請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恩仲 | zh_TW |
| dc.contributor.advisor | En-Chung Lin | en |
| dc.contributor.author | 黃筱涵 | zh_TW |
| dc.contributor.author | Hsiao-Han Huang | en |
| dc.date.accessioned | 2023-06-20T16:25:47Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-06-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-18 | - |
| dc.identifier.citation | 行政院農業委員會。2022。中華民國 111 年 5 月底養豬頭數調查報告。臺北市。pp.5-9。
Abell, C. E., A. K. Johnson, L. A. Karriker, M. F. Rothschild, S. J. Hoff, G. Sun, R. Fitzgerald, and K. Stalder. 2014. Using classification trees to detect induced sow lameness with a transient model. Animal 8:1000-1009. Abourachid, A. 2003. A new way of analysing symmetrical and asymmetrical gaits in quadrupeds. C. R. Biol. 326:625-630. Applegate, A., S. Curtis, J. Groppel, J. McFarlane, and T. Widowski. 1988. Footing and gait of pigs on different concrete surfaces. J. Anim. Sci. 66:334-341. Back, W., A. Barneveld, H. Schamhardt, G. Bruin, and W. Hartman. 1994. Longitudinal development of the kinematics of 4‐, 10‐, 18‐ and 26‐month‐old Dutch Warmblood horses. Equine Vet. J. 26:3-6. Barrey, E. 1999. Methods, applications and limitations of gait analysis in horses. Vet. J. 157:7-22. Barczewski, R., E. Kornegay, D. Notter, H. Veit, and M. Wright. 1990. Effects of feeding restricted energy and elevated calcium and phosphorus during growth on gait characteristics of culled sows and those surviving three parities. J. Anim. Sci. 68:3046-3055. Baxter, S. 1984. Intensive pig production: environmental management and design. Granada Technical Books. London, UK. Biewener, A., and S. Patek. 2003. Animal locomotion. 2nd ed. OUP Oxford, UK. Biewener, A. A. 1983. Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. J. Exp. Biol. 105:147-171. Brønniche Møller Nielsen, M., T. Pedersen, A. Mouritzen, A. D. Vitger, L. N. Nielsen, H. H. Poulsen, and J. E. Miles. 2020. Kinetic gait analysis in healthy dogs and dogs with osteoarthritis: An evaluation of precision and overlap performance of a pressure-sensitive walkway and the use of symmetry indices. PLoS One 15:e0243819. Brown, C. M., and B. Dalzell. 1986. Dog locomotion and gait analysis. Hoflin Pub. CO. pp. 155-156. Budsberg, S. C., M. C. Verstraete, and R. W. Soutas-Little. 1987. Force plate analysis of the walking gait in healthy dogs. Am. J. Vet. Res. 48:915-918. Catabotta, D., E. Kornegay, H. Thomas, J. Knight, D. Notter, H. Veit, and M. Wright. 1982. Restricted energy intake and elevated calcium and phosphorus intake for gilts during growth. II. Gait characteristics analyzed from 16-mm motion picture photography. J. Anim. Sci. 55:1395-1404. Carr, J., D. Millis, and H. Y. Weng. 2013. Exercises in canine physical rehabilitation: range of motion of the forelimb during stair and ramp ascent. J. Small Anim. Pract. 54:409-413. Caron, A., A. Caley, M. Farrell, and N. Fitzpatrick. 2014. Kinematic gait analysis of the canine thoracic limb using a six degrees of freedom marker set. Vet. Comp. Orthop. Traumatol. 27:461-469. Clayton, H. M. 1990. The effect of an acute hoof wall angulation on the stride kinematics of trotting horses. Equine Vet. J. 22:86-90. Conte, S., R. Bergeron, H. Gonyou, J. Brown, F. Rioja-Lang, L. Connor, and N. Devillers. 2014. Measure and characterization of lameness in gestating sows using force plate, kinematic, and accelerometer methods. J. Anim. Sci. 92:5693-5703. Couto, P. A., V. M. Filipe, L. G. Magalhães, J. E. Pereira, L. M. Costa, P. Melo-Pinto, J. Bulas-Cruz, A. C. Maurício, S. Geuna, and A. S. Varejão. 2008. A comparison of two-dimensional and three-dimensional techniques for the determination of hindlimb kinematics during treadmill locomotion in rats following spinal cord injury. J. Neurosci. 173:193-200. de Carvalho, V. C., I. de Alencar Nääs, M. M. Neto, and S. R. L. de Souza. 2009. Measurement of pig claw pressure distribution. Biosyst. Eng. 103:357-363. de Sevilla, X. F., E. Fàbrega, J. Tibau, and J. Casellas. 2008. Effect of leg conformation on survivability of Duroc, Landrace, and Large White sows. J. Anim. Sci. 86:2392-2400. Deban, S. M., N. Schilling, and D. R. Carrier. 2012. Activity of extrinsic limb muscles in dogs at walk, trot and gallop. J. Exp. Biol. 215:287-300. DeCamp, C., R. Soutas-Little, J. Hauptman, B. Olivier, T. Braden, and A. Walton. 1993. Kinematic gait analysis of the trot in healthy greyhounds. Am. J. Vet. Res. 54:627-634. Fielding, A. H., and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. J. 24:38-49. Fischer, M. S., and R. Blickhan. 2006. The tri‐segmented limbs of therian mammals: kinematics, dynamics, and self‐stabilization—a review. J. Exp. Zool. A: Ecol. Integr. Physiol. 305:935-952. Fischer, M. S., S. V. Lehmann, and E. Andrada. 2018. Three-dimensional kinematics of canine hind limbs: in vivo, biplanar, high-frequency fluoroscopic analysis of four breeds during walking and trotting. Sci. Rep. 8:1-22. Francuski, J., A. Radovanović, N. Andrić, V. Krstić, D. Bogdanović, V. Hadžić, V. Todorović, M. L. Macanović, S. S. Petit, and S. Beck-Cormier. 2014. Age-related changes in the articular cartilage of the stifle joint in non-working and working German Shepherd dogs. J. Comp. Pathol. 151:363-374. Fu, Y. -C., B. T. Torres, and S. C. Budsberg. 2010. Evaluation of a three-dimensional kinematic model for canine gait analysis. Am. J. Vet. Res. 71:1118-1122. Goldner, B., S. Fischer, I. Nolte, and N. Schilling. 2018. Kinematic adaptions to induced short-term pelvic limb lameness in trotting dogs. BMC Vet. Res. 14:1-11. Grégoire, J., R. Bergeron, S. d'Allaire, M. -C. Meunier-Salaün, and N. Devillers. 2013. Assessment of lameness in sows using gait, footprints, postural behaviour and foot lesion analysis. Animal 7:1163-1173. Jørgensen, B. 2003. Influence of floor type and stocking density on leg weakness, osteochondrosis and claw disorders in slaughter pigs. J. Anim. 77:439-449. Jørgensen, B., and S. Andersen. 2000. Genetic parameters for osteochondrosis in Danish Landrace and Yorkshire boars and correlations with leg weakness and production traits. Anim. Sci. 71:427-434. Jørgensen, E., C. Dethlefsen and A. R. Kristensen. 1996. Systems for monitoring and decision support with respect to sow longevity. Research Centre Foulum, Denmark, pp.27-28. Jarvis, S. L., D. R. Worley, S. M. Hogy, A. E. Hill, K. K. Haussler, and R. F. Reiser. 2013. Kinematic and kinetic analysis of dogs during trotting after amputation of a thoracic limb. Am. J. Vet. Res. 74:1155-1163. Kaiser, E. E., J. Poythress, K. M. Scheulin, B. J. Jurgielewicz, N. A. Lazar, C. Park, S. L. Stice, J. Ahn, and F. D. West. 2021. An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model. Neural Regen. Res. 16:842. KilBride, A., C. Gillman, P. Ossent, and L. Green. 2009. Impact of flooring on the health and welfare of pigs. In Pract. 31:390-395. Kim, J., S. Rietdyk, and G. J. Breur. 2008. Comparison of two-dimensional and three-dimensional systems for kinematic analysis of the sagittal motion of canine hind limbs during walking. Am. J. Vet. Res. 69:1116-1122. LaVallee, K. T., T. P. Maus, J. D. Stock, K. J. Stalder, L. A. Karriker, N. S. Murthy, R. Kanwar, A. S. Beutler, and M. D. Unger. 2020. Quantitation of gait and stance alterations due to monosodium iodoacetate–induced knee osteoarthritis in yucatan swine. Comp. Med. 70:248-257. Liu, J., N. Neerchal, U. Tasch, R. Dyer, and P. Rajkondawar. 2009. Enhancing the prediction accuracy of bovine lameness models through transformations of limb movement variables. J. Dairy Sci. 92:2539-2550. Maertens, W., J. Vangeyte, J. Baert, A. Jantuan, K. C. Mertens, S. De Campeneere, A. Pluk, G. Opsomer, S. Van Weyenberg, and A. Van Nuffel. 2011. Development of a real time cow gait tracking and analysing tool to assess lameness using a pressure sensitive walkway: The GAITWISE system. Biosyst. Eng. 110:29-39. Main, D., J. Clegg, A. Spatz, and L. Green. 2000. Repeatability of a lameness scoring system for finishing pigs. Vet. Rec. 147:574-576. McKee, C., and J. Dumelow. 1995. A review of the factors involved in developing effective non-slip floors for pigs. J. Agric. Eng. Res. 60:35-42. Meijer, E., C. P. Bertholle, M. Oosterlinck, F. J. van der Staay, W. Back, and A. van Nes. 2014. Pressure mat analysis of the longitudinal development of pig locomotion in growing pigs after weaning. BMC Vet. Res. 10:1-11. Mohling, C. M., A. Johnson, J. F. Coetzee, L. A. Karriker, C. Abell, S. Millman, and K. Stalder. 2014. Kinematics as objective tools to evaluate lameness phases in multiparous sows. Livest. Sci. 165:120-128. Mote, B., J. Mabry, K. Stalder, and M. Rothschild. 2009. Evaluation of current reasons for removal of sows from commercial farms. Prof. Anim. Sci. 25:1-7. Nauwelaerts, S., and H. Clayton. 2010. Changes in trunk shape and center of mass location in horses during walking. Wien. Tierarztl. Monatsschrift 97:81-86. Nicholson, G. P., G. J. Breur, D. Van Sickle, J. Q. Yao, J. Kim, and C. R. Blanchard. 2007. Evaluation of a cross-linked acellular porcine dermal patch for rotator cuff repair augmentation in an ovine model. J. Shoulder Elb. Surg. 16:184-190. Nigg, B. M. 2007. Biomechanics of the musculo-skeletal system. 3rd ed. John Wiley & Sons, Inc. Hoboken, NJ. Palmieri-Smith, R. M., and L. K. Lepley. 2015. Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am. J. Sports Med. 43:1662-1669. Pluym, L. M., D. Maes, J. Vangeyte, K. Mertens, J. Baert, S. Van Weyenberg, S. Millet, and A. Van Nuffel. 2013. Development of a system for automatic measurements of force and visual stance variables for objective lameness detection in sows: SowSIS. Biosyst. Eng. 116:64-74. Puigdomenech, L., J. Rosell-Polo, G. Blanco, and D. Babot. 2017. Using centers of pressure tracks of sows walking on a large force platform in farm conditions for locomotion classification. Comput. Electron. Agric. 142:101-109. Robilliard, J. J., T. Pfau, and A. M. Wilson. 2007. Gait characterisation and classification in horses. Eur. J. Exp. Biol. 210:187-197. SAS. 2020. SAS/STAT user's guide, version 9.4. SAS Inst. Inc., Cary, NC. Schamhardt, H., and H. Merkens. 1994. Objective determination of ground contact of equine limbs at the walk and trot: comparison between ground reaction forces, accelerometer data and kinematics. Equine Vet. J. 26:75-79. Schnabl-Feichter, E., A. Tichy, M. Gumpenberger, and B. Bockstahler. 2018. Comparison of ground reaction force measurements in a population of Domestic Shorthair and Maine Coon cats. PLoS One 13:e0208085. Schramke, S., V. Schuldenzucker, R. Schubert, F. Frank, M. Wirsig, S. Ott, J. Motlik, M. Fels, N. Kemper, and E. Hölzner. 2016. Behavioral phenotyping of minipigs transgenic for the Huntington gene. J. Neurosci. 265:34-45. Serenius, T., and K. Stalder. 2007. Length of productive life of crossbred sows is affected by farm management, leg conformation, sow's own prolificacy, sow's origin parity and genetics. Animal 1:745-750. Shapiro, R. 1978. Direct linear transformation method for three-dimensional cinematography. Res. Q. Am. Assoc. Health Phys. Educ. 49:197-205. Smith, B. 1988. Lameness in pigs associated with foot and limb disorders. In Pract. 10:113-117. Spellicy, S. E., E. E. Kaiser, M. M. Bowler, B. J. Jurgielewicz, R. L. Webb, F. D. West, and S. L. Stice. 2020. Neural stem cell extracellular vesicles disrupt midline shift predictive outcomes in porcine ischemic stroke model. Transl. Stroke Res. 11:776-788. Stalder, K., M. Knauer, T. Baas, M. Rothschild, and J. Mabry. 2004. Sow longevity. Pig News and Information 25:53-74. Stalder, K. J., R. C. Lacy, T. L. Cross, and G. E. Conatser. 2003. Financial impact of average parity of culled females in a breed-to-wean swine operation using replacement gilt net present value analysis. JSHAP 11:69-74. Stalder, K. J., C. Johnson, D. Miller, T. Baas, N. Berry, A. Christian, and T. Serenius. 2010. Replacement gilt evaluation pocket guide. National Pork Board. Des Moines, IA. Steindler, A. 1953. A historical review of the studies and investigations made in relation to human gait. J. Bone Jt. Surg. 35:540-728. Straw, B. E., J. J. Zimmerman, S. D'Allaire, and D. J. Taylor. 2013. Diseases of swine. John Wiley & Sons. Thorup, V., F. A. Tøgersen, B. Jørgensen, and B. Jensen. 2007a. Biomechanical gait analysis of pigs walking on solid concrete floor. Animal 1:708-715. Thorup, V. M., B. Laursen, and B. Jensen. 2008. Net joint kinetics in the limbs of pigs walking on concrete floor in dry and contaminated conditions. J. Anim. Sci. 86:992-998. Tinkle, A. K., M. E. Wilson, J. L. Torrison, M. A. Parsley, K. J. Duberstein, M. J. Azain, and C. R. Dove. 2020. Comparison of blunt versus functional claw trimming effects on sow gait. J. Swine Health Prod. 28:118-123. Tiranti, K. I., and R. B. Morrison. 2006. Association between limb conformation and retention of sows through the second parity. Am. J. Vet. Res. 67:505-509. Torres, B. T., J. P. Punke, Y. C. Fu, J. A. Navik, A. L. Speas, A. Sornborger, and S. C. Budsberg. 2010. Comparison of canine stifle kinematic data collected with three different targeting models. Vet. Surg. 39:504-512. Uilenreef, J., F. J. van der Staay, and E. Meijer. 2019. A monosodium iodoacetate osteoarthritis lameness model in growing pigs. Animals 9:405. van der Wal, P., H. Hemminga, P. van der Valk, S. Goedegebuure, H. Hulshof, and G. Van Essen. 1986. The effect of sodium bicarbonate in the ration on the acid‐base equilibrium of pigs. J. Anim. Physiol. Anim. Nutr. 56:86-90. Van Weeren, P., A. Van Den Bogert, and A. Barneveld. 1990. A quantitative analysis of skin displacement in the trotting horse. Equine Vet. J. 22:101-109. von Wachenfelt, H., C. Nilsson, and S. Pinzke. 2010. Gait and force analysis of provoked pig gait on clean and fouled rubber mat surfaces. Biosyst. Eng. 106:86-96. von Wachenfelt, H., S. Pinzke, C. Nilsson, O. Olsson, and C.-J. Ehlorsson. 2009. Force analysis of unprovoked pig gait on clean and fouled concrete surfaces. Biosyst. Eng. 104:250-257. Wang, H., E. W. Baker, A. Mandal, R. M. Pidaparti, F. D. West, and H. A. Kinder. 2021. Identification of predictive MRI and functional biomarkers in a pediatric piglet traumatic brain injury model. Neural Regen. Res. 16:338. Webb, N., and M. Clark. 1981. Livestock foot-floor interactions measured by force and pressure plate. Farm Building Progress 66:23-36. Webb, N., and C. Nilsson. 1983. Flooring and injury—an overview. In: S. H. Baxter, editor, Farm animal housing and welfare. Martinus Nijhoff Publishers, The Hague. pp. 226-259. Webb, R. L., E. E. Kaiser, B. J. Jurgielewicz, S. Spellicy, S. L. Scoville, T. A. Thompson, R. L. Swetenburg, D. C. Hess, F. D. West, and S. L. Stice. 2018. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke 49:1248-1256. Zifchock, R. A., I. Davis, and J. Hamill. 2006. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 39:2792-2797. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87624 | - |
| dc.description.abstract | 種母豬的腿部強健度會影響其使用年限,而且跛足或腿部問題是生產母豬被淘汰的第二大原因,僅次於繁殖障礙,特別是前三胎的母豬。由於腿部結構相關性狀為中低遺傳率,因此在豬隻生長過程中觀察腿部結構是選種時必要的工作之一。近年已有一些研究致力於開發量化的檢測方法以評估豬隻跛行,然而尚未有長期追蹤新女豬腿部結構變化的研究,這些量化評估方法也尚未應用於現場,因此本研究將24頭新女豬在3.0、4.5、6.0、7.5月齡時,追蹤前、後肢的關節夾角及步態資料對四肢腿部受力(Ground reaction force, GRF)建立腿部受力的預測公式。
使用運動學步態分析關節角度資料,其中,前肢肩關節角度在3.0月齡時顯著小於其他月齡、前肢蹄面與地面夾角在7.5月齡時顯著小於其他月齡(p<0.05);後肢膝關節角度及後肢飛節角度在3.0月齡時顯著小於其他月齡、後肢蹄面與地面夾角在7.5月齡時顯著大於3.0月齡(p<0.05)。運用壓力墊之動力學步態分析方法取得站立時間、腿部擺動時間、步態週期、步幅等資料。為建立預測腿部受力公式,運用前(後)肢的腿部受力數據與各關節角度及步態數據進行向後消去複迴歸分析,自變數為女豬的日齡、體重、站立時間、腿部擺動時間、步態週期、步幅及前(後)肢各關節角度。前肢分析結果為日齡、站立時間、肩關節角度、肘關節角度是對前肢受力預測具顯著效應的自變數,R^2=0.75;後肢分析結果為日齡、站立時間、後膝關節角度、髖關節角度是對後肢受力預測具顯著效應的自變數,R^2=0.69。進一步以壓力墊得到的腿部受力對稱指數及預測公式之腿部受力對稱指數及步幅對稱指數帶入混淆矩陣,得到各種方法的準確度,做為腿部強健度評估的指標。 利用混淆矩陣對目視女豬淘汰結果、受力預測對稱指數結果、壓力墊受力對稱指數結果與步幅對稱指數結果進行分類,並計算準確度、敏感性及和特異性分析。現場人員目視選留結果與7.5月齡步幅對稱指數的準確度為85%、敏感性僅36%、特異性達100%,顯示目視選留僅能挑出少量之步態異常豬隻。而以複迴歸公式所得之受力預測對稱指數與壓力墊受力對稱指數做比較,得到之準確度為85%、敏感性及特異性分別為54%及94%,複迴歸分析預測公式之敏感性較現場人員目視選留更高,代表在預測公式有判別出步態異常豬隻的潛力。 本研究利用女豬選留前拍攝之步態影像計算關節角度及站立時間等數據,透過複迴歸預測公式預估腿部受力及對稱指數,未來可在沒有壓力墊設備時做為女豬選留前腿部強健度的評估指標。 | zh_TW |
| dc.description.abstract | The durability of sows would be affected by their leg soundness. Problems of leg or lameness is the second reason for culling, second only to reproductive disorder, especially in the first three parities. Due to the intermediate to low heritability of traits related to leg structure, it is necessary to observe the structure during the growing period of pigs in selection programs. In recent years, some studies have focused on quantitative methods for measuring pig lameness. However, a study on the long-term tracking of changes in legs and feet structure has not been conducted. In addition, those quantitative evaluation methods have not yet been applied on farms. Therefore, the objective of this study was to collect the ground reaction force (GRF) and data sets of joint angle and gait for fore- and hind-limbs of 24 purebred gilts at 3.0, 4.5, 6.0, 7.5 months of age to construct the prediction equation of GRF. In the data of joint angle analyzed by kinematic gait analysis, the shoulder joint angle of forelimb at 3.0 months of age was significantly smaller than those at other months of age. The angle between the hoof surface of the forelimb and the ground at 7.5 months of age was significantly smaller than those at other months of age (P < 0.05). The angles of knee joint and hock joint of the hindlimb at 3.0 months of age was significantly smaller than those at other months of age. The angle between the hoof of the hindlimb and the ground at 7.5 months of age was significantly larger than that at 3.0 months of age (P < 0.05). In addition, the stance time, swing time, stride time, stride length, and GRF were obtained by using gait analysis of pressure mat. To establish the prediction equations for GRF on feet, multiple regression analyses were conducted using data sets of GRF on legs and feet, joint angles, and gait of fore- and hind-limbs with a backward selection procedure. The results of prediction equation for forelimb showed significant effects on days of age, stance time, angle of shoulder joint and elbow joint on GRF with R^2=0.75. For hindlimb, the results of prediction equation have significant effects on days of age, stance time, angle of stifle joint and hip joint on force on legs and feet with R^2=0.69.
The GRF symmetry index obtained from the pressure mat and the GRF prediction equation symmetry index and stride length symmetry index were brought into the confusion matrix to obtain the prediction accuracy of various methods and used them as an index for leg soundness. The confusion matrix was applied to classify visual inspection for gilt culling, force prediction symmetry index, GRF symmetry index, and stride symmetry index, with their accuracy, sensitivity, and specificity. The results of visual inspection for gilt culling vs. stride symmetry index at 7.5 months of age showed accuracy, sensitivity, and specificity of 85%, 36%, and 100%, respectively. These results indicated that visual inspection for gilt culling can only identify a small number of pigs with a symmetrical gait. However, the accuracy, sensitivity, and specificity of the force prediction equation symmetry index compared to the pressure mat force symmetry index were 85%, 54%, and 94%, respectively. The sensitivity of the multiple regression analysis prediction formula is higher than that of visual inspection, so the prediction equation has the potential to identify pigs with an asymmetry gait. This study utilized gilt gait videos to calculate joint angles with standing time data estimated by the multiple regression prediction equation to estimate the GRF of legs. In the future, these could be used as evaluation indices for the leg soundness of gilts. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:25:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-20T16:25:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 X 壹、前言 1 貳、文獻檢討 2 一、母豬的腿部問題與使用年限 2 (一)母豬的腿部問題 2 (二)影響母豬腿部結構變化的因素 4 (三)母豬腿部問題造成的動物福祉損害及商業損失 5 二、更新女豬及母豬的腿部結構評估 8 (一)傳統目視評估 8 (二)客觀量測評估工具 9 三、四足動物生物力學步態分析 10 (一)歷史背景 10 (二)步態術語 11 (三)步態對稱指數(Gait symmetry Index) 13 (四)運動學步態分析 14 A. 二維運動學系統 14 B. 三維運動學系統 15 (五)動力學步態分析 16 A. 測力板 16 B. 壓力墊 17 參、材料與方法 19 一、試驗動物及試驗設計 19 (一)動物及群養欄位 19 (二)拍攝步態影片場地 21 (三)錄影設備 22 (四)壓力墊設備 22 (五)豬隻體重測量之磅秤 23 二、更新女豬腿部結構資料之記錄與量測方法 24 (一)步態影像收集及影像處理 24 A. 前後肢重要關節點介紹 24 B. 關節點辨識方法 25 C. 關節角度測量方法 27 (二)壓力墊數據處理 29 三、統計分析 31 肆、結果與討論 32 一、 四組不同月齡體重數據紀錄 32 二、 四組不同月齡關節角度變化 35 三、 複迴歸分析結果 37 四、 步態對稱指數結果 40 五、 現場人員選留結果 45 六、 各方法與步幅對稱指數之混淆矩陣之準確度、敏感性及特異性分析 47 伍、結論 55 陸、參考文獻 56 柒、附錄 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 步態影像 | zh_TW |
| dc.subject | 純種女豬 | zh_TW |
| dc.subject | 關節角度 | zh_TW |
| dc.subject | 腿部結構 | zh_TW |
| dc.subject | 腿部強健度 | zh_TW |
| dc.subject | Leg soundness | en |
| dc.subject | Joint angle | en |
| dc.subject | Gait image | en |
| dc.subject | Leg structure | en |
| dc.subject | Purebred gilts | en |
| dc.title | 以影像評估藍瑞斯與約克夏女豬之腿部結構與強健度 | zh_TW |
| dc.title | Evaluation of leg structure and soundness in Landrace and Yorkshire gilts using video | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王佩華;王翰聰;李德南 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Hwa Wang;Han-Tsung Wang;Der-Nan Lee | en |
| dc.subject.keyword | 腿部結構,腿部強健度,關節角度,步態影像,純種女豬, | zh_TW |
| dc.subject.keyword | Leg structure,Leg soundness,Joint angle,Gait image,Purebred gilts, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202300517 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-02-18 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
