請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87615完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何孟樵 | zh_TW |
| dc.contributor.advisor | Meng-Chiao Ho | en |
| dc.contributor.author | 葉敏琪 | zh_TW |
| dc.contributor.author | Min-Chi Yeh | en |
| dc.date.accessioned | 2023-06-20T16:22:44Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-06-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-09 | - |
| dc.identifier.citation | 1. Nickoloff, J.A., N. Sharma, and L. Taylor, Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes, 2020. 11(1): p. 99.
2. Aplan, P.D., Causes of oncogenic chromosomal translocation. TRENDS in Genetics, 2006. 22(1): p. 46-55. 3. Roos, W.P. and B. Kaina, DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer letters, 2013. 332(2): p. 237-248. 4. Houtgraaf, J.H., J. Versmissen, and W.J. van der Giessen, A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovascular Revascularization Medicine, 2006. 7(3): p. 165-172. 5. Maynard, S., et al., Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 2009. 30(1): p. 2-10. 6. Sedelnikova, O.A., et al., Role of oxidatively induced DNA lesions in human pathogenesis. Mutation Research/Reviews in Mutation Research, 2010. 704(1-3): p. 152-159. 7. Rodriguez-Rocha, H., et al., DNA damage and autophagy. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2011. 711(1-2): p. 158-166. 8. Downs, J.A. and S.P. Jackson, A means to a DNA end: the many roles of Ku. Nature reviews Molecular cell biology, 2004. 5(5): p. 367-378. 9. Mimitou, E.P. and L.S. Symington, DNA end resection: many nucleases make light work. DNA repair, 2009. 8(9): p. 983-995. 10. Davis, A.J. and D.J. Chen, DNA double strand break repair via non-homologous end-joining. Translational cancer research, 2013. 2(3): p. 130. 11. Branzei, D. and M. Foiani, Regulation of DNA repair throughout the cell cycle. Nature reviews Molecular cell biology, 2008. 9(4): p. 297-308. 12. Suwaki, N., K. Klare, and M. Tarsounas. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. in Seminars in cell & developmental biology. 2011. Elsevier. 13. Chapman, J.R., M.R. Taylor, and S.J. Boulton, Playing the end game: DNA double-strand break repair pathway choice. Molecular cell, 2012. 47(4): p. 497-510. 14. van Gent, D.C., J.H. Hoeijmakers, and R. Kanaar, Chromosomal stability and the DNA double-stranded break connection. Nature Reviews Genetics, 2001. 2(3): p. 196-206. 15. Cejka, P., et al., DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Nature, 2010. 467(7311): p. 112-116. 16. Hamon, L., et al., High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein—DNA complexes. Nucleic acids research, 2007. 35(8): p. e58. 17. Bochkarev, A. and E. Bochkareva, From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Current opinion in structural biology, 2004. 14(1): p. 36-42. 18. Liu, J., et al., Presynaptic filament dynamics in homologous recombination and DNA repair. Critical reviews in biochemistry and molecular biology, 2011. 46(3): p. 240-270. 19. Solinger, J.A., et al., Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament. Journal of molecular biology, 2001. 307(5): p. 1207-1221. 20. Tavares, E.M., et al., In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nature communications, 2019. 10(1): p. 1-12. 21. Solinger, J.A. and W.-D. Heyer, Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proceedings of the National Academy of Sciences, 2001. 98(15): p. 8447-8453. 22. Sanchez, H., et al., Combined optical and topographic imaging reveals different arrangements of human RAD54 with presynaptic and postsynaptic RAD51–DNA filaments. Proceedings of the National Academy of Sciences, 2013. 110(28): p. 11385-11390. 23. Krogh, B.O. and L.S. Symington, Recombination proteins in yeast. Annual review of genetics, 2004. 38(1): p. 233-271. 24. San Filippo, J., P. Sung, and H. Klein, Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem., 2008. 77: p. 229-257. 25. Kowalczykowski, S.C., An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology, 2015. 7(11): p. a016410. 26. Seong, C., Regulation of the Rad51 recombinase in homologous recombination. 2009: Yale University. 27. Liu, Y. and S.C. West, Happy Hollidays: 40th anniversary of the Holliday junction. Nature Reviews Molecular Cell Biology, 2004. 5(11): p. 937-944. 28. Kowalczykowski, S.C., et al., Biochemistry of homologous recombination in Escherichia coli. Microbiological reviews, 1994. 58(3): p. 401-465. 29. Ortiz-Lombardía, M., et al., Crystal structure of a DNA Holliday junction. Nature structural biology, 1999. 6(10): p. 913-917. 30. Lilley, D.M., Structures of helical junctions in nucleic acids. Quarterly reviews of biophysics, 2000. 33(2): p. 109-159. 31. Fu, T.J. and N.C. Seeman, DNA double-crossover molecules. Biochemistry, 1993. 32(13): p. 3211-3220. 32. Allers, T. and M. Lichten, Differential Timing and Control of Noncrossover and Crossover Recombination during Meiosis. Cell, 2001. 106(1): p. 47-57. 33. Kirkpatrick, D.T. and T.D. Petes, Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature, 1997. 387(6636): p. 929-931. 34. Martini, E., et al., Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair–Deficient Yeast Cells Reveals Novel Properties of Meiotic Recombination Pathways. PLOS Genetics, 2011. 7(9): p. e1002305. 35. Stadler, D.R. and A.M. Towe, EVIDENCE FOR MEIOTIC RECOMBINATION IN ASCOBOLUS INVOLVING ONLY ONE MEMBER OF A TETRAD. Genetics, 1971. 68(3): p. 401-413. 36. Kitani, Y. and H.L.K. Whitehouse, Aberrant ascus genotypes from crosses involving mutants at the g locus in Sordaria fimicola. Genetical Research, 1974. 24(3): p. 229-250. 37. Fogel, S. and R.K. Mortimer, INFORMATIONAL TRANSFER IN MEIOTIC GENE CONVERSION*. Proceedings of the National Academy of Sciences, 1969. 62(1): p. 96-103. 38. Klar, A.J.S., S. Fogel, and K. Lusnak, GENE CONVERSION OF THE MATING-TYPE LOCUS IN SACCHAROMYCES CEREVISIAE. Genetics, 1979. 92(3): p. 777-782. 39. Meselson, M.S. and C.M. Radding, A general model for genetic recombination. Proceedings of the National Academy of Sciences, 1975. 72(1): p. 358-361. 40. Holliday, R., Genetic recombination: Thinking about it in phage and fungi. (0002-9297 (Print)). 41. Brunborg, G., M.A. Resnick, and D.H. Williamson, Cell-Cycle-Specific Repair of DNA Double-Strand Breaks in Saccharomyces cerevisiae. Radiation Research, 1980. 82(3): p. 547-558. 42. Chlebowicz, E. and W.J. Jachymczyk, Repair of MMS-induced DNA double-strand breaks in haploid cells of Saccharomyces cerevisiae, which requires the presence of a duplicate genome. Molecular and General Genetics MGG, 1979. 167: p. 279-286. 43. Resnick, M.A. and P. Martin, The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Molecular and General Genetics MGG, 1976. 143(2): p. 119-129. 44. Szostak, J.W., et al., The double-strand-break repair model for recombination. Cell, 1983. 33(1): p. 25-35. 45. Orr-Weaver, T.L., J.W. Szostak, and R.J. Rothstein, Yeast transformation: a model system for the study of recombination. Proceedings of the national Academy of Sciences, 1981. 78(10): p. 6354-6358. 46. Wright, W.D., S.S. Shah, and W.-D. Heyer, Homologous recombination and the repair of DNA double-strand breaks. Journal of Biological Chemistry, 2018. 293(27): p. 10524-10535. 47. Bhargava, R., D.O. Onyango, and J.M. Stark, Regulation of single-strand annealing and its role in genome maintenance. Trends in Genetics, 2016. 32(9): p. 566-575. 48. Resnick, M.A., The repair of double-strand breaks in DNA: a model involving recombination. Journal of Theoretical Biology, 1976. 59(1): p. 97-106. 49. Nassif, N., et al., Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Molecular and cellular biology, 1994. 14(3): p. 1613-1625. 50. Liu, S., et al., RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell, 2021. 184(5): p. 1314-1329. e10. 51. McMahill, M.S., C.W. Sham, and D.K. Bishop, Synthesis-dependent strand annealing in meiosis. PLoS biology, 2007. 5(11): p. e299. 52. Dupaigne, P., et al., The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Molecular cell, 2008. 29(2): p. 243-254. 53. Miura, T., et al., Homologous recombination via synthesis-dependent strand annealing in yeast requires the Irc20 and Srs2 DNA helicases. Genetics, 2012. 191(1): p. 65-78. 54. Formosa, T. and B.M. Alberts, DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell, 1986. 47(5): p. 793-806. 55. Maher, R.L., A.M. Branagan, and S.W. Morrical, Coordination of DNA replication and recombination activities in the maintenance of genome stability. Journal of cellular biochemistry, 2011. 112(10): p. 2672-2682. 56. Daley, J.M., et al., Focus: 50 years of DNA repair: the Yale symposium reports: investigations of homologous recombination pathways and their regulation. The Yale journal of biology and medicine, 2013. 86(4): p. 453. 57. Sung, P., et al., Rad51 recombinase and recombination mediators. Journal of Biological Chemistry, 2003. 278(44): p. 42729-42732. 58. Baumann, P. and S.C. West, Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends in biochemical sciences, 1998. 23(7): p. 247-251. 59. Bonilla, B., et al., RAD51 gene family structure and function. Annual review of genetics, 2020. 54: p. 25-46. 60. Pâques, F. and J.E. Haber, Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiology and molecular biology reviews, 1999. 63(2): p. 349-404. 61. Lewis, L.K., J.W. Westmoreland, and M.A. Resnick, Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics, 1999. 152(4): p. 1513-1529. 62. Aylon, Y. and M. Kupiec, DSB repair: the yeast paradigm. DNA repair, 2004. 3(8-9): p. 797-815. 63. Bell, C.E., Structure and mechanism of Escherichia coli RecA ATPase. Molecular microbiology, 2005. 58(2): p. 358-366. 64. Yu, X. and E.H. Egelman, The RecA hexamer is a structural homologue of ring helicases. Nature structural biology, 1997. 4(2): p. 101-104. 65. Compton, S.A., S. Özgür, and J.D. Griffith, Ring-shaped Rad51 paralog protein complexes bind Holliday junctions and replication forks as visualized by electron microscopy. Journal of Biological Chemistry, 2010. 285(18): p. 13349-13356. 66. Xing, X. and C.E. Bell, Crystal structures of Escherichia coli RecA in complex with MgADP and MnAMP− PNP. Biochemistry, 2004. 43(51): p. 16142-16152. 67. Flory, J., S.S. Tsang, and K. Muniyappa, Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA. Proceedings of the National Academy of Sciences, 1984. 81(22): p. 7026-7030. 68. Gaines, W.A., et al., Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nature communications, 2015. 6(1): p. 1-7. 69. Yang, H. and N.P. Pavletich, Insights into homology search from cryo-EM structures of RecA-DNA recombination intermediates. Current Opinion in Genetics & Development, 2021. 71: p. 188-194. 70. Chi, P., et al., Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA repair, 2006. 5(3): p. 381-391. 71. West, S.C., Molecular views of recombination proteins and their control. Nature reviews Molecular cell biology, 2003. 4(6): p. 435-445. 72. Bishop, D.K., et al., DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 1992. 69(3): p. 439-456. 73. Qi, Z., et al., DNA sequence alignment by microhomology sampling during homologous recombination. Cell, 2015. 160(5): p. 856-869. 74. Lee, J.Y., et al., Base triplet stepping by the Rad51/RecA family of recombinases. Science, 2015. 349(6251): p. 977-981. 75. Hinch, A.G., et al., The configuration of RPA, RAD51, and DMC1 binding in meiosis reveals the nature of critical recombination intermediates. Molecular cell, 2020. 79(4): p. 689-701. e10. 76. Miné-Hattab, J. and R. Rothstein, Increased chromosome mobility facilitates homology search during recombination. Nature cell biology, 2012. 14(5): p. 510-517. 77. Dion, V., et al., Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature cell biology, 2012. 14(5): p. 502-509. 78. Sun, Z., et al., Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science, 1998. 281(5374): p. 272-274. 79. Gilbert, C.S., C.M. Green, and N.F. Lowndes, Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Molecular cell, 2001. 8(1): p. 129-136. 80. Schwartz, M.F., et al., Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Molecular cell, 2002. 9(5): p. 1055-1065. 81. Vialard, J.E., et al., The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. The EMBO journal, 1998. 17(19): p. 5679-5688. 82. Sweeney, F.D., et al., Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Current Biology, 2005. 15(15): p. 1364-1375. 83. Qi, W., et al., BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51. Journal of cell science, 2015. 128(2): p. 317-330. 84. Ma, C.J., et al., Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic acids research, 2017. 45(2): p. 749-761. 85. Ristic, D., et al., Human Rad51 filaments on double-and single-stranded DNA: correlating regular and irregular forms with recombination function. Nucleic acids research, 2005. 33(10): p. 3292-3302. 86. Holthausen, J.T., C. Wyman, and R. Kanaar, Regulation of DNA strand exchange in homologous recombination. DNA repair, 2010. 9(12): p. 1264-1272. 87. Sullivan, M.R. and K.A. Bernstein, RAD-ical new insights into RAD51 regulation. Genes, 2018. 9(12): p. 629. 88. Taylor, M.R., et al., A polar and nucleotide-dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling. Molecular cell, 2016. 64(5): p. 926-939. 89. Davies, O.R. and L. Pellegrini, Interaction with the BRCA2 C terminus protects RAD51–DNA filaments from disassembly by BRC repeats. Nature structural & molecular biology, 2007. 14(6): p. 475-483. 90. Davies, A.A., et al., Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Molecular cell, 2001. 7(2): p. 273-282. 91. Lord, C.J. and A. Ashworth, RAD51, BRCA2 and DNA repair: a partial resolution. Nature structural & molecular biology, 2007. 14(6): p. 461-462. 92. Benson, F.E., P. Baumann, and S.C. West, Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature, 1998. 391(6665): p. 401-404. 93. Gonzalez, R., et al., Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations. British journal of cancer, 1999. 81(3): p. 503-509. 94. McIlwraith, M.J., et al., Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. Journal of molecular biology, 2000. 304(2): p. 151-164. 95. Pellegrini, L., et al., Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature, 2002. 420(6913): p. 287-293. 96. Chen, P.-L., et al., The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proceedings of the National Academy of Sciences, 1998. 95(9): p. 5287-5292. 97. Esashi, F., et al., Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nature structural & molecular biology, 2007. 14(6): p. 468-474. 98. Xia, B., et al., Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Molecular cell, 2006. 22(6): p. 719-729. 99. Robertson, R., Investigating the role of Rad51 in Homologous Recombination at the single molecule level. 2009: Columbia University. 100. Chen, H., M. Lisby, and L.S. Symington, RPA coordinates DNA end resection and prevents formation of DNA hairpins. Molecular cell, 2013. 50(4): p. 589-600. 101. Mimitou, E.P. and L.S. Symington, DNA end resection—unraveling the tail. DNA repair, 2011. 10(3): p. 344-348. 102. Zhao, F., et al., DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Experimental & Molecular Medicine, 2020. 52(10): p. 1705-1714. 103. Aihara, H., et al., The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. Journal of molecular biology, 1999. 290(2): p. 495-504. 104. Xu, J., et al., Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nature Structural & Molecular Biology, 2017. 24(1): p. 40-46. 105. Luo, S.-C., et al., Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nature Communications, 2021. 12(1): p. 115. 106. Chen, Z., H. Yang, and N.P. Pavletich, Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature, 2008. 453(7194): p. 489-494. 107. Sung, P., Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science, 1994. 265(5176): p. 1241-1243. 108. Morrison, C., et al., The essential functions of human Rad51 are independent of ATP hydrolysis. Molecular and cellular biology, 1999. 19(10): p. 6891-6897. 109. Forget, A.L. and S.C. Kowalczykowski, Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends in cell biology, 2010. 20(5): p. 269-276. 110. Hilario, J., et al., Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proceedings of the National Academy of Sciences, 2009. 106(2): p. 361-368. 111. van Mameren, J., et al., Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature, 2009. 457(7230): p. 745-748. 112. Robertson, R.B., et al., Structural transitions within human Rad51 nucleoprotein filaments. Proceedings of the National Academy of Sciences, 2009. 106(31): p. 12688-12693. 113. Veaute, X., et al., The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature, 2003. 423(6937): p. 309-312. 114. Krejci, L., et al., DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature, 2003. 423(6937): p. 305-309. 115. Croteau, D.L., et al., Human RecQ helicases in DNA repair, recombination, and replication. Annual review of biochemistry, 2014. 83: p. 519-552. 116. Su, G.-C., et al., Enhancement of ADP release from the RAD51 presynaptic filament by the SWI5-SFR1 complex. Nucleic acids research, 2014. 42(1): p. 349-358. 117. Conway, A.B., et al., Crystal structure of a Rad51 filament. Nature structural & molecular biology, 2004. 11(8): p. 791-796. 118. Egelman, E.H. and A. Stasiak, Structure of helical RecA-DNA complexes: Complexes formed in the presence of ATP-gamma-S or ATP. Journal of molecular biology, 1986. 191(4): p. 677-697. 119. Story, R.M., I.T. Weber, and T.A. Steitz, The structure of the E. coli recA protein monomer and polymer. Nature, 1992. 355(6358): p. 318-325. 120. Yang, H., et al., Mechanism of strand exchange from RecA–DNA synaptic and D-loop structures. Nature, 2020. 586(7831): p. 801-806. 121. Yu, X., et al., Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proceedings of the National Academy of Sciences, 2001. 98(15): p. 8419-8424. 122. Story, R.M. and T.A. Steitz, Structure of the recA protein–ADP complex. Nature, 1992. 355(6358): p. 374-376. 123. Špírek, M., et al., Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic acids research, 2018. 46(8): p. 3967-3980. 124. Balakrishnan, K., et al., Human Rad51 mediated DNA unwinding is facilitated by conditions that favour Rad51-dsDNA aggregation. BMC biochemistry, 2009. 10(1): p. 1-15. 125. Xu, J., et al., Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination. Nucleic acids research, 2021. 49(22): p. 13135-13149. 126. Punjani, A., et al., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature methods, 2017. 14(3): p. 290-296. 127. Fornander, L.H., et al., Ca 2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination. Nucleic acids research, 2012. 40(11): p. 4904-4913. 128. Van Der Heijden, T., et al., Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules. Nucleic acids research, 2007. 35(17): p. 5646-5657. 129. Chung, S.-C., et al., Pre-pro is a fast pre-processor for single-particle cryo-EM by enhancing 2D classification. Communications biology, 2020. 3(1): p. 1-12. 130. Bugreev, D.V. and A.V. Mazin, Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proceedings of the National Academy of Sciences, 2004. 101(27): p. 9988-9993. 131. Miné, J., et al., Real-time measurements of the nucleation, growth and dissociation of single Rad51–DNA nucleoprotein filaments. Nucleic acids research, 2007. 35(21): p. 7171-7187. 132. Špírek, M., et al., Nucleotide proofreading functions by nematode RAD51 paralogs facilitate optimal RAD51 filament function. Nature communications, 2021. 12(1): p. 1-12. 133. Tombline, G., K.-S. Shim, and R. Fishel, Biochemical Characterization of the Human RAD51 Protein: II. Adenosine Nucleotide Binding and Competition. Journal of Biological Chemistry, 2002. 277(17): p. 14426-14433. 134. Belan, O., et al., Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Molecular cell, 2021. 81(5): p. 1058-1073. e7. 135. Shinohara, M., et al., Tid1/Rdh54 promotes colocalization of Rad51 and Dmc1 during meiotic recombination. Proceedings of the National Academy of Sciences, 2000. 97(20): p. 10814-10819. 136. Antony, E., et al., Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Molecular cell, 2009. 35(1): p. 105-115. 137. Bugreev, D.V., et al., HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nature communications, 2014. 5(1): p. 1-10. 138. Kang, H.-A., et al., Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic acids research, 2015. 43(7): p. 3841-3856. 139. Chi, P., et al., Bipartite stimulatory action of the Hop2–Mnd1 complex on the Rad51 recombinase. Genes & development, 2007. 21(14): p. 1747-1757. 140. Grundy, M.K., R.J. Buckanovich, and K.A. Bernstein, Regulation and pharmacological targeting of RAD51 in cancer. NAR cancer, 2020. 2(3): p. zcaa024. 141. Laurini, E., et al., Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacology & therapeutics, 2020. 208: p. 107492. 142. Pires, E., P. Sung, and C. Wiese, Role of RAD51AP1 in homologous recombination DNA repair and carcinogenesis. DNA repair, 2017. 59: p. 76-81. 143. Raderschall, E., et al., Elevated levels of Rad51 recombination protein in tumor cells. Cancer research, 2002. 62(1): p. 219-225. 144. Shkundina, I.S., et al., New RAD51 inhibitors to target homologous recombination in human cells. Genes, 2021. 12(6): p. 920. 145. Huang, F. and A.V. Mazin, A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts. PloS one, 2014. 9(6): p. e100993. 146. Afonine, P.V., et al., Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallographica Section D: Structural Biology, 2018. 74(6): p. 531-544. 147. Pettersen, E.F., et al., UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 2004. 25(13): p. 1605-1612. 148. Khatter, H., et al., Structure of the human 80S ribosome. Nature, 2015. 520(7549): p. 640-645. 149. de la Cruz, J., K. Karbstein, and J.L. Woolford Jr, Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annual review of biochemistry, 2015. 84: p. 93. 150. Woolford Jr, J.L. and S.J. Baserga, Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics, 2013. 195(3): p. 643-681. 151. Pillet, B., et al., Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre‐ribosome incorporation. Bioessays, 2017. 39(1): p. 1-12. 152. Johnson, A.W., E. Lund, and J. Dahlberg, Nuclear export of ribosomal subunits. Trends in biochemical sciences, 2002. 27(11): p. 580-585. 153. Peña, C., E. Hurt, and V.G. Panse, Eukaryotic ribosome assembly, transport and quality control. Nature structural & molecular biology, 2017. 24(9): p. 689-699. 154. Jans, D.A. and S. Hubner, Regulation of protein transport to the nucleus: central role of phosphorylation. Physiological reviews, 1996. 76(3): p. 651-685. 155. Preissler, S. and E. Deuerling, Ribosome-associated chaperones as key players in proteostasis. Trends in biochemical sciences, 2012. 37(7): p. 274-283. 156. de la Cruz, J., et al., Feedback regulation of ribosome assembly. Current genetics, 2018. 64(2): p. 393-404. 157. Ting, Y.-H., et al., Bcp1 is the nuclear chaperone of Rpl23 in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2017. 292(2): p. 585-596. 158. Pillet, B., et al., The dedicated chaperone Acl4 escorts ribosomal protein Rpl4 to its nuclear pre-60S assembly site. PLoS genetics, 2015. 11(10): p. e1005565. 159. Mitterer, V., et al., Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. Scientific reports, 2016. 6(1): p. 1-11. 160. Ye, C., et al., BCCIP is required for nucleolar recruitment of eIF6 and 12S pre-rRNA production during 60S ribosome biogenesis. Nucleic acids research, 2020. 48(22): p. 12817-12832. 161. Wyler, E., et al., The beta-isoform of the BRCA2 and CDKN1A (p21)-interacting protein (BCCIP) stabilizes nuclear RPL23/uL14. FEBS letters, 2014. 588(20): p. 3685-3691. 162. Tenreiro, S. and T.F. Outeiro, Simple is good: yeast models of neurodegeneration. FEMS yeast research, 2010. 10(8): p. 970-979. 163. Mager, W.H. and J. Winderickx, Yeast as a model for medical and medicinal research. Trends in pharmacological sciences, 2005. 26(5): p. 265-273. 164. Botstein, D., S.A. Chervitz, and M. Cherry, Yeast as a model organism. Science, 1997. 277(5330): p. 1259-1260. 165. Piškur, J. and R.B. Langkjaer, Yeast genome sequencing: the power of comparative genomics. Molecular microbiology, 2004. 53(2): p. 381-389. 166. Goffeau, A., et al., Life with 6000 genes. Science, 1996. 274(5287): p. 546-567. 167. Gershon, H. and D. Gershon, The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mechanisms of ageing and development, 2000. 120(1-3): p. 1-22. 168. Matuo, R., et al., Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer chemotherapy and pharmacology, 2012. 70(4): p. 491-502. 169. Nijman, S.M., Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS letters, 2011. 585(1): p. 1-6. 170. Myasnikov, A.G., et al., Structure–function insights into prokaryotic and eukaryotic translation initiation. Current opinion in structural biology, 2009. 19(3): p. 300-309. 171. Blaha, G., R.E. Stanley, and T.A. Steitz, Formation of the first peptide bond: The structure of EF-P bound to the 70 S ribosome. science, 2009. 325(5943): p. 966-970. 172. Jenner, L.B., et al., X-Ray Analysis of Prokaryotic and Eukaryotic Ribosomes, in Biophysical approaches to translational control of gene expression, J.D. Dinman, Editor. 2013, Springer New York: New York, NY. p. 1-25. 173. Nakamoto, T., Evolution and the universality of the mechanism of initiation of protein synthesis. Gene, 2009. 432(1-2): p. 1-6. 174. Kozak, M., Initiation of translation in prokaryotes and eukaryotes. Gene, 1999. 234(2): p. 187-208. 175. Wilson, D.N. and J.H.D. Cate, The structure and function of the eukaryotic ribosome. Cold Spring Harbor perspectives in biology, 2012. 4(5): p. a011536. 176. Rabl, J., et al., Crystal structure of the eukaryotic 40 S ribosomal subunit in complex with initiation factor 1. Science, 2011. 331(6018): p. 730-736. 177. Klinge, S., et al., Crystal structure of the eukaryotic 60 S ribosomal subunit in complex with initiation factor 6. Science, 2011. 334(6058): p. 941-948. 178. Bosio, M.C., B. Fermi, and G. Dieci, Transcriptional control of yeast ribosome biogenesis: a multifaceted role for general regulatory factors. Transcription, 2017. 8(4): p. 254-260. 179. Robledo, S., et al., The role of human ribosomal proteins in the maturation of rRNA and ribosome production. Rna, 2008. 14(9): p. 1918-1929. 180. Sloan, K.E., et al., Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA biology, 2017. 14(9): p. 1138-1152. 181. Ohmayer, U., et al., Studies on the coordination of ribosomal protein assembly events involved in processing and stabilization of yeast early large ribosomal subunit precursors. PloS one, 2015. 10(12): p. e0143768. 182. Henras, A.K., et al., An overview of pre‐ribosomal RNA processing in eukaryotes. Wiley Interdisciplinary Reviews: RNA, 2015. 6(2): p. 225-242. 183. Fatica, A. and D. Tollervey, Making ribosomes. Current opinion in cell biology, 2002. 14(3): p. 313-318. 184. Paule, M.R. and R.J. White, Survey and summary transcription by RNA polymerases I and III. Nucleic acids research, 2000. 28(6): p. 1283-1298. 185. Boisvert, F.-M., et al., The multifunctional nucleolus. Nature reviews Molecular cell biology, 2007. 8(7): p. 574-585. 186. Hernandez‐Verdun, D., et al., The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdisciplinary Reviews: RNA, 2010. 1(3): p. 415-431. 187. Huang, S., Building an efficient factory: where is pre-rRNA synthesized in the nucleolus? The Journal of cell biology, 2002. 157(5): p. 739. 188. Tollervey, D., et al., Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell, 1993. 72(3): p. 443-457. 189. Weinstein, L.B. and J.A. Steitz, Guided tours: from precursor snoRNA to functional snoRNP. Current opinion in cell biology, 1999. 11(3): p. 378-384. 190. Zemp, I. and U. Kutay, Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS letters, 2007. 581(15): p. 2783-2793. 191. Eichler, D.C. and N. Craig, Processing of eukaryotic ribosomal RNA. Progress in nucleic acid research and molecular biology, 1994. 49: p. 197-239. 192. Ramesh, M. and J.L. Woolford, Eukaryote-specific rRNA expansion segments function in ribosome biogenesis. Rna, 2016. 22(8): p. 1153-1162. 193. Tomecki, R., P.J. Sikorski, and M. Zakrzewska‐Placzek, Comparison of preribosomal RNA processing pathways in yeast, plant and human cells–focus on coordinated action of endo‐and exoribonucleases. FEBS letters, 2017. 591(13): p. 1801-1850. 194. Chaker-Margot, M., et al., Architecture of the yeast small subunit processome. Science, 2017. 355(6321): p. eaal1880. 195. Phipps, K.R., J.M. Charette, and S.J. Baserga, The small subunit processome in ribosome biogenesis—progress and prospects. Wiley Interdisciplinary Reviews: RNA, 2011. 2(1): p. 1-21. 196. Larburu, N., et al., Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing. Nucleic Acids Research, 2016. 44(17): p. 8465-8478. 197. Johnson, M.C., et al., Structural heterogeneity in pre-40S ribosomes. Structure, 2017. 25(2): p. 329-340. 198. Strunk, B.S., et al., A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell, 2012. 150(1): p. 111-121. 199. Osheim, Y.N., et al., Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Molecular cell, 2004. 16(6): p. 943-954. 200. Choque, E., et al., Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway. Nucleic acids research, 2018. 46(9): p. 4699-4714. 201. Grandi, P., et al., 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Molecular cell, 2002. 10(1): p. 105-115. 202. Schäfer, T., et al., Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature, 2006. 441(7093): p. 651-655. 203. Wells, G.R., et al., The ribosome biogenesis factor yUtp23/hUTP23 coordinates key interactions in the yeast and human pre-40S particle and hUTP23 contains an essential PIN domain. Nucleic Acids Research, 2017. 45(8): p. 4796-4809. 204. Tschochner, H. and E. Hurt, Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends in cell biology, 2003. 13(5): p. 255-263. 205. Zisser, G., et al., Viewing pre-60S maturation at a minute’s timescale. Nucleic Acids Research, 2018. 46(6): p. 3140-3151. 206. Greber, B.J., Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-electron microscopy. Rna, 2016. 22(11): p. 1643-1662. 207. Nissan, T.A., et al., 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. The EMBO journal, 2002. 21(20): p. 5539-5547. 208. Saveanu, C., et al., Sequential protein association with nascent 60S ribosomal particles. Molecular and cellular biology, 2003. 23(13): p. 4449-4460. 209. Lebaron, S., et al., Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly. Molecular cell, 2013. 52(5): p. 707-719. 210. Pérébaskine, N., S. Thore, and S. Fribourg, Structural and interaction analysis of the Rrp5 C‐terminal region. FEBS Open bio, 2018. 8(10): p. 1605-1614. 211. Hierlmeier, T., et al., Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic acids research, 2013. 41(2): p. 1191-1210. 212. Dez, C., et al., Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Molecular and cellular biology, 2004. 24(14): p. 6324-6337. 213. Rosado, I.V. and J. de la Cruz, Npa1p is an essential trans-acting factor required for an early step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Rna, 2004. 10(7): p. 1073-1083. 214. Joret, C., et al., The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. PLoS genetics, 2018. 14(8): p. e1007597. 215. Talkish, J., et al., Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. Rna, 2016. 22(6): p. 852-866. 216. Hung, N.-J., et al., Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast. Molecular biology of the cell, 2008. 19(2): p. 735-744. 217. Beck, M. and E. Hurt, The nuclear pore complex: understanding its function through structural insight. Nature reviews Molecular cell biology, 2017. 18(2): p. 73-89. 218. Kabachinski, G. and T.U. Schwartz, The nuclear pore complex–structure and function at a glance. Journal of cell science, 2015. 128(3): p. 423-429. 219. Faza, M.B., et al., Role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. 2012. 220. West, M., et al., Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Molecular and cellular biology, 2005. 25(9): p. 3802-3813. 221. Malyutin, A.G., et al., Nmd3 is a structural mimic of eIF 5A, and activates the cp GTP ase Lsg1 during 60S ribosome biogenesis. The EMBO journal, 2017. 36(7): p. 854-868. 222. Bai, B., H.M. Moore, and M. Laiho, CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis. Nucleus, 2013. 4(4): p. 315-325. 223. Sengupta, J., et al., Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. Journal of Cell Biology, 2010. 189(7): p. 1079-1086. 224. D’Angelo, M.A. and M.W. Hetzer, Structure, dynamics and function of nuclear pore complexes. Trends in cell biology, 2008. 18(10): p. 456-466. 225. Görlich, D., et al., Identification of different roles for RanGDP and RanGTP in nuclear protein import. The EMBO journal, 1996. 15(20): p. 5584-5594. 226. Güttler, T. and D. Görlich, Ran‐dependent nuclear export mediators: a structural perspective. The EMBO journal, 2011. 30(17): p. 3457-3474. 227. Friedrich, B., et al., Nuclear localization signal and protein context both mediate importin α specificity of nuclear import substrates. Molecular and cellular biology, 2006. 26(23): p. 8697-8709. 228. Yasuhara, N., et al., Importin α/β-mediated nuclear protein import is regulated in a cell cycle-dependent manner. Experimental cell research, 2004. 297(1): p. 285-293. 229. Kalderon, D., et al., Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature, 1984. 311(5981): p. 33-38. 230. Koepp, D.M. and P.A. Silver, A GTPase controlling nuclear trafficking: running the right way or walking RANdomly? Cell, 1996. 87(1): p. 1-4. 231. Lange, A., et al., A PY-NLS nuclear targeting signal is required for nuclear localization and function of the Saccharomyces cerevisiae mRNA-binding protein Hrp1. Journal of Biological Chemistry, 2008. 283(19): p. 12926-12934. 232. Zachariae, U. and H. Grubmüller, Importin-β: structural and dynamic determinants of a molecular spring. Structure, 2008. 16(6): p. 906-915. 233. Watanabe, S., et al., GRWD1 regulates ribosomal protein L23 levels via the ubiquitin-proteasome system. Journal of cell science, 2018. 131(15): p. jcs213009. 234. Zhou, X., et al., Ribosomal proteins: functions beyond the ribosome. Journal of molecular cell biology, 2015. 7(2): p. 92-104. 235. Singh, S.A., et al., p53-Independent cell cycle and erythroid differentiation defects in murine embryonic stem cells haploinsufficient for Diamond Blackfan anemia-proteins: RPS19 versus RPL5. PloS one, 2014. 9(2): p. e89098. 236. Wu, L., et al., Over-expression of RPL23 in myelodysplastic syndromes is associated with apoptosis resistance of CD34+ cells and predicts poor prognosis and distinct response to CHG chemotherapy or decitabine. Annals of hematology, 2012. 91(10): p. 1547-1554. 237. Shirai, A., et al., Methylation of ribosomal protein L42 regulates ribosomal function and stress-adapted cell growth. Journal of Biological Chemistry, 2010. 285(29): p. 22448-22460. 238. Marygold, S.J., et al., The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome biology, 2007. 8(10): p. 1-26. 239. Jaako, P., et al., Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia. Blood, The Journal of the American Society of Hematology, 2011. 118(23): p. 6087-6096. 240. Shuda, M., et al., Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer research, 2000. 20(4): p. 2489-2494. 241. Ruggero, D. and P.P. Pandolfi, Does the ribosome translate cancer? Nature Reviews Cancer, 2003. 3(3): p. 179-192. 242. Guo, X., et al., Human ribosomal protein S13 promotes gastric cancer growth through down‐regulating p27Kip1. Journal of cellular and molecular medicine, 2011. 15(2): p. 296-306. 243. Shi, Y., et al., Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Experimental cell research, 2004. 296(2): p. 337-346. 244. Patchett, S., et al., The T-cell leukemia related rpl10-R98S mutant traps the 60S export adapter Nmd3 in the ribosomal P site in yeast. PLoS genetics, 2017. 13(7): p. e1006894. 245. Qi, Y., et al., Ribosomal protein L23 negatively regulates cellular apoptosis via the RPL23/Miz-1/c-Myc circuit in higher-risk myelodysplastic syndrome. Scientific reports, 2017. 7(1): p. 1-12. 246. Zhang, Y.-F., et al., Co-transduction of ribosomal protein L23 enhances the therapeutic efficacy of adenoviral-mediated p53 gene transfer in human gastric cancer. Oncology reports, 2013. 30(4): p. 1989-1995. 247. Meng, X., et al., RPL23 Links Oncogenic RAS Signaling to p53-Mediated Tumor SuppressionRPL23–MDM2–p53 Pathway Response to Oncogenic RAS. Cancer research, 2016. 76(17): p. 5030-5039. 248. Fumagalli, S., et al., Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes & development, 2012. 26(10): p. 1028-1040. 249. Lott, B.B., Y. Wang, and T. Nakazato, A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly. BMC biophysics, 2013. 6(1): p. 1-13. 250. De Graeve, S., et al., Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system. Biochemical Journal, 2013. 455(3): p. 295-306. 251. Ferretti, M.B., et al., Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. Nature structural & molecular biology, 2017. 24(9): p. 700-707. 252. Gripp, K.W., et al., Diamond–Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. American journal of medical genetics Part A, 2014. 164(9): p. 2240-2249. 253. Schütz, S., et al., Molecular basis for disassembly of an importin: ribosomal protein complex by the escortin Tsr2. Nature communications, 2018. 9(1): p. 1-14. 254. Eisinger, D.P., et al., SQT1, which encodes an essential WD domain protein of Saccharomyces cerevisiae, suppresses dominant-negative mutations of the ribosomal protein gene QSR1. Molecular and Cellular Biology, 1997. 17(9): p. 5146-5155. 255. Audhya, A. and S.D. Emr, Regulation of PI4, 5P2 synthesis by nuclear–cytoplasmic shuttling of the Mss4 lipid kinase. The EMBO journal, 2003. 22(16): p. 4223-4236. 256. Winter, D.L., G. Hart-Smith, and M.R. Wilkins, Characterization of protein methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 reveals extensive post-translational modification. Journal of molecular biology, 2018. 430(1): p. 102-118. 257. Webb, K.J., et al., Identification of two SET domain proteins required for methylation of lysine residues in yeast ribosomal protein Rpl42ab. Journal of Biological Chemistry, 2008. 283(51): p. 35561-35568. 258. Polevoda, B. and F. Sherman, Methylation of proteins involved in translation. Molecular microbiology, 2007. 65(3): p. 590-606. 259. Porras-Yakushi, T.R., J.P. Whitelegge, and S. Clarke, Yeast ribosomal/cytochrome c SET domain methyltransferase subfamily: identification of Rpl23ab methylation sites and recognition motifs. Journal of Biological Chemistry, 2007. 282(17): p. 12368-12376. 260. Davydova, E., Identification and characterization of novel evolutionarily conserved protein methyltransferases. 2015. 261. Wang, X., et al., 40S ribosomal protein S18 is a novel maternal peptidoglycan-binding protein that protects embryos of zebrafish from bacterial infections. Developmental & Comparative Immunology, 2021. 125: p. 104212. 262. Carlson, S.M., et al., Proteome-wide enrichment of proteins modified by lysine methylation. Nature protocols, 2014. 9(1): p. 37-50. 263. Zhang, L., et al., Elongation factor methyltransferase 3–a novel eukaryotic lysine methyltransferase. Biochemical and Biophysical Research Communications, 2014. 451(2): p. 229-234. 264. Couttas, T.A., et al., Methylation of translation‐associated proteins in S accharomyces cerevisiae: Identification of methylated lysines and their methyltransferases. Proteomics, 2012. 12(7): p. 960-972. 265. Evich, M., et al., Effect of methylation on the side‐chain pKa value of arginine. Protein science, 2016. 25(2): p. 479-486. 266. Larda, S.T., et al., Lysine methylation strategies for characterizing protein conformations by NMR. Journal of biomolecular NMR, 2012. 54(2): p. 199-209. 267. Kleckner, N., et al., A mechanical basis for chromosome function. Proceedings of the National Academy of Sciences, 2004. 101(34): p. 12592-12597. 268. Trievel, R.C., et al., Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell, 2002. 111(1): p. 91-103. 269. Porras-Yakushi, T.R., et al., A novel SET domain methyltransferase modifies ribosomal protein Rpl23ab in yeast. Journal of Biological Chemistry, 2005. 280(41): p. 34590-34598. 270. 呂庭郡, Bcp1 與 Rpl23 間交互作用之探討. 2015. 271. Aitchison, J.D. and M.P. Rout, The road to ribosomes: filling potholes in the export pathway. The Journal of cell biology, 2000. 151(5): p. F23-F26. 272. 謝境梃, Bcp1 和甲基轉移酶 Rkm1 協同調控核醣體蛋白 Rpl23 的穩定性. 2017. 273. Ma, C., et al., Structural snapshot of cytoplasmic pre-60S ribosomal particles bound by Nmd3, Lsg1, Tif6 and Reh1. Nature structural & molecular biology, 2017. 24(3): p. 214-220. 274. Chen, D. and S. Huang, Nucleolar Components Involved in Ribosome Biogenesis Cycle between the Nucleolus and Nucleoplasm in Interphase Cells. Journal of Cell Biology, 2001. 153(1): p. 169-176. 275. Tabb, D.L., J.K. Eng, and J.R. Yates, Protein identification by SEQUEST, in Proteome Research: Mass Spectrometry. 2001, Springer. p. 125-142. 276. Kahraman, A., et al., Cross-link guided molecular modeling with ROSETTA. PloS one, 2013. 8(9): p. e73411. 277. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589. 278. Hubbard, S. and J. Thornton, Naccess: Department of biochemistry and molecular biology, university college london. Software available at http://www. bioinf. manchester. ac. uk/naccess/nacdownload. html, 1993. 279. Schütz, S., et al., A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. Elife, 2014. 3: p. e03473. 280. Brina, D., et al., eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2015. 1849(7): p. 830-835. 281. Daub, H., et al., Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Molecular cell, 2008. 31(3): p. 438-448. 282. Biedka, S., et al., Insights into remodeling events during eukaryotic large ribosomal subunit assembly provided by high resolution cryo-EM structures. RNA biology, 2017. 14(10): p. 1306-1313. 283. Kornprobst, M., et al., Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell, 2016. 166(2): p. 380-393. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87615 | - |
| dc.description.abstract | 隨著冷凍電子顯微術的發展,許多過去無法利用X射線晶體學或核磁共振光譜學研究的蛋白質得以被解釋,也大大的提升了生物學家的視野。冷凍電子顯微術相較於其他研究蛋白質結構方法學有著四個優點。一,適用於分子量較大且複雜的蛋白聚合物;二,無需結晶;三,無需高濃度蛋白樣品;四,可看到動態變化。因此有越來越多的蛋白質結構藉由冷凍電子顯微術被解出,使其成為現今生物物理學界的主流。
在此篇論文中,我們藉由冷凍電子顯微術解開了兩種核蛋白的結構。其一為無活性的RAD51聚合物,在同源重組中扮演重要的角色。另一為Rpl23聚合物,而Rpl23為核糖體生合成中不可或缺的核糖體蛋白質。在研究RAD51的部分中,我們藉由冷凍電顯得到高解析度的ADP結合的RAD51聚合物,解釋了過去數十年中單分子實驗無法解釋的現象,也提出了當ATP水解時,RAD51聚合物的崩塌機制。而在研究Rpl23的部分中,我們藉由化學交叉鏈結、冷凍電顯和電腦模擬,揭開了Rpl23如何在核糖體生合成過程中被Bcp1和Rkm1保護。 | zh_TW |
| dc.description.abstract | With the development of Cryo-electron microscopy (Cryo-EM), more and more protein structures can be determined, which could not be resolved by X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy in the past, enhancing new insight into biophysical studies. Compared to the other structural determination methods, cryo-EM has four advantages: 1) appropriate for protein complex or marcoprotein, 2) no crystallization, 3) relatively low concentration of protein sample, and 4) the observation of protein dynamics. Hence, more and more structures of proteins or protein complexes can be determined via cryo-EM, leading it to a mainstream method in the biophysical field these days.
In this dissertation, I determined two nucleoprotein structures by cryo-EM. One is RAD51-nucleopfilament, the key player in homologous recombination, the other is Rpl23 protein complex, the essential ribosomal protein (r-protein) during ribosome biogenesis. In the RAD51 section, we determine the high resolution of ADP-bound RAD51 filament to explain the ambiguous phenomena observed in single molecular experiments for decades and propose the collapsing mechanism during ATP hydrolysis. In the Rpl23 section, we combined chemical-crosslinked, cryo-EM, and computational simulation to reveal how Rpl23 is protected by both Bcp1 and Rkm1 during ribosome biogenesis process. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:22:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-20T16:22:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Chapter 1. Cryo-EM study of the disassembly-competent RAD51-ADP filament unveils a unique two-stranded filament in RAD51 filament dynamics 1 A. 中文摘要 1 B. Abstract 2 C. List of appendixes 4 D. List of figures 5 E. Literature review 7 1. DNA double-strand break (DSB) 7 2. Homologous recombination (HR) 8 3. The initial model of homologous recombination 9 4. The original model of double-strand-break repair (DSBR) recombination 12 5. The synthesis-dependent strain annealing (SDSA) of homologous recombination 14 6. The function of recombinase in homologous recombination 15 7. The function, and activity of RAD51 recombinase 16 8. The regulator of RAD51 18 F. Research introduction 19 G. Results 22 1. Determination of hRAD51-ADP filament structure at 3.1 Å resolution by cryo-EM 22 2. Local conformation changes of the nucleotide-binding pocket result in extension of the hRAD51 filament 24 3. ADP state dislodges L1 and L2 loops from DNA triplet interaction 26 4. Structural transition between one-stranded ATP filament and two-stranded ADP filament monitored by ATP-chase and time-resolved CryoEM 27 5. The proposed collapsing mechanism for ATP-ADP structural transition 30 H. Materials and Methods 33 1. hRAD51 protein engineering, expression, and purification 33 2. Cryo-EM sample preparation and data collection 33 3. Image processing and helical reconstruction 34 4. Structural transition monitored by ATP chase and time-resolved Cryo-EM 35 I. Discussion 37 Chapter 2. Cryo-EM study of the protection mechanism of Bcp1/Rpl23/Rkm1 complex in ribosomal biogenesis 67 A. 中文摘要 67 B. Abstract 68 C. List of appendixes 69 D. List of figures 69 E. List of tables 70 F. Literature review 71 1. Saccharomyces cerevisiae 71 2. The complexity of ribosome and rRNA 72 3. Ribosome Biogenesis 73 4. The processing of precursor rRNA in eukaryotes 74 5. The maturation process of pre-40S subunit from 90S pre-ribosomal particles 75 6. The maturation process of pre-60S subunit from 90S pre-ribosomal particles. 76 7. Nuclear export of pre-ribosomal subunits 77 8. The transport of ribosomal protein by importin 78 9. The functions of r-proteins 79 10. The functions of ribosomal protein L23 (Rpl23) 80 11. The chaperone of ribosomal protein 81 12. The functions of yeast BRCA2 and CDKN1A interacting protein (Bcp1) 82 13. The function of Ribosomal lysine N-methyltransferase 1 (Rkm1) 83 G. Research introduction 84 H. Results 86 1. Bcp1 and Rkm1 coordinate the stability of Rpl23 86 2. The structure of Bcp1/Rpl23 binary complex cannot be determined 87 3. The structure of Bcp1, Rkm1, and Rpl23 ternary complex 88 I. Materials and Methods 90 1. Expression and purification of recombinant His-Bcp1, Rpl23, and His-Rkm1 protein 90 2. Cross-linking reactions of Bcp1/Rpl23/Rkm1 complex 91 3. Cryo-EM sample preparation and data collection 92 4. Image processing 92 5. Computational simulation 93 J. Discussions 94 Reference 116 | - |
| dc.language.iso | en | - |
| dc.subject | Rpl23 | zh_TW |
| dc.subject | 冷凍電子顯微技術 | zh_TW |
| dc.subject | RAD51 | zh_TW |
| dc.subject | 同源重組 | zh_TW |
| dc.subject | 核糖體生合成 | zh_TW |
| dc.subject | RAD51 | en |
| dc.subject | Cryo-EM | en |
| dc.subject | Ribosome biogensis | en |
| dc.subject | Rpl23 | en |
| dc.subject | Homologous recombination | en |
| dc.title | 藉由冷凍電顯技術研究核蛋白結構 | zh_TW |
| dc.title | Structural studies of nucleoproteins by Cryo-EM | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 蕭超隆;冀宏源;梁博煌;羅凱尹 | zh_TW |
| dc.contributor.oralexamcommittee | Chiao-Long Hsiao;Hung-Yuan Chi;Po-Huang Liang;Kai-Yin Lo | en |
| dc.subject.keyword | 冷凍電子顯微技術,RAD51,同源重組,Rpl23,核糖體生合成, | zh_TW |
| dc.subject.keyword | Cryo-EM,RAD51,Homologous recombination,Rpl23,Ribosome biogensis, | en |
| dc.relation.page | 136 | - |
| dc.identifier.doi | 10.6342/NTU202300298 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-09 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| dc.date.embargo-lift | 2028-02-01 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 21.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
