請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87627
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃心豪 | zh_TW |
dc.contributor.advisor | Hsin-Haou Huang | en |
dc.contributor.author | 胡哲愷 | zh_TW |
dc.contributor.author | Zhe-Kai Hu | en |
dc.date.accessioned | 2023-06-20T16:26:43Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-14 | - |
dc.identifier.citation | [1] J. Zhang, V. S. Chevali, H. Wang, and C.-H. Wang, "Current status of carbon fibre and carbon fibre composites recycling," Composites Part B: Engineering, vol. 193, p. 108053, 2020.
[2] X. Y. Luo, Y. Chen, and Y. Mo, "A review of charge storage in porous carbon-based supercapacitors," New Carbon Mater, vol. 36, no. 1, pp. 49-65, Feb 2021, doi: 10.1016/S1872-5805(21)60004-5. [3] A. K. Bledzki, H. Seidlitz, J. Krenz, K. Goracy, M. Urbaniak, and J. J. Rösch, "Recycling of carbon fiber reinforced composite polymers—Review—Part 2: Recovery and application of recycled carbon fibers," Polymers, vol. 12, no. 12, p. 3003, 2020. [4] R. F. Gibson, "A review of recent research on mechanics of multifunctional composite materials and structures," Composite structures, vol. 92, no. 12, pp. 2793-2810, 2010. [5] E. Pakdel, S. Kashi, R. Varley, and X. G. Wang, "Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes," Resour Conserv Recy, vol. 166, Mar 2021, doi: ARTN 10534010.1016/j.resconrec.2020.105340. [6] G. A. Vincent, T. A. de Bruijn, S. Wijskamp, M. I. A. Rasheed, M. van Drongelen, and R. Akkerman, "Shredding and sieving thermoplastic composite scrap: Method development and analyses of the fibre length distributions," Compos Part B-Eng, vol. 176, Nov 1 2019, doi: ARTN 10719710.1016/j.compositesb.2019.107197. [7] N. A. Shuaib and P. T. Mativenga, "Effect of process parameters on mechanical recycling of glass fibre thermoset composites," Procedia Cirp, vol. 48, pp. 134-139, 2016. [8] S. J. Pickering, "Recycling technologies for thermoset composite materials—current status," Composites Part A: applied science and manufacturing, vol. 37, no. 8, pp. 1206-1215, 2006. [9] J. Palmer, L. Savage, O. Ghita, and K. Evans, "Sheet moulding compound (SMC) from carbon fibre recyclate," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 9, pp. 1232-1237, 2010. [10] R. A. Witik, R. Teuscher, V. Michaud, C. Ludwig, and J.-A. E. Månson, "Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling," Composites Part A: Applied Science and Manufacturing, vol. 49, pp. 89-99, 2013. [11] G. Oliveux, L. O. Dandy, and G. A. Leeke, "Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties," Progress in materials science, vol. 72, pp. 61-99, 2015. [12] S. Naqvi, H. M. Prabhakara, E. Bramer, W. Dierkes, R. Akkerman, and G. Brem, "A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy," Resources, conservation and recycling, vol. 136, pp. 118-129, 2018. [13] F. A. López et al., "Recovery of carbon fibres by the thermolysis and gasification of waste prepreg," Journal of analytical and applied pyrolysis, vol. 104, pp. 675-683, 2013. [14] K.-W. Kim, H.-M. Lee, J.-H. An, D.-C. Chung, K.-H. An, and B.-J. Kim, "Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method," Journal of Environmental Management, vol. 203, pp. 872-879, 2017. [15] T. Turner, S. Pickering, and N. Warrior, "Development of recycled carbon fibre moulding compounds–Preparation of waste composites," Composites Part B: Engineering, vol. 42, no. 3, pp. 517-525, 2011. [16] F. Meng, J. McKechnie, T. Turner, and S. Pickering, "Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres," Composites Part A: Applied Science and Manufacturing, vol. 100, pp. 206-214, 2017. [17] G. Oliveux, L. O. Dandy, and G. A. Leeke, "Degradation of a model epoxy resin by solvolysis routes," Polymer degradation and stability, vol. 118, pp. 96-103, 2015. [18] C. Morin, A. Loppinet-Serani, F. Cansell, and C. Aymonier, "Near-and supercritical solvolysis of carbon fibre reinforced polymers (CFRPs) for recycling carbon fibers as a valuable resource: State of the art," The Journal of Supercritical Fluids, vol. 66, pp. 232-240, 2012. [19] M. Goto, "Chemical recycling of plastics using sub-and supercritical fluids," The Journal of Supercritical Fluids, vol. 47, no. 3, pp. 500-507, 2009. [20] D. H. Kim, M. Lee, and M. Goh, "Enhanced and eco-friendly recycling of carbon-fiber-reinforced plastics using water at ambient pressure," ACS Sustainable Chemistry & Engineering, vol. 8, no. 6, pp. 2433-2440, 2019. [21] J. J. Jiang et al., "On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition," Compos Sci Technol, vol. 151, pp. 243-251, Oct 20 2017, doi: 10.1016/j.compscitech.2017.08.007. [22] T. Carlson, D. Ordéus, M. Wysocki, and L. E. Asp, "Structural capacitor materials made from carbon fibre epoxy composites," Compos Sci Technol, vol. 70, no. 7, pp. 1135-1140, 2010. [23] T. Carlson and L. E. Asp, "Structural carbon fibre composite/pet capacitors–Effects of dielectric separator thickness," Composites Part B: Engineering, vol. 49, pp. 16-21, 2013. [24] D. O'Brien, D. Baechle, and E. Wetzel, "Design and performance of multifunctional structural composite capacitors," Journal of Composite Materials, vol. 45, no. 26, pp. 2797-2809, 2011. [25] X. Luo and D. Chung, "Carbon-fiber/polymer-matrix composites as capacitors," Compos Sci Technol, vol. 61, no. 6, pp. 885-888, 2001. [26] N. Shirshova, E. Greenhalgh, M. Shaffer, J. Steinke, P. Curtis, and A. Bismarck, "Structured multifunctional composites for power storage devices," in Proc. 17th Int. Conf. on ‘Composite materials proceedings’, IOM Communication Ltd, 2009. [27] N. Shirshova et al., "Structural composite supercapacitors," Compos Part a-Appl S, vol. 46, pp. 96-107, Mar 2013, doi: 10.1016/j.compositesa.2012.10.007. [28] 薛宇廷, "輕薄化製備靜電紡絲PVDF液態膠體電解質暨碳纖維高性能儲能複合材料製程研究," 臺灣大學工程科學及海洋工程學研究所學位論文, 國立臺灣大學, 2021. [29] A. Javaid, K. K. C. Ho, A. Bismarck, M. S. P. Shaffer, J. H. G. Steinke, and E. S. Greenhalgh, "Multifunctional structural supercapacitors for electrical energy storage applications," Journal of Composite Materials, vol. 48, no. 12, pp. 1409-1416, 2013. [30] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, and E. S. Greenhalgh, "Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications," Journal of Composite Materials, vol. 50, no. 16, pp. 2155-2163, 2015. [31] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, and E. S. Greenhalgh, "Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement," Journal of Composite Materials, vol. 52, no. 22, pp. 3085-3097, 2018. [32] S. Li, Y. Zhao, Z. Zhang, and H. Tang, "Preparation and characterization of epoxy/carbon fiber composite capacitors," Polymer Composites, vol. 36, no. 8, pp. 1447-1453, 2015. [33] H. Qian et al., "Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors," J Colloid Interface Sci, vol. 395, pp. 241-8, 2013. [34] H. T. Chien-To Hsieh, "Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics," Carbon, vol. 40, pp. 667-674, 2002. [35] W. D. Chun-Ling Liu, Gaoping Cao, Jingren Song, Lang Liu,and Yusheng Yang, "Capacitance Limits of Activated Carbon Fiber Electrodes in Aqueous Electrolyte," Journal of The Electrochemical Society, vol. 155, pp. F1-F7, 2008. [36] B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, and Y. Yang, "Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte," Journal of Power Sources, vol. 195, no. 7, pp. 2118-2124, 2010. [37] K. Babel and K. Jurewicz, "KOH activated carbon fabrics as supercapacitor material," Journal of Physics and Chemistry of Solids, vol. 65, no. 2-3, pp. 275-280, 2004. [38] 吳政諺, "自動化局部活化碳纖維製備一體多功能儲能複合材料," 臺灣大學工程科學及海洋工程學研究所學位論文, 國立臺灣大學, 2019. [39] 李治宏. "鋰電池隔離膜發展趨勢與近況." 材料世界網. https://www.materialsnet.com.tw/DocView.aspx?id=21438&fbclid=IwAR3P5cp-UyoxiOHydvtGqA8brcFw965eIHOPHUFpo7W4Q873PTR2ku5oYV8 (accessed January 30, 2023). [40] S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, and E. J. Cairns, "Characterization of Electrospun PVdF Fiber-Based Polymer Electrolytes," Chemistry of Materials, vol. 19, no. 1, pp. 104-115, 2007. [41] I. Kim et al., "Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED)," Materials, vol. 11, no. 4, p. 543, 2018. [42] Y. Peng, B. Sun, and P. Wu, "Two-dimensional correlation infrared spectroscopic study on the crystallization and gelation of poly(vinylidene fluoride) in cyclohexanone," Appl Spectrosc, vol. 62, no. 3, pp. 295-301, Mar 2008. [Online]. Available: https://journals.sagepub.com/doi/pdf/10.1366/000370208783759597. [43] Y. P. Mahant, S. B. Kondawar, M. Bhute, and D. V. Nandanwar, "Electrospun Poly (Vinylidene Fluoride)/Poly (Methyl Methacrylate) Composite Nanofibers Polymer Electrolyte for Batteries," Procedia Materials Science, vol. 10, pp. 595-602, 2015. [44] F. Zhang et al., "A Flexible and High‐Voltage Internal Tandem Supercapacitor Based on Graphene‐Based Porous Materials with Ultrahigh Energy Density," Small, vol. 10, no. 11, pp. 2285-2292, 2014. [45] W. Chen, C. Xia, and H. N. Alshareef, "Graphene based integrated tandem supercapacitors fabricated directly on separators," Nano Energy, vol. 15, pp. 1-8, 2015. [46] Y. Xu, W. Lu, G. Xu, and T.-W. Chou, "Structural supercapacitor composites: a review," Compos Sci Technol, vol. 204, p. 108636, 2021. [47] E. Senokos et al., "Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves," Sci Rep, vol. 8, no. 1, p. 3407, 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821880/pdf/41598_2018_Article_21829.pdf. [48] A. Ganguly, A. Karakassides, J. Benson, S. Hussain, and P. Papakonstantinou, "Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes," ACS Applied Energy Materials, vol. 3, no. 5, pp. 4245-4254, 2020. [49] H.-Y. Chen, C.-Y. Wu, Y.-T. Hsueh, and H.-H. Huang, "Electromechanical properties of embedded multifunctional energy storage composite with activated carbon fiber/PVDF gel electrolyte," Journal of the Chinese Institute of Engineers, vol. 44, no. 3, pp. 252-260, 2021. [50] R. Ramya, R. Sivasubramanian, and M. Sangaranarayanan, "Conducting polymers-based electrochemical supercapacitors—progress and prospects," Electrochim Acta, vol. 101, pp. 109-129, 2013. [51] S. d. Das. "Cyclic Voltammetry." http://urrjaa.blogspot.com/2013/08/cyclic-voltammetry-urrjaa-p0110-2013.html (accessed January 30, 2023). [52] B. Hsia, "Materials synthesis and characterization for micro-supercapacitor applications," UC Berkeley, 2013. [53] 陳奕惟, "含PVdF膠體電解質之結構超級電容複合材料研究-電化學性質與封裝製程探討," 臺灣大學工程科學及海洋工程學研究所學位論文, 國立臺灣大學, 2017. [54] K. Fic et al., "Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte," Energy Storage Materials, vol. 22, pp. 1-14, 2019. [55] S. Zhang and N. Pan, "Supercapacitors Performance Evaluation," Advanced Energy Materials, vol. 5, no. 6, p. 1401401, 2015. [56] P. Kurzweil, "Electrochemical Double-layer Capacitors," pp. 345-407, 2015. [57] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, and X. Zou, "Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent," Electrochim Acta, vol. 90, pp. 542-549, 2013. [58] M. Lu, Supercapacitors: materials, systems, and applications. John Wiley & Sons, 2013. [59] "交流阻抗-華人百科." https://www.itsfun.com.tw/%E4%BA%A4%E6%B5%81%E9%98%BB%E6%8A%97/wiki-4216656-5942536 (accessed January, 30, 2023). [60] A. Kumari, J. Kaur, and S. Bhattacharyya, "Application of Fourier Transform-Infrared Spectroscopy as a Tool for Early Cancer Detection," American Journal of Biomedical Sciences, pp. 139-148, 2018. [61] J. Sun et al., "Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/ solid electrolyte supercapacitor interleaves," Compos Sci Technol, vol. 196, p. 108234, 2020. [62] P. Xu, J. Li, and J. Ding, "Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N, N-dimethylformamide," Compos Sci Technol, vol. 82, pp. 54-59, 2013. [63] J.-S. Jeong, K.-W. Kim, K.-H. An, and B.-J. Kim, "Fast recovery process of carbon fibers from waste carbon fibers-reinforced thermoset plastics," Journal of environmental management, vol. 247, pp. 816-821, 2019. [64] N. Blomquist, T. Wells, B. Andres, J. Backstrom, S. Forsberg, and H. Olin, "Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials," Sci Rep, vol. 7, p. 39836, Jan 5 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215603/pdf/srep39836.pdf. [65] L. E. Asp and E. S. Greenhalgh, "Structural power composites," Compos Sci Technol, vol. 101, pp. 41-61, 2014. [66] B. K. Deka, A. Hazarika, J. Kim, Y.-B. Park, and H. W. Park, "Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin," Composites Part A: Applied Science and Manufacturing, vol. 87, pp. 256-262, 2016. [67] R. Reece, C. Lekakou, and P. A. Smith, "A structural supercapacitor based on activated carbon fabric and a solid electrolyte," Materials Science and Technology, vol. 35, no. 3, pp. 368-375, 2019. [68] M. F. Pernice et al., "Mechanical, electrochemical and multifunctional performance of a CFRP/carbon aerogel structural supercapacitor and its corresponding monofunctional equivalents," Multifunctional Materials, vol. 5, no. 2, p. 025002, 2022. [69] B. Dharmasiri et al., "Flexible carbon fiber based structural supercapacitor composites with solvate ionic liquid-epoxy solid electrolyte," Chemical Engineering Journal, p. 140778, 2022. [70] Y. Zhao et al., "Multi‐functional structural supercapacitor based on manganese oxide‐hydroxide nanowires modified carbon fiber fabric electrodes," Polymer Composites, vol. 43, no. 11, pp. 8458-8470, 2022. [71] 黃耀霆, "以活化碳纖維電極及PVdF 膠體聚合物製備嵌入式多功能儲能複合材料-電化學與力學性能探討," 國立臺灣大學, 2018. [72] L. Yuyan, S. Guohua, and M. Linghui, "Recycling of carbon fibre reinforced composites using water in subcritical conditions," Materials Science and Engineering: A, vol. 520, no. 1-2, pp. 179-183, 2009. [73] W. Dang, M. Kubouchi, S. Yamamoto, H. Sembokuya, and K. Tsuda, "An approach to chemical recycling of epoxy resin cured with amine using nitric acid," Polymer, vol. 43, no. 10, pp. 2953-2958, 2002. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87627 | - |
dc.description.abstract | 在這項研究中介紹了一種碳纖維回收方式,能夠將其製造成儲能設備以獲得更高的再利用價值。本研究利用濃硫酸進行碳纖維複合材料的回收作業並成功從中取得回收碳纖維,並且回收碳纖維的機械性能與初始碳纖維表現相似 (拉伸強度分別為322.4 MPa 和 321.2 MPa);在電化學儲能機制的部分,回收碳纖維電極並不會因為本研究中所使用的回收方式產生影響。在比電容值的表現中,經過回收處理後的碳纖維表現有微幅上升(30.8 mF/g提升至42.7 mF/g)。
本研究將所取得之回收碳纖維結合改良的自動化局部高溫活化儀器(D70,600℃-70分鐘)及實驗室先前所研發的膠體電解質(Gel polymer)製作成超級電容,透過真空袋(PE)及環氧樹脂(Epoxy)進行多功能儲能複合材料的封裝。量測其最終成品的比電容值在5 mA/g的電流密度下,擁有最大比電容值3281 mF/g。 為了更符合實際應用層面,本研究亦針對了內部串疊進行研究。在將兩個單一元件進行內部串疊之後,其工作電位成功擴充至2 V並且將能量密度從1275.5 J/Kg提升至2500 J/Kg,達成提升儲能表現及工作電位的目的。最後將針對此多功能儲能複合材料進行機械性質測驗,透過施加不同大小的循環負載,測量其剛性的保留率,最後發現其在800 N的循環負載下,其材料剛性仍舊維持良好的表現。 | zh_TW |
dc.description.abstract | In this study, we report a way to recycle carbon fibers and fabricate them into energy storage devices to create a new reuse method. First, by soaking the carbon fiber composite materials in sulfuric acid and it can obtain a recycled carbon fibers. The products based on recycled carbon fibers(RCF) showed similar mechanical performance to virgin carbon fibers-based products (tensile strengths are 322.4 MPa and 321.2 MPa , respectively); At energy storage mechanism, the recycled carbon fiber electrodes will not be affected by this recycled process. Moreover, the specific capacitance value of RCF was slightly increased from 30.8 mF/g to 42.7 mF/g.
Then, the activation of recycled carbon fiber was carried out by improved activation instrument (D70, 600°C-70 minutes). The gel electrolyte fabrication method which was developed by the our lab. Finally, packaged with the PE bag and epoxy resin for multifunctional energy storage composite. The specific capacitance value of the final product was 3281 mF/g at 5 mA/g of current density . In order to be more practical to the application, this research also studies the tandem stack method. After connecting two single circuit, the working potential was successfully expanded to 2 V and the energy density increased from 1275.5 J/Kg to 2500 J/Kg. It successfully increase the energy storage ability and working potential. Finally, the mechanical properties of this product will be measured by observed the stiffness retention ratio. Furthermore, the stiffness retention have great performance after 800 N cyclic loading test. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:26:43Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:26:43Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xiii 第一章 簡介 1 1.1 動機 1 1.2 研究背景 2 1.3 研究目的 2 1.4 重要性與貢獻 3 1.5 名詞對照與符號說明 4 1.5.1 英文專有名詞與中文翻譯對照 4 1.5.2 符號說明表 8 第二章 文獻探討 10 2.1 碳纖維複合材料之回收及再利用 10 2.1.1 機械回收 10 2.1.2 熱回收 12 2.1.3 化學回收 14 2.2 超級電容、電容、電池比較 15 2.3 碳纖維活化方式 18 2.4 靜電紡絲分隔層和膠體電解質製備探討 20 2.5 超級電容內部串疊 22 2.6 碳纖維超級電容複合材料 24 第三章 研究方法 29 3.1 研究流程 29 3.2 實驗方法 30 3.2.1 電化學分析方法 30 3.2.2 材料分析方法 41 3.2.3 碳纖維複合材料回收方式 43 3.2.4 回收碳纖維電極複合材料力性測試 43 3.2.5 碳纖維電極活化方法 44 3.2.6 膠體電解質製備方法 46 3.2.7 碳纖維超級電容封裝 47 3.2.8 壽命檢測 47 3.2.9 碳纖維超級電容內部串疊實驗 47 3.2.10 多功能儲能複合材料機械性質分析 48 3.3 實驗儀器及設備 49 3.4 實驗藥品 50 第四章 研究結果 53 4.1 碳纖維複合材料回收實驗 53 4.1.1 回收碳纖維形貌 53 4.1.2 回收碳纖維複合材料的樹脂分解率 54 4.1.3 回收碳纖維SEM結果 55 4.1.4 回收碳纖維XRD結果 56 4.1.5 回收碳纖維FTIR結果 56 4.1.6 回收碳纖維複合材料機械性質測試結果 57 4.1.7 回收碳纖維複合材料電化學性質測試結果 60 4.2 自動化碳纖維電極活化機改良實驗 62 4.2.1 碳纖維活化參數改良設置 62 4.2.2 單束碳纖維活化碳纖維比電容值 63 4.2.3 碳纖維電極和膠體電解質適配性實驗 65 4.3 整合式多功能儲能複合材料 66 4.3.1 多功能儲能材料封裝製程 66 4.3.2 多功能儲能複合材料電化學特性 67 4.3.3 壽命檢測 73 4.3.4 內部串疊多功能儲能複合材料實驗 75 4.3.5 與前人之性能比較分析 79 4.3.6 多功能儲能複合材料機械性質檢測 80 第五章 討論 82 5.1 回收碳纖維實驗討論 82 5.1.1 回收機制探討 82 5.1.2 回收碳纖維清洗方式探討 83 5.2 VARTM封裝製程討論 85 5.3 內部串疊多功能儲能複合材料討論 86 5.3.1 內部串疊超級電容的工作電位窗探討 86 5.3.2 內部串疊超級電容比電容值下降討論 87 第六章 結論與未來展望 88 6.1 結論 88 6.2 未來展望 89 第七章 參考文獻 90 | - |
dc.language.iso | zh_TW | - |
dc.title | 以回收碳纖維電極實現多功能儲能複合材料之可行性研究 | zh_TW |
dc.title | On realization of multifunctional energy storage composite materials based on recycled carbon fiber electrodes | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 陳洵毅 | zh_TW |
dc.contributor.coadvisor | Hsun-Yi Chen | en |
dc.contributor.oralexamcommittee | 張豐丞;宋家驥;黃勝翊 | zh_TW |
dc.contributor.oralexamcommittee | Feng-Cheng Chang;Chia-Chi Sung;hseng-ji Huang | en |
dc.subject.keyword | 碳纖維複合材料回收,碳纖維活化,多功能儲能複合材料,內部串疊,超級電容, | zh_TW |
dc.subject.keyword | CFRP recycled,activated carbon fiber,multifunctional energy storage composite,tandem stack,supercapacitors, | en |
dc.relation.page | 99 | - |
dc.identifier.doi | 10.6342/NTU202300413 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-02-15 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 6.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。