F. Wyart, Saturated amplification of a collisionally pumped optical-field-ionization soft x-ray laser at 41.8 nm,' Phys. Rev. Lett. 86, 3004-3007 (2001).
[44] A. Butler, A. J. Gonsalves, C. M. McKenna, D. J. Spence, S. M. Hooker, S. Sebban, T. Mocek, I. Bettaibi, and B. Cros, Demonstration of a collisionally excited optical-field-ionization xuv laser driven in a plasma waveguide, Phys. Rev. Lett. 91, 205001 (2003).
[45] A. Butler, A. J. Gonsalves, C. M. McKenna, D. J. Spence, S. M. Hooker, S. Sebban, T. Mocek, I. Betttaibi, and B. Cros, 41.8-nm Xe8+ laser driven in a plasma waveguide,' Phys. Rev. A 70, 023821 (2004).
[46] T. Mocek, C. M. McKenna, B. Cros, S. Sebban, D. J. Spence, G. Maynard, I. Bettaibi, V. Vorontsov, A. J. Gonsavles, and S. M. Hooker, Dramatic enhancement of xuv laser output using a multimode gas-filled capillary waveguide, Phys. Rev. A 71, 013804 (2005).
[47] T. Mocek, S. Sebban, I. Bettaibi, P. Zeitoun, G. Faivre, B.Cros, G. Maynard, A. Butler, C. M. McKenna, D. J. Spence, A. J. Gonsavles, S. M. Hooker, V. Vorontsov, S. Hallou, M. Fajardo, S. Kazamias, S. L. Pape, P. Mercere, A. S. Morlens, C. valentin, and P. Balcou, Progess in optical-field-ionization soft x-ray lasers at LOA, Laser Part. Beams
23, 351-356 (2005).
[48] B. Cros, T. Mocek, I. Bettaibi, G. Vieux, M. Farinet, J. Dubau, S. Sebban, and G. Maynard, Characterization of the collisionally pumped optical-field-ionized soft-x-ray laser at 41.8nm driven in capillary tubes, Phys. Rev. A 73, 033801 (2006).
[49] C. G. Durfee III, J. Lynch, and H. M. Milchberg, Development of plasma waveguide for high-intensity laser pulses, Phys. Rev. E 51, 2368-2389 (1995).
[50] P. Volfbeyn, E. Esarey, and W. P. Leemans, Guiding of laser pulses in plasma channels created by the ignitor-heater technique, Phys. Plasmas 6, 2269-2277 (1999).
[51] Y.-F. Xiao, H.-H. Chu, H.-E. Tsai, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, Efficient generation of extended plasma waveguides with the axicon ignitor-heater scheme, Phys. Plasmas 11, L21-L24 (2004).
[52] H. M. Milchberg, C. G. Durfee III, and J. Lynch, Application of a plasma waveguide to soft-x-ray lasers, J. Opt. Soc. Am. B 12, 731-737 (1995).
[53] M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-Y. Chen, Dramatic enhancement of optical-field-ionization collisional-excitation x-ray lasing by an optically preformed plasma waveguide, Phys. Rev. Lett. 99, 063904 (2007).
[54] P.-H. Lin, M.-C. Chou, C.-A. Lin, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen, Optical-field-ionization collisional-excitation x-ray lasers with an optically preformed plasma waveguide, Phys. Rev. A 76, 053817 (2007).
[55] L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP 20, 1307-1314 (1965).
[56] P. B. Corkum, N. H. Burnett, and F. Brunel, Above-threshold ionization in the long wavelength limit, Phys. Rev. Lett. 62, 1259-1262 (1989).
[57] N. H. Burnett and P. B. Corkum, Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization, J. Opt. Soc. Am. B 6, 1195-1199 (1989).
[58] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, London, 1978).
[59] A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, Ionization of atoms in an alternating electric field, Sov. Phys. JETP 23, 924-928 (1965).
[60] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Tunnel ionization of complex atoms and atomic ions in an alternating electromagnetic field, Sov. Phys. JETP 64, 1191-1196 (1986).
[61] T. Tajima and J. M. Dawson, Optimization of laser propagation in optical-field-ionization plasmas for x-ray laser generation,' Phys. Rev. Lett. 43, 267-270 (1979).
[62] C. G. Wahlstrom, S. Borgstrom, J. Larsson, and S. G. Pettersson, High order harmonic generation in laser-produced ions using a near-infrared laser,' Phys. Rev. A 51, 585-591 (1995).
[63] P. E. Young, H. A. Baldis, R. P. Drake, E. M. Campbell, and K. G. Estabrook, Direct evidence of poderomotive filamentation in a laser-produced plasma, Phys. Rev. Lett. 61, 2336-2339 (1988).
[64] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air, Opt. Lett. 20, 73-75 (1995).
[65] W. L. Kruer, The physics of laser plasma interactions (Addison-Wesley Publishing Company, 1988).
[66] C. D. Decker, W. B. Mori, J. M. Dawson, and T. Katsouleas, Non-linear collisional absorption in laser-driven plasmas, Phy. Plasma 1, 4032-4042 (1994).
[67] J. H. Mcleod, The axicon: A new type of optical element, J. Opt. Soc. Am. 44, 592-597 (1954).
[68] V. V. Korobkin, L. Y. Polonskii, V. P. Poponin, and L. N. Pyatnitskii, Focusing of Gaussian and super-Gaussian laser beams by axicons to obtain continuous laser sparks, Sov. J. Quantum Electron. 16, 178-182 (1986).
[69] A. G. Sedukhin, Beam-preshaping axicon focusing, J. Opt. Soc. Am. A 15, 3057-3066 (1998).
[70] H. N. Tsai, The preliminary development of x-ray lasers driven in plasma waveguides, Master Thesis-National Taiwan University (2005).
[71] M. C. Chou, Experimental study of optical-field-ionization collisional-excitation soft x-ray lasers, Ph.D. Thesis-National Chung Cheng University (2007).
[72] T. Kita, T. Harada, N. Nakano, and H. Kuroda, Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph, Appl. Opt. 22, 512-513 (1983).
[73] N. Nakano, H. Kuroda, T. Kita, and T. Harada, Development of a flat-field grazing-incidence xuv spectrometer and its application in picosecond xuv spectroscopy, Appl. Opt. 23, 2386-2392 (1984).
[74] J. Y. Lin, Optimization of laser propagation in optical-field-ionization plasmas for x-ray laser generation,' Appl. Phys. B 86, 25-29 (2007).
[75] K. A. Goldberg, P. Naulleau, P. Denham, S. B. Rekawa, K. Jackson, E. H. Anderson, and J. A. Liddle, At-wavelength alignment and testing of the 0.3 NA MET optics, J. Vac. Sci. Tech. B 22, 2956-2961 (2004).
[76] Y. Liu, A. Barty, E. Gullikson, J. S. Taylor, J. A. Liddle, and O. Wood, A dual-mode actinic euv mask inspection tool, in Proc. SPIE in Emerging Lithographic Technologies IX, (2005), pp. 660-669.
[77] W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Soft x-ray microscopy at a spatial resolution better than 15 nm, Nature 435, 1210-1213 (2005).
[78] M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser, Phy. Rev. Lett. 79, 2799-2802 (1997).
[79] J. Yang, D. Fan, S. Wang, and Y. Gu, Moire technique for spatial coherence measurements of soft-x-ray lasers, J. Opt. Soc. Am. A 17, 790-793 (2000).
[80] R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y. Liu, D. Attwood, and C. Jacobsen, Generation of spatially coherent light at extreme ultraviolet wavelengths, Science 4297, 376-378 (2002).
[81] Y. Liu, Y. Wang, M. A. Larotonda, B. M. Luther, J. J. Rocca, and D. T. Attwood, Spatial coherence measurements of a 13.2 nm transient nickel-like cadmium soft x-ray laser pumped at grazing incidence, Opt. Exp. 14, 12,872-879 (2006).
[82] P. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert, P. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de Lacheze-Murel, T. Lefrou, S. le Pape, P. Mercere, H. Merdji, A. S. Morlens, J. P. Rousseau, and C. Valentin1, A high-intensity highly coherent soft x-ray femtosecond laser seeded by a high harmonic beam, Nature 431, 426-429 (2004).
[83] B. J. Thompson and E. Wolf, Two-beam interference with partially coherent light, J. Opt. Soc. Am. 47, 895-902 (1957).
[84] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, New York, 1977).
[85] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, Tunneling ionization of noble gases in a high-intensity laser field, Phy. Rev. Lett. 63, 2212{-2215 (1989).
[86] B. M. Penetrante and J. N. Bardsly, Residual energy in plasmas produced by intense subpicosecond lasers, Phys. Rev. A 43, 3100-3113 (1991).
[87] Calculated using atomic physics code, http://aphysics2.lanl.gov/cgi-bin/ION/runlanl08d.pl.
[88] R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981).
[89] M. J. Grout, K. A. Janulewicz, S. B. Healy, and G. J. Pert, Optical-field induced gas mixture breakdown for recombination x-ray lasers, Opt. Commun. 141, 213-220 (1997).
[90] H. Fiedorowicz, A. Bartnik, Y. Li, P. Lu, and E. Fill, Demonstration of soft x-ray lasing with neonlike argon and nickel-like xenon ions using a laser-irradiated gas puff target, Phys. Rev. Lett. 76, 415-418 (1996).
[91] J. Nilsen, H. Fiedorowicz, A. Bartnik, Y. Li, P. Lu, and E. E. Fill, Self-photopumped neonlike x-ray laser, Opt. Lett. 21, 408-410 (1996).
[92] J. Nilsen, Lasing on the 3d-3p neonlike x-ray laser transitions driven by a self-photon-pumping mechanism, Phys. Rev. A 53, 4539-4546 (1996).
[93] H. Fiedorowicz, A. Bartnik, J. Dunn, R. F. Smith, J. Hunter, J. Nilsen, A. L. Osterheld, and V. N. Shlyapsev, Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target, Opt. Lett. 26, 1403-1405 (2001).
[94] A. V. Vinogradov, I. I. Sobelman, and E. A. Yukov, Possibility of constructing a far-ultraviolet laser utilizing transitions in multiply charged ions in an inhomogeneous plasma, Sov. J. Quantum Electron. 5, 59-63
(1975).
[95] B. Rus, C. L. S. Lewis, G. F. Cairns, P. Dhez, P. Jaegle, M. H. Key, D. Neely, A. G. MacPhee, S. A. Ramsden, C. G. Smith, and A. Sureau, Demonstration of amplification of a polarized soft-x-ray laser beam in a neonlike germanium plasma, Phys. Rev. A 51, 2316-2327 (1995).
[96] T. Mocek, S. Sebban, G. Maynard, P. Zeitoun, G. Faivre, A. Hallou, M. Fajardo, S. Kazamias, B. Cros, D. Aubert, G. de Lacheze-Murel, J. P. Rousseau, and J. Dubau, Absolute time-resolved x-ray laser gain measurement, Phys. Rev. Lett. 95, 173902 (2005).
[97] A. Klisnick, J. Kuba, D. Ros, R. Smith, G. Jamelot, C. Chenais-Popovics, R. Keenan, S. J. Topping, C. L. S. Lewis, F. Strati, G. J. Tallents, D. Neely, R. Clarke, J. Collier, A. G. MacPhee, F. Bortolotto, P. V. Nickles, and K. A. Janulewicz, Demonstration of a 2-ps transient x-ray laser, Phys. Rev. A 65, 033810 (2002).
[98] M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence, Phys. Rev. A 68, 061802(R)2003).
[99] P. Salieres, T. Ditmire, K. S. Budil, M. D. Perry, and A. L'Huillier, Spatial profiles of high-order harmonics generated by a femtosecond Cr:LiSAF laser, J. Phys. B 27, L217-L222 (1994).
[100] T. Ditmire, M. H. R. Hutchinson, M. H. Key, C. L. S. Lewis, A. MacPhee, I. Mercer, D. Neely, M. D. Perry, R. A. Smith, J. S. Wark, and M. Zepf, Amplification of xuv harmonic radiation in a gallium ampli‾er, Phys. Rev. A 51, R4337-R4340 (1995).
[101] J. P. Goddet, S. Sebban, A. S. Morlens, J. Gautier, J. P. Rosseau, F. Burgy, P. Zeitoun, C. Valentin, , C. Hauri, G. Maynard, A. Boudaa, J. P. Caumes, H. Merdji, T. Mocek, M. Kozlova, and K. Jakubczak, Demonstration of a spatial filtering amplifier for high-order harmonics, Opt. Lett. 32, 1498-1500 (2007).
[102] Y. Wang, E. Granados, M. A. Larotonda, M. Berrill, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, High-brightness injection-seeded soft-x-ray-laser amplifier using a solid target, Phys. Rev. Lett. 97, 123901 (2006).
[103] Y. Wang, E. Granados, F. Pedaci, D. Alessi, B. Luther, M. Berrill, and J. J. Rocca, Phase-coherent, injection-seeded table-top soft-x-ray lasers at 18.9 nm and 13.9 nm, Nat. Photonics 2, 94-98 (2008).
[104] M. B. B. L. E. G. F. Pedaci, Y.Wang and J. J. Rocca, Highly coherent injection-seeded 13.2 nm tabletop soft x-ray laser, Opt. Lett. 31, 491-493 (2008).
[105] I. R. Al'miev, O. Larroche, D. Benredjem, J. Dubau, S. Kazamias, C. Moeller, and A. Klisnick, Dynamical description of transient x-ray lasers seeded with high-order harmonic radiation through Maxwell-Bloch numerical simulations, Phys. Rev. Lett. 99, 123902 (2007).
[106] H. Huang and G. J. Tallents, The output of a laser amplifier with simultaneous amplified spontaneous emission and an injected seed, Laser Part. Beams 27, 393-398 (2009).
[107] P. B. Corkum, Plasma perspective on strong field multiphoton ionization, Phys. Rev. Lett. 71, 1994-1997 (1993).
[108] K. C. Kulander, K. J. Schafer, and J. L. Krause, Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion.
[109] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L'Huillier, and P. B. Corkum, Theory of high-harmonic generation by low-frequency laser fields, Phys. Rev. A 49, 2117-2132 (1994).
[110] P. Salieres, T. Ditmire, M. D. Perry, A. L'Huillier, and M. Lewenstein, Angular distributions of high-order harmonics generated by a femtosecond laser, J. Phys. B: At. Mol. Opt. Phys. 29, 4771-4786 (1996).
[111] Y. Tamaki, J. Itatani, M. Obara, and K. Midorikawa, Optimization of conversion e±ciency and spatial quality of high-order harmonic generation, Phys. Rev. A 62, 063802 (2000).
[112] T. Ditmire, E. T. Gumbrell, R. A. Smith, J. W. G. Tisch, D. D. Meyerhofer, and M. H. R. Hutchinson, Spatial coherence measurement of soft x-ray radiation produced by high order harmonic generation, Phys. Rev. Lett. 77, 4756-4759 (1996).
[113] T. Ditmire, J. Tisch, E. Gumbrell, R. Smith, D. Meyerhofer, and M. Hutchinson, Spatial coherence of short wavelength high-order harmonics, Appl. Phys. B 65, 313-328 (1997).
[114] K.-H. H. J.-H. K. I. W. C. H. T. Kim, D. G. Lee and C. H. Nam, Continuously tunable high-order harmonics from atoms in an intense femtosecond laser field, Phys. Rev. A 67, 051801(R) (2003).
[115] T. Brabec and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys. 72, 545-591 (2000).
[116] C. Altucci, R. Bruzzese, C. de Lisio, M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, A. Boscolo, P. Ceccherini, L. Poletto, G. Tondello, and P. Villoresi, Tunable soft-x-ray radiation by high-order harmonic generation, Phys. Rev. A 61, 021801 (1999).
[117] Z. Fangchuan, L. Zhong, Z. Zhinan, Z. Zhengquan, L. Ruxin, and X. Zhizhan, Spectral splitting of high-order harmonic emissions from ionizing gases, Phys. Rev. A 65, 033808 (2002).
[118] H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field, Phys. Rev. Lett. 83, 2544-2547 (1999).
[119] X. He, M. Miranda, J. Schwenke, O. Guilbaud, T. Ruchon, C. Heyl, E. Georgadiou, R. Rakowski, A. Persson, M. B. Gaarde, and A. L'Huillier, Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications, Phys. Rev. A 79, 063829 (2009).
[120] A. T. Friberg and J. Turunen, Imaging of gaussian schell-model sources, J. Opt. Soc. Am. A 5, 713-720 (1988).
[121] S. Sebban, T. Mocek, D. Ros, L. Upcraft, P. Balcou, R. Haroutunian, G. Grillon, B. Rus, A. Klisnick, A. Carillon, G. Jamelot, C. Valentin, A. Rousse, J. P. Rousseau, L. Notebaert, M. Pittman, and D. Hulin, Demonstration of a Ni-like Kr optical-field-ionization collisional soft x-ray laser at 32.8 nm, Phys. Rev. Lett. 89, 253901 (2002).
[122] P.-H. Lin, M.-C. Chou, M.-J. Jiang, P.-C. Tseng, H.-H. Chu, J.-Y. Lin, J. Wang, and S. yuan Chen, Seeding of a soft-x-ray laser in a plasma waveguide by high harmonic generation, Opt. Lett. 34, 3562-3564 (2009).
[123] B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C. Marconi, J. J. Rocca, and V. N. Shlyaptsev, Saturated high-repetition-rate 18.9-nm tabletop laser in nicke-llike molybdenum, Opt. Lett. 30, 165-167 (2005).
[124] Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm, Phys. Rev. A 72, 053807 (2005).
[125] J. J. Rocca, Y. Wang, M. A. Larotonda, B. M. Luther, M. Berrill, and D. Alessi, Saturated 13.2 nm high-repetition-rate laser in nickellike cadmium, Opt. Lett. 30, 2581-2583 (2005).
[126] H. Eichmann, A. Egbert, S. Nolte, C. Momma, B. Wellegehausen, W. Becker, S. Long, and J. K. McIver, Polarization-dependent high-order two-color mixing, Phys. Rev. A 51, R3414-R3417 (1995).
[127] D. B. Milosevic, W. Becker, and R. Kopold, Generation of circularly polarized high-order harmonics by two-color coplanar field mixing, Phys. Rev. A 61, 063403 (2000).
[128] S. Hulin, T. Auguste, P. D'Oliveira, P. Monot, S. Jacquemot, L. Bonnet, and E. Lefebvre, Soft-x-ray laser scheme in a plasma created by optical-field-induced ionization of nitrogen, Phys. Rev. E 61, 5693-5700 (2000).
[129] P. Lu, T. Kawachi, M. Kishimoto, K. Sukegawa, M. Tanaka, N. Hasegawa, M. Suzuki, R. Tai, M. Kado, K. Nagashima, H. Daido, and Y. Kato, Demonstration of a transient-gain nickel-like xenon-ion x-ray laser, Opt. Lett. 27, 1911-1913 (2002).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8762-
dc.description.abstract雷射的發明已將近半個世紀,這種高同調性光源對於人類的影響可說是無遠弗屆,從光通訊、精密量測、光學儲存與讀寫裝置乃至於醫療美容,無一不深植於現代人類的生活。然而隨著科技的進步,將雷射光推向更短波長的時代已經來臨,如軟X光雷射的發展。軟X光雷射可被應用在半導體製程、材料分析、高密度電漿探測以及高解析度顯微術等多方面,其短波長和符合許多元素共振吸收的特性是可見光雷射所無法取代。在X光雷射的發展上,高發射頻率、高尖峰功率、短脈衝的桌上型雷射系統的發明無疑帶來一股新動力。以短脈衝高功率桌上型雷射搭配光場游離碰撞激發機制,可以產生軟X光波段所需要的雷射增益介質:高游離態電漿,並且可以克服X光輻射生命週期短的問題。這種技術所發展的X光雷射比起同樣產生高同調性X光的同步輻射光和X光自由電子雷射,具有體積小、成本低的優點,是比較符合實際應用上所需求。
本論文的工作首先是協助發展出以全光學式電漿波導為基礎的光場游離碰撞激發的軟X光雷射。利用電漿波導的技術,可以使產生X光雷射增益的紅外光激發雷射克服繞射與游離發散的限制,將操作氣體密度提高一個數量級,並使有效增益長度延伸數倍。因此,我們成功地將32.8奈米類鎳氪離子X光雷射輸出大幅增加四百倍並達到飽和,轉換效率則達到2×10^-6。接著將這種技術推廣到不同的氣體靶材上,用來分別產生41.8奈米類鈀氙離子與46.9奈米類氖氬離子等不同波長的 X 光雷射,甚至還利用氪氣與氬氣混合氣體來製造出雙波長同時輸出的 X 光雷射,使得我們的X光雷射可以在應用上更加豐富多。另一方面,我們透過研究X光雷射輸出對不同控制參數的變化,藉此深入了解此種X光雷射的特性,進而掌握對它的控制調變能力。在成功地提高X光雷射輸出後,我們希望進一步提升X光雷射的光學品質。所以我們利用一道線偏振短脈衝雷射光游離氬原子外層電子,電子在線性震盪電場作用下回撞原本離子,與之結合並釋放出位於X光波段的高階諧波,其為具有良好時空波形的短脈衝,特別適合做為X光雷射放大器的種子脈衝。之後經由時間、空間和頻譜上精密的微調,將高階諧波注入到以電漿波導為基礎的X光雷射放大器來放大。透過這種注入放大的機制,我們成功地產生高同調性、小發散角以及具有線偏振性質的X光雷射。我們相信透過高階諧波、電漿波導與光場游離碰撞激發機制這三種方式的結合,可以提供未來產生短脈衝、高強度、高光學品質X光雷射的一個重要參考原型。
zh_TW
dc.description.abstractIt has been nearly half a century since the invention of lasers, the use of coherent light has become an indispensable part of our world, such as optical communications, precision measurements, optical memories, and medicine. Rapid progress in technology has led to the development of coherent lights that operate in short-wavelength regions, examples of such light sources include soft x-ray lasers. The use of soft x-ray lasers has considerable potential from the viewpoint of pioneering research in various scientific fields like high-resolution microscopy and holography, dense plasma measurement, and nano-lithography; visible lasers are inadequate for these purposes. With the advent of high-power short-pulse lasers, especially the high-repetition-rate terawatt lasers based on the chirped-pulse amplification technique, it is now possible to generate ultrashort coherent soft x-rays with a much lower cost and small size. An ultrashort high-intensity laser pulse combined with the optical-field-ionization (OFI) collisional-excitation mechanism can be used to produce a suitable x-ray gain medium: highly ionized plasma. In addition, the ultrashort feature of the pumping source can overcome the problem of the short duration of the gain in the x-ray region. Considering the size and cost, the use of a table-top, high brightness, soft x-ray laser is advantageous as compared to synchrotron radiations or x-ray free electron lasers.
This thesis first reports the development of an OFI collisional-excitation soft x-ray laser that uses an optically preformed plasma waveguide. Using a 9-mm-long pure krypton plasma waveguide prepared by the axicon
ignitor-heater scheme, Ni-like Kr lasing at a wavelength of 32.8 nm can be enhanced by 400 times relative to the case without the plasma waveguide. An output level of 8×10^10 photons/pulse can be obtained at an energy conversion efficiency of 2×10^6. Then, under the same configuration of the pump and waveguide-forming pulses, strong Pd-like xenon lasing and Ne-like argon lasing were realized at wavelengths of 41.8 nm and 46.9 nm, respectively. In addition to the main lasing lines for Ni-like krypton and Ne-like argon, other lasing lines are also observed; this is indicative of a strong enhancement effect and a large gas density in the plasma waveguide. With a Kr/Ar mixed gas multi-species parallel x-ray lasing was also demonstrated,
showing the capability of generating multi-line soft x-ray lasers by using the optically preformed plasma waveguide. In order to gain a better understanding of waveguide-based soft x-ray lasers and control them suitably, extensive experimental results on the pump-energy dependence, density dependence, and effects of parameters that control the waveguide fabrication were studied in detail. Finally, in order to realize further improvements in the optical qualities of the soft x-ray laser, a strongly saturated waveguide-based OFI soft-x-ray laser seeded by high harmonic generation (HHG) was demonstrated for Ni-like Kr lasing at a wavelength of 32.8 nm. HHG is produced from the nonlinear interaction between intense laser and gas atoms.
During this process, electrons that are ionized from the gas atoms oscillate with the laser field; subsequently, they recombine with their parent ions and emit high-energy photons. The emissions from di®erent atoms add constructively and thus retain good spatial and temporal coherence. As compared to laser seeded with only spontaneous emission, the divergence of seeding with HHG is greatly reduced from 4.5 mrad to 1.1 mrad, which is about the same as that of the HHG seed. The amplified HHG seed pulse also shows enhanced spatial coherence and controlled polarization. Moreover, seeded x-ray lasers do not suffer from timing jitter relative to the pump laser; this is important for pump-probe applications. We believe that the integration of high-harmonic seeding, optically preformed plasma waveguide, and OFI pumping forms one of the optimal archetype of a high-repetition-rate, high-intensity, ultrashort-pulse soft x-ray laser.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:00:50Z (GMT). No. of bitstreams: 1
ntu-99-D94222018-1.pdf: 6781369 bytes, checksum: 4252abcf5eb571965a458a1208230ed5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Abstract v
List of Figures vii
1 Introduction 1
1.1 Ultrashort Coherent Soft X-Ray Sources . . . . . . . . . . . . 1
1.2 Soft X-Ray Lasers . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Introduction to Soft X-Ray Lasers . . . . . . . . . . . . 6
1.2.2 Collisional-Excitation Soft X-Ray Lasers . . . . . . . . 7
1.2.3 Recombination Soft-X-Ray Lasers . . . . . . . . . . . . 12
1.3 About the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Optical-Field-Ionization Soft X-Ray Lasers with an Optically
Preformed Plasma Waveguide 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Principle of an Optical-Field-Ionization Collisional-Excitation
Soft X-Ray Laser . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Optical-Field Ionization . . . . . . . . . . . . . . . . . 21
2.2.2 Above-threshold-ionization heating . . . . . . . . . . . 23
2.2.3 Optical-Field-Ionization Collisional-Excitation Soft X-
Ray Laser . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Optically Preformed Plasma Waveguide . . . . . . . . . . . . . 30
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Guiding Condition of a Plasma Waveguide . . . . . . . 34
2.3.3 Formation of a Plasma Waveguide . . . . . . . . . . . . 36
2.3.4 The Axicon Ignitor-Heater Scheme . . . . . . . . . . . 37
2.4 System Design and Con‾guration . . . . . . . . . . . . . . . . 41
2.5 Enhancement of Optical-Field-Ionization Soft X-Ray Lasers
By an Optically Preformed Plasma Waveguide . . . . . . . . . 47
2.6 Spatial Coherence Measurement for the Ni-Like Kr Lasing in
a Plasma Waveguide . . . . . . . . . . . . . . . . . . . . . . . 56
3 Multi-lineWaveguide-Based Optical-Field-Ionization Soft X-
Ray Lasers 59
3.1 Parameter Space of X-Ray Lasing in a Pure-Gas PlasmaWaveg-
uide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Multiple Lasing Lines for the Same Ion Species . . . . . . . . 68
3.2.1 Ni-like Kr lasing . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Ne-like Ar lasing . . . . . . . . . . . . . . . . . . . . . 73
3.3 Multi-Species Parallel X-Ray Lasing in a Mixed-Gas Plasma
Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4 Seeding of an Optical-Field-Ionization Soft X-Ray Laser in a
Plasma Waveguide by High Harmonic Generation 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Characteristics of the High Harmonic Generation . . . . . . . 84
4.3 System Design and Con‾guration . . . . . . . . . . . . . . . . 86
4.4 Optimization of the Seeded Soft X-Ray Laser . . . . . . . . . 87
4.4.1 Spectral Overlap . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Spatial and Temporal Overlap . . . . . . . . . . . . . . 92
4.5 Characterization of the Seeded Soft X-Ray Laser . . . . . . . . 93
4.5.1 Spectrum and Angular Pro‾le . . . . . . . . . . . . . . 93
4.5.2 Measurement of Polarization State . . . . . . . . . . . 97
4.5.3 Measurement of Gain Duration . . . . . . . . . . . . . 100
4.5.4 Measurement of Transverse Gain Region . . . . . . . . 100
4.5.5 Measurement of Spatial Coherence . . . . . . . . . . . 102
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5 Conclusion and Perspective 109
Bibliography 113
dc.language.isoen
dc.title以電漿波導為基礎所發展的多波長與注入放大X光雷射zh_TW
dc.titleDevelopment of Multi-Line and Seeded Waveguide-Based Soft X-Ray Lasersen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.advisor-orcid,陳賜原(sychen@ltl.iams.sinica.edu.tw)
dc.contributor.oralexamcommittee施宙聰(Jow-Tsong Shy),謝文峰(Wen-Feng Hsieh),黃升龍(Sheng-Lung Huang)
dc.subject.keywordEUV雷射,軟X光雷射,注入放大軟X光雷射,光場游離,電漿波導,高階諧波,zh_TW
dc.subject.keywordEUV laser,Soft x-ray laser,Seeded soft x-ray laser,Optical-field ionization,Plasma waveguide,High-harmonic generation,en
dc.relation.page126
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-01-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf6.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved