請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87621完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 袁孝維 | zh_TW |
| dc.contributor.advisor | Hsiao-Wei Yuan | en |
| dc.contributor.author | 趙萱 | zh_TW |
| dc.contributor.author | Hsuan Chao | en |
| dc.date.accessioned | 2023-06-20T16:24:47Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-06-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-13 | - |
| dc.identifier.citation | Arcones A, Ponti R., Vieites DR. 2021. Mitochondrial substitution rates estimation for divergence time analyses in modern birds based on full mitochondrial genomes. Ibis 163: 1463–1471.
Babbington J, Boland CR, Kirwan GM, Schweizer M. 2020. Morphological differences between ‘Mangrove White-eye’and montane Abyssinian White-eye (Zosterops abyssinicus arabs) in Arabia despite no differentiation in mitochondrial DNA: incipient speciation via niche divergence?. Journal of Ornithology 161: 1051–1060. Balloux F, Lugon‐Moulin N. 2002. The estimation of population differentiation with microsatellite markers. Molecular ecology 11: 155–165. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57: 289–300. BirdLife International. 2023. Species factsheet: Zosterops japonicus. Downloaded from http://www.birdlife.org on 8 January 2023. BirdLife International. 2023. Species factsheet: Zosterops simplex. Downloaded from http://www.birdlife.org on 8 January 2023. BirdLife International. 2023. Species factsheet: Zosterops meyeni. Downloaded from http://www.birdlife.org on 8 January 2023. Bonaparte CL. 1850. Conspectus generum avium. 398. Boone M, De Koker A, Callewaert N. 2018. Capturing the ‘ome’: the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Research 46: 2701–2721. Borcard D, Gillet F, Legendre P. 2018. Unconstrained ordination. In Numerical ecology with R (pp. 151–201). Springer, Cham. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS computational biology 10: e1003537. Cai T, Cibois A, Alström P, Moyle RG, Kennedy JD, Shao S, Zhang R, Irestedt M, Ericson PGP, Gelang M, Qu Y, Lei F, Fjeldså J. 2019. Near-complete phylogeny and taxonomic revision of the world’s babblers (Aves: Passeriformes). Molecular Phylogenetics and Evolution 130: 346–356. Cai T, Shao S, Kennedy JD, Alström P, Moyle RG, Qu Y, Lei F, Fjeldså J. 2020. The role of evolutionary time, diversification rates and dispersal in determining the global diversity of a large radiation of passerine birds. Journal of Biogeography 47: 1612–1625. Chen SF, Juan CH, Rossiter SJ, Kinjo T, Fukui D, Kawai K, Tsang SM, Veluz MJ, Sakurai H, Jang-Liaw NH, Osawa K, Ko WY, Izawa M. 2021. Population genetic structure of the insular Ryukyu flying fox Pteropus dasymallus. Biotropica 53: 548–559. Chen YG, Wu WS, Chen CH, Liu TK. 2001. A date for volcanic eruption inferred from a siltstone xenolith. Quaternary Science Reviews 20: 869–873. Cicero C, Mason NA, Jiménez RA, Wait DR, Wang-Claypool CY, Bowie RC. 2021. Integrative taxonomy and geographic sampling underlie successful species delimitation. The Auk 138: ukab009. Clegg SM, Degnan SM, Kikkawa J, Moritz C, Estoup A, Owens IP. 2002a. Genetic consequences of sequential founder events by an island-colonizing bird. Proceedings of the National Academy of Sciences 99: 8127–8132. Clegg SM, Degnan SM, Moritz C, Estoup A, Kikkawa J, Owens IP. 2002b. Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution 56: 2090–2099. Clements JF, Schulenberg TS, Iliff MJ, Billerman SM, Fredericks TA, Sullivan BL, Wood CL. 2022. The Clements Checklist of Birds of the World. USA: The Cornell Lab of Ornithology. Cornuault J, Delahaie B, Bertrand JA, Bourgeois YX, Milá B, Heeb P, Thébaud C. 2015. Morphological and plumage colour variation in the Réunion grey white-eye (Aves: Zosterops borbonicus): assessing the role of selection. Biological Journal of the Linnean Society 114: 459–473. Cowles SA, Uy JAC. 2019. Rapid, complete reproductive isolation in two closely related Zosterops White‐eye bird species despite broadly overlapping ranges. Evolution 73: 1647–1662. Cox B. 2001. The biogeographic regions reconsidered. Journal of biogeography 28: 511–523. Cox CB, Moore PD, Ladle RJ. 2016. Biogeography: an ecological and evolutionary approach. USA: John Wiley & Sons. Croteau DL, Stierum RH, Bohr VA. 1999. Mitochondrial DNA repair pathways. Mutation Research/DNA Repair 434: 137–148. Dai C, Zhang C. 2017. The local bird trade and its conservation impacts in the city of Guiyang, Southwest China. Regional Environmental Change 17: 1763–1773. De Queiroz K. 2007. Species concepts and species delimitation. Systematic biology 56: 879–886. Diamond JM, Gilpin ME, Mayr E. 1976. Species-distance relation for birds of the Solomon Archipelago, and the paradox of the great speciators. Proceedings of the National Academy of Sciences 73: 2160–2164. Dong F, Li SH, Yang XJ. 2010. Molecular systematics and diversification of the Asian scimitar babblers (Timaliidae, Aves) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 57: 1268–1275. Dong L, Wei M, Alstroem P, Huang X, Olsson U, Shigeta Y, Zhang Y, Zheng G. 2015. Taxonomy of the Narcissus Flycatcher Ficedula narcissina complex: an integrative approach using morphological, bioacoustic and multilocus DNA data. Ibis 157: 312–325. Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources 10: 564–567. Fitze PS, Kolliker M, Richner H. 2003. Effects of common origin and common environment on nestling plumage coloration in the great tit (Parus major). Evolution 57: 144–150. Fu YX, Li WH. 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709. Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925. Gernhard T. 2008. The conditioned reconstructed process. Journal of theoretical biology 253: 769–778. Grant PR. 1968. Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Systematic Biology 17: 319–333. Gray MW, Burger G, Lang BF. 1999. Mitochondrial evolution. Science 283: 1476–1481. Griffiths R, Double MC, Orr K, Dawson RJ. 1998. A DNA test to sex most birds. Molecular ecology 7: 1071–1075. Gwee CY, Garg KM, Chattopadhyay B, Sadanandan KR, Prawiradilaga DM, Irestedt M, Lei F, Bloch LM, Lee JGH, Irham M, Haryoko T, Soh MC, Peh KSH, Rowe KMC, Ferasyi TR, Wu S, Wogan GO, Bowie RCK, Rheindt FE. 2020. Phylogenomics of white-eyes, a ‘great speciator’, reveals Indonesian archipelago as the center of lineage diversity. Elife 9: e62765. Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. Hamao S, Sugita N, Nishiumi I. 2013. Geographical variation in mitochondrial DNA and vocalizations in two resident bird species in the Ryukyu Archipelago, Japan. Bulletin of the National Museum of Nature and Science. Series A, Zoology 39: 51–62. Hartl DL, Jones EW. 2009. Genetics: analysis of genes and genomes. Jones & Bartlett Learning. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM, Godfray C. 2004. Identification of birds through DNA barcodes. PLoS biology 2: e312. Horie S, Matsui S, Takagi M. 2005. A reproductive record of the Japanese White-eye (Zosterops japonica daitoensis) in November on Minami-daito Island. Japanese Journal of Ornithology 54: 58–59. Horie S, Takagi M. 2012. Nest positioning by male Daito White‐eyes Zosterops japonicus daitoensis improves with age to reduce nest predation risk. Ibis 154: 285–295. Howards R, Moore A. 1991. A Complete Checklist of the Birds of the World. 2nd Edition. Academic Press. Husemann M, Ulrich W, Habel JC. 2014. The evolution of contact calls in isolated and overlapping populations of two white-eye congeners in East Africa (Aves, Zosterops). BMC Evolutionary Biology 14: 1–11. IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org. Downloaded on 2022-11-27. https://doi.org/10.15468/0qnb58 accessed via GBIF.org on 2022-11-27. Jarulis, Sari MM, Wibowo RH. 2021. DNA Barcode of Mountain White-Eye Zosterops montanus (Aves: Zosteropidae) Based on Mitochondrial DNA Cytochrome Oxidase Sub Unit I. In 3rd KOBI Congress, International and National Conferences (KOBICINC 2020) (pp. 364–373). Atlantis Press. Jarvi SI, Farias ME. 2006. Molecular sexing and sources of CHD1‐Z/W sequence variation in Hawaiian birds. Molecular Ecology Notes 6: 1003–1005. Kaito T, Mamoru T. 2016. The biogeographical history of Asian keelback snakes of the genus Hebius (Squamata: Colubridae: Natricinae) in the Ryukyu Archipelago, Japan. Biological Journal of the Linnean Society 118: 187–199. Kano T. 1936. Some Problems Concerning the Biogeography of Kôthshô. Geographical Review of Japan 12: 1107–1133. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution 16: 111–120. Kimura M. 1983. The neutral theory of molecular evolution. Cambridge University Press. Kimura M. 2000. Paleogeography of the Ryukyu Islands. Tropics 10: 5–24. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences 86: 6196–6200. Kondo N, Watanabe S. 2009. Contact calls: information and social function. Japanese Psychological Research 51: 197–208. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35: 1547. Kurita K, Hikida T. 2014. Divergence and long-distance overseas dispersals of island populations of the Ryukyu five-lined skink, Plestiodon marginatus (Scincidae: Squamata), in the Ryukyu Archipelago, Japan, as revealed by mitochondrial DNA phylogeography. Zoological science 31: 187–194. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature methods 9: 357–359. Lavinia PD, Kerr KC, Tubaro PL, Hebert PD, Lijtmaer DA. 2016. Calibrating the molecular clock beyond cytochrome b: assessing the evolutionary rate of COI in birds. Journal of Avian Biology 47: 84–91. Lee JCI, Tsai LC, Hwa PY, Chan CL, Huang A, Chin SC, Wang LC, Lin JT, Linacre A, Hsieh HM. 2010. A novel strategy for avian species and gender identification using the CHD gene. Molecular and cellular probes 24: 27–31. Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. Lim BT, Sadanandan KR, Dingle C, Leung YY, Prawiradilaga DM, Irham M, Ashari H, Lee JGH , Rheindt FE. 2019. Molecular evidence suggests radical revision of species limits in the great speciator white-eye genus Zosterops. Journal of Ornithology 160: 1–16. Lim HC, Habib A, Chen WJ. 2021. Comparative Phylogeography and Phylogeny of Pennah Croakers (Teleostei: Sciaenidae) in Southeast Asian Waters. Genes 12: 1926. Lin JT, Yao CJ. 2016. A new species of the genus Geckko (Squamata: Sauria: Gekkonidae) from Guishan Isle, Yilan County. Taiwan. Journal of the National Taiwan Museum 69: 1–14. Lin SM, Chen CA, Lue KY. 2002. Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of East Asia. Molecular Phylogenetics and Evolution 22: 276–288. Lin WL, Severinghaus LL, Tseng HY, Lin SM. 2013. Genetic differentiation between migratory and sedentary populations of the Northern Boobook (Ninox japonica), with the discovery of a novel cryptic sedentary lineage. Journal of Ornithology 154: 987–994. Luttrell SA, Gonzalez ST, Lohr B, Greenberg R. 2015. Digital photography quantifies plumage variation and salt marsh melanism among Song Sparrow (Melospiza melodia) subspecies of the San Francisco Bay. The Auk: Ornithological Advances 132: 277–287. Mayr E. 2000. The biological species concept. Species concepts and phylogenetic theory: a debate. New York: Columbia University Press. McGregor. 1907. The Philippine journal of science. 343. Mees GF. 1957. A systematic review of the Indo-Australian Zosteropidae (Part I). Zoologische Verhandelingen 35: 1–204. Mees GF. 1969. A systematic review of the Indo-Australian Zosteropidae (Part III). Zoologische Verhandelingen 102: 1–390. Meimberg H, Schachtler C, Curto M, Husemann M, Habel JC. 2016. A new amplicon based approach of whole mitogenome sequencing for phylogenetic and phylogeographic analysis: An example of East African white-eyes (Aves, Zosteropidae). Molecular phylogenetics and evolution 102: 74–85. Milá B, Wayne RK, Fitze P, Smith TB. 2009. Divergence with gene flow and fine‐scale phylogeographical structure in the wedge‐billed woodcreeper, Glyphorynchus spirurus, a Neotropical rainforest bird. Molecular ecology 18: 2979–2995. Moyle RG, Filardi CE, Smith CE, Diamond J. 2009. Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proceedings of the National Academy of Sciences 106: 1863–1868. Nicholls JA, Goldizen AW. 2006. Habitat type and density influence vocal signal design in satin bowerbirds. Journal of Animal Ecology 75: 549–558. Nishiumi I, Yao CT, Saito DS, Lin RS. 2006. Influence of the Last Two Glacial Periods and the Late Pliocene on the Latitudinal Population Structure of Resident Songbirds in the Far East. Memoirs of the National Science Museum 44: 11–20. Nixon KC, Wheeler QD. 1990. An amplification of the phylogenetic species concept. Cladistics 6: 211–223. Oatley G, De Swardt DH, Nuttall RJ, Crowe TM, Bowie RC. 2017. Phenotypic and genotypic variation across a stable white-eye (Zosterops sp.) hybrid zone in central South Africa. Biological Journal of the Linnean Society 121: 670–684. O’Connell DP, Kelly DJ, Lawless N, O’Brien K, Marcaigh FÓ, Karya A, Analuddin K, Marples NM. 2019. A sympatric pair of undescribed white-eye species (Aves: Zosteropidae: Zosterops) with different origins. Zoological Journal of the Linnean Society 186: 701–724. O’Connor BP. 2022. DFA.CANCOR: Linear Discriminant Function and Canonical Correlation Analysis. R package version 0.2.5. https://CRAN.R-project.org/package=DFA.CANCOR Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2020. R package version 2.5-7. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan Oliveros CH, Andersen MJ, Moyle RG. 2021. A phylogeny of white-eyes based on ultraconserved elements. Molecular Phylogenetics and Evolution 164: 107273. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51: 933–938. Ota H. 1998. Geographic patterns of endemism and speciation in amphibians and reptiles of the Ryukyu Archipelago, Japan, with special reference to their paleogeographical implications. Researches on Population Ecology 40: 189–204. Ota H, Huang WS. 2000. Mabuya cumingi (Reptilia: Scincidae) An Addition to the Herpetofauna of Lanyu Island, Taiwan. Current herpetology 19: 57–61. Parkes KC. 1971. Taxonomic and distributional notes on Philippine birds. Nemouria 4: 1–67. Parkes KC, Morony JJ, Farrand J. 1975. Review of A Coded List of Birds of the World; Birds of the World: A Check List; An Annotated List of Birds of the World; Reference List of the Birds of the World, by E. P. Edwards, J. F. Clements, M. A. Cunningham, Joseph G. Griffith, & W. J. Bock. The Auk 92: 818–830. Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M. 2000. Species identification by means of the cytochrome b gene. International journal of legal medicine 114: 23–28. Phillimore AB, Owens IPF, Black RA, Chittock J, Burke T, Clegg SM. 2008. Complex patterns of genetic and phenotypic divergence in an island bird and the consequences for delimiting conservation units. Molecular Ecology 17: 2839–2853. Posada D, Crandall KA. 2001. Intraspecific gene genealogies: trees grafting into networks. Trends in ecology & evolution 16: 37–45. Potvin DA. 2013. Larger body size on islands affects silvereye Zosterops lateralis song and call frequency. Journal of Avian Biology 44: 221–225. Puillandre N, Lambert A, Brouillet S, Achaz GJME. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular ecology 21: 1864–877. Available at: https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html Puillandre N, Brouillet S, Achaz G. 2021. ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21: 609–620. Available at: https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html Rambaut A. 2018a. FigTree v.1.4.4. http://tree.bio.ed.ac.uk/software/figtree/. Accessed January 4, 2021. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018b. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology. syy032. doi:10.1093/sysbio/syy032 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Reis KR, Garong AM. 2001. Late quaternary terrestrial vertebrates from Palawan Island, Philippines. Palaeogeography, Palaeoclimatology, Palaeoecology 171: 409–421. Roca IT, Desrochers L, Giacomazzo M, Bertolo A, Bolduc P, Deschesnes R, Martin CA, Rainville V, Rheault G, Proulx R. 2016. Shifting song frequencies in response to anthropogenic noise: a meta-analysis on birds and anurans. Behavioral Ecology 27: 1269–1274. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. Round PD, Manawattana S, Khudamrongsawat J, Thunhikorn S, Safoowong M, Bhummakasikara T. 2017. Disentangling avian diversity: South-East Asian mainland Oriental White-eye Zosterops palpebrosus constitutes two distinct lineages. Forktail 33: 103–115. Rosen DE. 1979. Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography. Bulletin of the AMNH 162: 267–376. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution 34: 3299–3302. Saitoh T, Sugita N, Someya S, Iwami Y, Kobayashi S, Kamigaichi H, Higuchi A, Asai S, Yamamoto Y, Nishiumi I. 2015. DNA barcoding reveals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago. Molecular Ecology Resources 15: 177–186. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods 9: 671–675. Shaw KL, Gillespie RG. 2016. Comparative phylogeography of oceanic archipelagos: Hotspots for inferences of evolutionary process. Proceedings of the National Academy of Sciences 113: 7986–7993. Shen HP, Chang CH, Ota H. 2022. The biogeographical history of giant earthworms of the Metaphire formosae species group (Clitellata: Megascolecidae) in Taiwan and the Ryukyu Archipelago, with the description of a new species from Yonagunijima, Southern Ryukyus. Organisms Diversity & Evolution 22: 47–60. Silvestro D, Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12: 335–337. Smithe FB. 1974. Naturalist's color guide supplement (Vol. 2). Amer Museum of Natural History. Su S, Cassey P, Vall-Llosera M, Blackburn TM. 2015. Going cheap: determinants of bird price in the Taiwanese pet market. PloS one 10: e0127482. Su YC, Brown RM, Chang YH, Lin CP, Tso IM. 2016. Did a Miocene–Pliocene island isolation sequence structure diversification of funnel web spiders in the Taiwan‐Ryukyu Archipelago?. Journal of Biogeography 43: 991–1003. Swinhoe, R. 1861. Notes on ornithology taken between Takoo and Peking, in the neighbourhood of the Peiho River, Province of Chelee, North China, from August to December, 1860. Ibis 3: 323–345. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesisby DNA polymorphism. Genetics 123: 585–595. Takatsukasa N, Kano T. 1934. Birds of Kashoto. Japanese Journal of Ornithology 8: 211–217. Temminck CJ, Schlegel H. 1844. Fauna Japonica, Aves: 57. Tobias JA, Seddon N, Spottiswoode CN, Pilgrim JD, Fishpool LD, Collar NJ. 2010. Quantitative criteria for species delimitation. Ibis 152: 724–746. Tseng HY, Huang WS, Jeng ML, Villanueva RJT, Nuñeza OM, Lin CP. 2018. Complex inter‐island colonization and peripatric founder speciation promote diversification of flightless Pachyrhynchus weevils in the Taiwan–Luzon volcanic belt. Journal of Biogeography 45: 89–100. Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences 98: 5116–5121. Uy JAC, Moyle RG, Filardi CE. 2009. Plumage and song differences mediate species recognition between incipient flycatcher species of the Solomon Islands. Evolution: International Journal of Organic Evolution 63: 153–164. Uy JAC, Safran RJ. 2013. Variation in the temporal and spatial use of signals and its implications for multimodal communication. Behavioral Ecology and Sociobiology 67: 1499–1511. Valente L, Phillimore AB, Etienne R. 2018. Using molecular phylogenies in island biogeography: It's about time. Ecography 41: 1684–1686. VanderWerf EA, Young LC, Yeung NW, Carlon DB. 2010. Stepping stone speciation in Hawaii’s flycatchers: Molecular divergence supports new island endemics within the elepaio. Conservation Genetics 11: 1283–1298. Venkatraman MX, Deraad DA, Tsai WL, Zarza E, Zellmer AJ, Maley JM, Mccormack JE. 2019. Cloudy with a chance of speciation: integrative taxonomy reveals extraordinary divergence within a Mesoamerican cloud forest bird. Biological Journal of the Linnean Society 126: 1–15. Venkatraman M, Fleischer RC, Tsuchiya MT. 2021. Comparative analysis of annotation pipelines using the first Japanese white-eye (Zosterops japonicus) genome. Genome Biology and Evolution 13: evab063. Voris HK. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of biogeography 27: 1153–1167. Wijesundara CS, Freed LA. 2018. Divergence of morphological characters in two white‐eye species (Passeriformes: Zosteropidae) in sympatry. Ecosphere 9: e02317. Wood WE, Yezerinac SM. 2006. Song sparrow (Melospiza melodia) song varies with urban noise. The Auk 123: 650–659. Yamashina Institute for Ornithology. 2013. メジロ (Zosterops japonicus)識別マニュアル. 環境省自然環境局野生生物課鳥獣保護業務室. Yang TF, Lee T, Chen CH, Cheng SN, Knittel U, Punongbayan RS, Rasdas AR. 1996. A double island arc between Taiwan and Luzon: consequence of ridge subduction. Tectonophysics 258: 85–101. Yang DC, Sun Y, Lu CH. 2016. The complete mitochondrial genome of Zosterops japonicas (Aves, Zosteropidae). Mitochondrial DNA Part A 27: 4611–4612. Yasuda N, Taquet C, Nagai S, Fortes M, Fan TY, Harii S, Yoshida T, Sito Y, Nadaoka K. 2015. Genetic diversity, paraphyly and incomplete lineage sorting of mtDNA, ITS2 and microsatellite flanking region in closely related Heliopora species (Octocorallia). Molecular Phylogenetics and Evolution 93: 161–171. Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. Available at: https://species.h-its.org/ 丁宗蘇、阮錦松、林瑞興、蔡乙榮、潘致遠、歐陽建華、羅柳墀。2008。2008年台灣鳥類名錄。中華民國野鳥學會。臺北,臺灣。 林育綺。2012。以形距分析探究大白斑蝶之分布與分化。碩士論文,國立臺灣師範大學生命科學系學位論文。 林瑞興。2010。鳥類繫放手冊燕雀目強化版。行政院農業委員會特有生物研究保育中心。 李壽先。1989。綠繡眼的生殖及非生殖季成群之研究。碩士論文,東海大學生物學研究所,臺中市。 邵文佑。2015。利用鋯石鈾鉛定年與鉿同位素組成探討臺灣東部火成岩之岩石成因。國立臺灣大學地質科學研究所博士論文,臺北市。 陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、王國龍。2016。臺灣地質概論。社團法人中華民國地質學會。臺北市。 陳朝聖。1996。綠繡眼粒線體DNA控制區域序列變異與族群親緣關係。碩士論文,國立中山大學生命科學研究所,高雄市。 楊玉祥、丁宗蘇、吳森雄、吳建龍、阮錦松、林瑞興、蔡乙榮。2020。2020年臺灣鳥類名錄。中華民國野鳥學會。臺北,臺灣。 劉小如、丁宗蘇、方偉宏、林文宏、蔡牧起、顏重威。2012。台灣鳥類誌(下)。行政院農業委員會林務局,臺北市。 顏重威。1989。從台灣生物地理探討鳥類相。台北市立動物園保育組編印。台灣動物地理淵源研討會專輯。臺北。 蕭木吉、李政霖。2015。臺灣野鳥手繪圖鑑。台北市野鳥學會。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87621 | - |
| dc.description.abstract | 以綜合分類學(integrative taxonomy)方法結合分子遺傳、形態、行為、生態特徵等多元證據檢定物種假說,在分類學研究上尤其應用於繡眼屬(Zosterops)等具分布廣泛且輻射種化特性的類群,可以提供穩定的分類定義。根據過去基於臺灣鳥類相及親緣關係分析之結果,已知三種繡眼鳥分布於臺灣與鄰近區域,分別是斯氏繡眼(Zosterops simplex)、低地繡眼(Zosterops meyeni)和日菲繡眼(Zosterops japonicus),然而尚須多元證據以評估其物種分類地位,並進一步描述其生物地理分布。龜山島位於斯氏繡眼分布範圍東界及日菲繡眼分布範圍西界之間,綠島則被認為是低地繡眼分布的北界。長期的野外觀察紀錄指出東部離島之繡眼鳥形態特徵在島嶼間和與本島間均有差異,為了瞭解臺灣本島與三座東部離島上繡眼鳥的物種歸屬,本研究利用全粒線體基因組、細胞色素c氧化酶(COI)、粒線體細胞色素b(cytb)和還原型菸鹼醯胺腺嘌呤二核苷酸去氫酶(ND2)等基因片段分析其分子親緣關係、生物地理分布及族群遺傳結構,輔以形質測量、體色、鳴叫及歌曲特徵進行綜合分類判斷。研究結果證實該三種繡眼鳥之獨立物種地位,首次確認龜山島應屬於日菲繡眼,綠島的繡眼鳥非低地繡眼而應為日菲繡眼。蘭嶼屬於低地繡眼,臺灣本島則被確認為斯氏繡眼。意即日菲繡眼的分布邊界將延伸至龜山島和綠島與臺灣本島之間;而低地繡眼的分布範圍過去包含菲律賓北部至蘭嶼和綠島,本研究結果更新其北界應南移至綠島與蘭嶼之間。同時,形質測量及歌曲特徵亦能支持分子分析的結果,可做為實地觀察時物種辨認的有效方式。日菲繡眼與低地繡眼均棲息於臺灣東部離島,各自具獨特的族群遺傳和形態特徵,應避免其族群受飼鳥市場交易對其產生獵捕壓力與干擾,將有助於保存遺傳與生物多樣性。 | zh_TW |
| dc.description.abstract | In this study, the integrative taxonomy combining multiple lines of evidence from the analyses based on molecular, morphological, and ecological traits was used to eluciate the taxonomic status of the white-eyes in genus Zosterops in Taiwan. Based on the taxonomic scheme defined by previous studies according to the phylogenetic results and up-to-date information about bird fauna in Taiwan, three currently recognized Zosterops species occur in and around Taiwan. They are Swinhoe's white-eyes (Zosterops simplex), Lowland white-eyes (Zosterops meyeni), and Warbling white-eyes (Zosterops japonicus). However, multiple pieces of evidence are still needed to evaluate their taxonomic status and to further describe their biogeographical distributions. Guishan Island is in the middle of the border of Z. simplex from the west and Z. japonicus from the east, and Green Island was considered the northern edge of Z. meyeni distribution. In this study, the white-eye populations in Taiwan main island and the three east outlying islands were therefore investigated to explore their phylogenetic relationships, biogeographic pattern, and population structure through mitochondrial genome and gene (Cytochrome c oxidase subunit 1 [COI], Cytochrome b [cytb], and NADH dehydrogenase subunit II [ND2]) information. To test the species hypothesis, in addition to the molecular analyses including COI and cytb based species delimitation, the analyses with supplemented data by morphological measurements, body colors, call, and song traits were also conducted. The resulting multiple lines of evidence confirmed the valid species status of the three white-eye species occurring in Taiwan. It is reported for the first time that the white-eye population on Guishan Island should belong to Z. japonicus, and the white eyes on Green Island are Z. japonicus instead of Z. meyeni. The white eyes on Orchid Island should belong to the Z. meyeni. The white eyes occurring on Taiwan main island were confirmed to be the Z. simplex. It meant that the distribution range of Z. japonicus should be extended to the zone covering Guishan Island and Green Island with a boundary located between Taiwan main island and the east outlying islands. The Z. meyeni was previously known to be distributed from the northern Philippines to Green Island and Orchid Island. This study updates its northernmost boundary of the distribution located at the sea between Green Island and Orchid Island. Meanwhile, the molecular species delimitation results corroborated morphological measurements and song characteristics will be applied to species identification in the field. Since both Z. japonicus and Z. meyeni inhabit isolated islands and each of them possesses unique genetic and morphological features, for conservation, it is necessary to prevent them from the threat of the bird trading market for biodiversity preservation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:24:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-20T16:24:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 壹、前言 1 一、生物分類學演變 1 二、繡眼屬鳥類分類歷史 4 三、臺灣及鄰近區域之地質歷史 8 四、研究目的 11 貳、研究方法 13 一、研究物種 13 二、研究地點及繫放採樣 15 三、DNA樣本萃取 16 四、性別鑑定 18 五、親緣關係、物種界定及親緣地理結構分析 19 六、遺傳多樣性、族群分化及人口學分析 21 七、分化時間估算 22 八、形質與體色分析 22 九、鳴叫與歌曲聲學分析 24 十、研究倫理聲明 24 參、結果 25 一、分子親緣分析 25 二、族群遺傳距離與中性理論檢驗 27 三、網狀親緣結構分析及親緣地理訊息 28 四、分化時間估算 30 五、形質與體色分析 31 六、鳴叫與歌曲聲學分析 34 肆、討論 36 一、親緣關係及物種界定 36 二、分化時間估算 37 三、形質測量、體色及聲學特徵 39 四、現況與壓力 43 伍、結論 44 陸、引用文獻 45 圖 58 表 87 附錄 102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 綜合分類學 | zh_TW |
| dc.subject | 繡眼屬 | zh_TW |
| dc.subject | 粒線體基因 | zh_TW |
| dc.subject | 形質 | zh_TW |
| dc.subject | 物種界定 | zh_TW |
| dc.subject | 親緣關係 | zh_TW |
| dc.subject | Integrative taxonomy | en |
| dc.subject | Phylogeny | en |
| dc.subject | Species delimitation | en |
| dc.subject | Morphology | en |
| dc.subject | Mitochondrial DNA | en |
| dc.subject | Zosterops | en |
| dc.title | 以綜合分類學探究臺灣本島與東部三離島繡眼屬(Zosterops)之分類 | zh_TW |
| dc.title | Integrative Taxonomy of the White-eyes (Genus: Zosterops) in Taiwan and the Three East Outlying Islands Based on Multiple Lines of Evidence | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳韋仁 | zh_TW |
| dc.contributor.coadvisor | Wei-Jen Chen | en |
| dc.contributor.oralexamcommittee | 丁宗蘇;林思民;許育誠 | zh_TW |
| dc.contributor.oralexamcommittee | Tzung-Su Ding;Si-Min Lin;Yu-Cheng Hsu | en |
| dc.subject.keyword | 綜合分類學,親緣關係,物種界定,形質,粒線體基因,繡眼屬, | zh_TW |
| dc.subject.keyword | Integrative taxonomy,Phylogeny,Species delimitation,Morphology,Mitochondrial DNA,Zosterops, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202300401 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-02-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2025-02-20 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 9.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
