請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87610
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳穎練 | zh_TW |
dc.contributor.advisor | Ying-Lien Chen | en |
dc.contributor.author | 謝岳儒 | zh_TW |
dc.contributor.author | Yueh-Ju Hsieh | en |
dc.date.accessioned | 2023-06-20T16:21:07Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-10 | - |
dc.identifier.citation | Bennett, R.S., and Davis, R.M. (2013). Method for rapid production of Fusarium oxysporum f. sp. vasinfectum chlamydospores. J Cotton Science 17, 52-59.
Bruno, V.M., and Mitchell, A.P. (2005). Regulation of azole drug susceptibility by Candida albicans protein kinase CK2. Mol Microbiol 56(2), 559-573. doi: 10.1111/j.1365-2958.2005.04562.x. Bultynck, G., Heath, V.L., Majeed, A.P., Galan, J.M., Haguenauer-Tsapis, R., and Cyert, M.S. (2006). Slm1 and Slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol Cell Biol 26(12), 4729-4745. doi: 10.1128/mcb.01973-05. Cervantes-Chávez, J.A., Ali, S., and Bakkeren, G. (2011). Response to environmental stresses, cell-wall integrity, and virulence are orchestrated through the calcineurin pathway in Ustilago hordei. Mol Plant Microbe Interact 24(2), 219-232. doi: 10.1094/mpmi-09-10-0202. Chen, X., Liu, Y., Keyhani, N.O., Xia, Y., and Cao, Y. (2017). The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in Metarhizium acridum. Appl Microbiol Biotechnol 101(12), 5033-5043. doi: 10.1007/s00253-017-8290-9. Chen, Y.-L., Kozubowski, L., Cardenas, M.E., and Heitman, J. (2010). On the roles of calcineurin in fungal growth and pathogenesis. Current Fungal Infection Reports 4(4), 244-255. doi: 10.1007/s12281-010-0027-5. Chen, Y.L., Konieczka, J.H., Springer, D.J., Bowen, S.E., Zhang, J., Silao, F.G., et al. (2012). Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3 (Bethesda) 2(6), 675-691. doi: 10.1534/g3.112.002279. Choi, J., Kim, Y., Kim, S., Park, J., and Lee, Y.H. (2009a). MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol 46(3), 243-254. doi: 10.1016/j.fgb.2008.11.010. Choi, J.H., Kim, Y., and Lee, Y.H. (2009b). Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J Microbiol Biotechnol 19(1), 11-16. Chow, E.W., Clancey, S.A., Billmyre, R.B., Averette, A.F., Granek, J.A., Mieczkowski, P., et al. (2017). Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans. PLoS Genet 13(4), e1006667. doi: 10.1371/journal.pgen.1006667. Cowen, L.E., Carpenter, A.E., Matangkasombut, O., Fink, G.R., and Lindquist, S. (2006). Genetic architecture of Hsp90-dependent drug resistance. Eukaryot Cell 5(12), 2184-2188. doi: 10.1128/ec.00274-06. Cramer, R.A., Jr., Perfect, B.Z., Pinchai, N., Park, S., Perlin, D.S., Asfaw, Y.G., et al. (2008). Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot Cell 7(7), 1085-1097. doi: 10.1128/ec.00086-08. Creamer, T.P. (2020). Calcineurin. Cell Commun Signal 18(1), 137. doi: 10.1186/s12964-020-00636-4. Cunningham, K.W., and Fink, G.R. (1994). Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 124(3), 351-363. doi: 10.1083/jcb.124.3.351. Cyert, M.S. (2003). Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun 311(4), 1143-1150. doi: 10.1016/s0006-291x(03)01552-3. Cyert, M.S., and Thorner, J. (1992). Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol Cell Biol 12(8), 3460-3469. doi: 10.1128/mcb.12.8.3460-3469.1992. De Cal, A., Pascual, S., and Melgarejo, P. (1997). Infectivity of chlamydospores vs microconidia of Fusarium oxysporum f. sp. lycopersici on tomato. Journal of Phytopathology 145(5‐6), 231-233. Dickman, M.B., and Yarden, O. (1999). Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genet Biol 26(2), 99-117. doi: 10.1006/fgbi.1999.1118. Doke, N. (1983). Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological Plant Pathology 23(3), 345-357. doi: https://doi.org/10.1016/0048-4059(83)90019-X. Edlind, T., Smith, L., Henry, K., Katiyar, S., and Nickels, J. (2002). Antifungal activity in Saccharomyces cerevisiae is modulated by calcium signalling. Mol Microbiol 46(1), 257-268. doi: 10.1046/j.1365-2958.2002.03165.x. Egan, J.D., García-Pedrajas, M.D., Andrews, D.L., and Gold, S.E. (2009). Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis. Mol Plant Microbe Interact 22(10), 1293-1301. doi: 10.1094/mpmi-22-10-1293. Espeso, E.A. (2016). The CRaZy Calcium Cycle. Adv Exp Med Biol 892, 169-186. doi: 10.1007/978-3-319-25304-6_7. Farcasanu, I.C., Hirata, D., Tsuchiya, E., Nishiyama, F., and Miyakawa, T. (1995). Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cells. Eur J Biochem 232(3), 712-717. Fortwendel, J.R., Juvvadi, P.R., Perfect, B.Z., Rogg, L.E., Perfect, J.R., and Steinbach, W.J. (2010). Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob Agents Chemother 54(4), 1555-1563. doi: 10.1128/aac.00854-09. Ghosh, S., Kant, R., Pradhan, A., and Jha, G. (2021). RS_CRZ1, a C2H2-type transcription factor is required for pathogenesis of Rhizoctonia solani AG1-IA in tomato. Mol Plant Microbe Interact 34(1), 26-38. doi: 10.1094/mpmi-05-20-0121-r. Goldman, A., Roy, J., Bodenmiller, B., Wanka, S., Landry, C.R., Aebersold, R., et al. (2014). The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Mol Cell 55(3), 422-435. doi: 10.1016/j.molcel.2014.05.012. Gordon, T.R. (2017). Fusarium oxysporum and the Fusarium wilt syndrome. Annu Rev Phytopathol 55, 23-39. doi: 10.1146/annurev-phyto-080615-095919. Guerini, D. (1997). Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Commun 235(2), 271-275. doi: 10.1006/bbrc.1997.6802. Haigler, C.H., Brown, R.M., Jr., and Benziman, M. (1980). Calcofluor white ST Alters the in vivo assembly of cellulose microfibrils. Science 210(4472), 903-906. doi: 10.1126/science.7434003. Harel, A., Bercovich, S., and Yarden, O. (2006). Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Mol Plant Microbe Interact 19(6), 682-693. doi: 10.1094/mpmi-19-0682. Herrero, E., Ros, J., Bellí, G., and Cabiscol, E. (2008). Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780(11), 1217-1235. doi: 10.1016/j.bbagen.2007.12.004. Herth, W. (1980). Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol 87(2 Pt 1), 442-450. doi: 10.1083/jcb.87.2.442. Hou, Y.H., Hsu, L.H., Wang, H.F., Lai, Y.H., and Chen, Y.L. (2020). Calcineurin regulates conidiation, chlamydospore formation and virulence in Fusarium oxysporum f. sp. lycopersici. Front Microbiol 11, 539702. doi: 10.3389/fmicb.2020.539702. Juvvadi, P.R., Kuroki, Y., Arioka, M., Nakajima, H., and Kitamoto, K. (2003). Functional analysis of the calcineurin-encoding gene cnaA from Aspergillus oryzae: evidence for its putative role in stress adaptation. Arch Microbiol 179(6), 416-422. doi: 10.1007/s00203-003-0546-3. Juvvadi, P.R., Lamoth, F., and Steinbach, W.J. (2014a). Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev 28(2-3), 56-69. doi: 10.1016/j.fbr.2014.02.004. Juvvadi, P.R., Lamoth, F., and Steinbach, W.J. (2014b). Calcineurin-mediated regulation of hyphal growth, septation, and virulence in Aspergillus fumigatus. Mycopathologia 178(5-6), 341-348. doi: 10.1007/s11046-014-9794-9. Juvvadi, P.R., and Steinbach, W.J. (2015). Calcineurin orchestrates hyphal growth, septation, drug resistance and pathogenesis of Aspergillus fumigatus: Where do we go from here? Pathogens 4(4), 883-893. doi: 10.3390/pathogens4040883. Karababa, M., Valentino, E., Pardini, G., Coste, A.T., Bille, J., and Sanglard, D. (2006). CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59(5), 1429-1451. doi: 10.1111/j.1365-2958.2005.05037.x. Kavitha, S., and Chandra, T.S. (2014). Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii. Appl Biochem Biotechnol 174(6), 2307-2325. doi: 10.1007/s12010-014-1188-4. Kim, S., Hu, J., Oh, Y., Park, J., Choi, J., Lee, Y.H., et al. (2010). Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus. PLoS Pathog 6(5), e1000909. doi: 10.1371/journal.ppat.1000909. Kingsbury, T.J., and Cunningham, K.W. (2000). A conserved family of calcineurin regulators. Genes Dev 14(13), 1595-1604. Limón, M.C., Rodríguez-Ortiz, R., and Avalos, J. (2010). Bikaverin production and applications. Appl Microbiol Biotechnol 87(1), 21-29. doi: 10.1007/s00253-010-2551-1. Liu, S., Hou, Y., Liu, W., Lu, C., Wang, W., and Sun, S. (2015). Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryot Cell 14(4), 324-334. doi: 10.1128/ec.00271-14. Ma, L.-J., van der Does, H.C., Borkovich, K.A., Coleman, J.J., Daboussi, M.-J., Di Pietro, A., et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464(7287), 367-373. doi: 10.1038/nature08850. Maier, F.J., Malz, S., Lösch, A.P., Lacour, T., and Schäfer, W. (2005). Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker. FEMS Yeast Research 5(6-7), 653-662. doi: 10.1016/j.femsyr.2004.12.008. Masella, R., Di Benedetto, R., Varì, R., Filesi, C., and Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16(10), 577-586. doi: 10.1016/j.jnutbio.2005.05.013. Matheos, D.P., Kingsbury, T.J., Ahsan, U.S., and Cunningham, K.W. (1997). Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev 11(24), 3445-3458. doi: 10.1101/gad.11.24.3445. Maurya, S., Dubey, S., Kumari, R., and Verma, R. (2019). Management tactics for fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Mazur, P., Morin, N., Baginsky, W., el-Sherbeini, M., Clemas, J.A., Nielsen, J.B., et al. (1995). Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol 15(10), 5671-5681. doi: 10.1128/mcb.15.10.5671. Michielse, C.B., van Wijk, R., Reijnen, L., Cornelissen, B.J., and Rep, M. (2009). Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10(1), R4. doi: 10.1186/gb-2009-10-1-r4. Miyakawa, T., and Mizunuma, M. (2007). Physiological roles of calcineurin in Saccharomyces cerevisiae with special emphasis on its roles in G2/M cell-cycle regulation. Biosci Biotechnol Biochem 71(3), 633-645. doi: 10.1271/bbb.60495. Moradi, S., Sanjarian, F., Safaie, N., Mousavi, A., and Bakhshi Khaniki, G. (2013). A modified method for transformation of Fusarium graminearum. Journal of Crop Protection 2, 297-304. Nakamura, T., Liu, Y., Hirata, D., Namba, H., Harada, S., Hirokawa, T., et al. (1993). Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. Embo j 12(11), 4063-4071. doi: 10.1002/j.1460-2075.1993.tb06090.x. Onyewu, C., Wormley, F.L., Jr., Perfect, J.R., and Heitman, J. (2004). The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 72(12), 7330-7333. doi: 10.1128/iai.72.12.7330-7333.2004. Park, H.S., Lee, S.C., Cardenas, M.E., and Heitman, J. (2019). Calcium-calmodulin-calcineurin signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host Microbe 26(4), 453-462. doi: 10.1016/j.chom.2019.08.004. Peng, X., Wu, B., Zhang, S., Li, M., and Jiang, X. (2021). Transcriptome dynamics underlying chlamydospore formation in Trichoderma virens GV29-8. Front Microbiol 12, 654855. doi: 10.3389/fmicb.2021.654855. Prokisch, H., Yarden, O., Dieminger, M., Tropschug, M., and Barthelmess, I.B. (1997). Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of the apical Ca2+ gradient. Mol Gen Genet 256(2), 104-114. doi: 10.1007/s004380050551. Punt, P.J., Oliver, R.P., Dingemanse, M.A., Pouwels, P.H., and van den Hondel, C.A. (1987). Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56(1), 117-124. doi: 10.1016/0378-1119(87)90164-8. Qi, X., Guo, L., Yang, L., and Huang, J. (2013). Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiological and Molecular Plant Pathology 84, 76-85. doi: https://doi.org/10.1016/j.pmpp.2013.07.007. Qi, X., Liu, L., and Wang, J. (2019). Stress response regulator FoSkn7 participates in the pathogenicity of Fusarium oxysporum f. sp. cubense race 4 by conferring resistance to exogenous oxidative stress. Journal of General Plant Pathology 85(5), 382-394. doi: 10.1007/s10327-019-00858-6. Reedy, J.L., Filler, S.G., and Heitman, J. (2010). Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 47(2), 107-116. doi: 10.1016/j.fgb.2009.09.002. Rodríguez, A., Roy, J., Martínez-Martínez, S., López-Maderuelo, M.D., Niño-Moreno, P., Ortí, L., et al. (2009). A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants. Mol Cell 33(5), 616-626. doi: 10.1016/j.molcel.2009.01.030. Roy, J., and Cyert, M.S. (2009). Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal 2(100), re9. doi: 10.1126/scisignal.2100re9. Roy, J., Li, H., Hogan, P.G., and Cyert, M.S. (2007). A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function. Molecular cell 25(6), 889-901. Rusnak, F., and Mertz, P. (2000). Calcineurin: form and function. Physiol Rev 80(4), 1483-1521. doi: 10.1152/physrev.2000.80.4.1483. Santos, M., and de Larrinoa, I.F. (2005). Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr Genet 48(2), 88-100. doi: 10.1007/s00294-005-0003-8. Schumacher, J., de Larrinoa, I.F., and Tudzynski, B. (2008). Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7(4), 584-601. doi: 10.1128/ec.00426-07. Sheu, Z., and Wang, T. (2006). First report of Race 2 of Fusarium oxysporum f. sp. lycopersici, the causal agent of fusarium wilt on tomato in Taiwan. Plant disease 90(1), 111-111. Sinha, M., Shree, A., Singh, K., Kumar, K., Singh, S.K., Kumar, V., et al. (2021). Modulation of fungal virulence through CRZ1 regulated F-BAR-dependent actin remodeling and endocytosis in chickpea infecting phytopathogen Ascochyta rabiei. PLoS Genet 17(5), e1009137. doi: 10.1371/journal.pgen.1009137. Soriani, F.M., Malavazi, I., da Silva Ferreira, M.E., Savoldi, M., Von Zeska Kress, M.R., de Souza Goldman, M.H., et al. (2008). Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol 67(6), 1274-1291. doi: 10.1111/j.1365-2958.2008.06122.x. Srinivas, C., Nirmala Devi, D., Narasimha Murthy, K., Mohan, C.D., Lakshmeesha, T.R., Singh, B., et al. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity- A review. Saudi J Biol Sci 26(7), 1315-1324. doi: 10.1016/j.sjbs.2019.06.002. Stathopoulos, A.M., and Cyert, M.S. (1997). Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11(24), 3432-3444. doi: 10.1101/gad.11.24.3432. Stathopoulos-Gerontides, A., Guo, J.J., and Cyert, M.S. (1999). Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev 13(7), 798-803. doi: 10.1101/gad.13.7.798. Thewes, S. (2014). Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryot Cell 13(6), 694-705. doi: 10.1128/ec.00038-14. Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochem J 322 ( Pt 3)(Pt 3), 681-692. doi: 10.1042/bj3220681. Yoshimoto, H., Saltsman, K., Gasch, A.P., Li, H.X., Ogawa, N., Botstein, D., et al. (2002). Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277(34), 31079-31088. doi: 10.1074/jbc.M202718200. Zakrzewska, A., Boorsma, A., Brul, S., Hellingwerf, K.J., and Klis, F.M. (2005). Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell 4(4), 703-715. doi: 10.1128/ec.4.4.703-715.2005. Zhang, H., Zhao, Q., Liu, K., Zhang, Z., Wang, Y., and Zheng, X. (2009). MgCRZ1, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett 293(2), 160-169. doi: 10.1111/j.1574-6968.2009.01524.x. Zhang, J., Silao, F.G., Bigol, U.G., Bungay, A.A., Nicolas, M.G., Heitman, J., et al. (2012). Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae. PLoS One 7(8), e44192. doi: 10.1371/journal.pone.0044192. Zhang, T., Xu, Q., Sun, X., and Li, H. (2013a). The calcineurin-responsive transcription factor Crz1 is required for conidation, full virulence and DMI resistance in Penicillium digitatum. Microbiol Res 168(4), 211-222. doi: 10.1016/j.micres.2012.11.006. Zhang, T., Xu, Q., Sun, X., and Li, H. (2013b). The calcineurin-responsive transcription factor Crz1 is required for conidation, full virulence and DMI resistance in Penicillium digitatum. Microbiological Research 168(4), 211-222. doi: https://doi.org/10.1016/j.micres.2012.11.006. Zhang, X., Cao, S., Li, W., Sun, H., Deng, Y., Zhang, A., et al. (2020). Functional characterization of calcineurin-responsive transcription factors Fg01341 and Fg01350 in Fusarium graminearum. Front Microbiol 11, 597998. doi: 10.3389/fmicb.2020.597998. Zhao, C., Jung, U.S., Garrett-Engele, P., Roe, T., Cyert, M.S., and Levin, D.E. (1998). Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol 18(2), 1013-1022. doi: 10.1128/mcb.18.2.1013. Zhao, K., Liu, Z., Li, M., Hu, Y., Yang, L., Song, X., et al. (2022). Drafting Penicillium oxalicum calcineurin-CrzA pathway by combining the analysis of phenotype, transcriptome, and endogenous protein-protein interactions. Fungal Genet Biol 158, 103652. doi: 10.1016/j.fgb.2021.103652. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87610 | - |
dc.description.abstract | 番茄是世界上廣泛種植的蔬菜之一。番茄萎凋病乃由尖鐮孢菌Fusarium oxysporum f. sp. lycopersici引起,是重要的植物真菌性病害之一,可造成嚴重的經濟損失。番茄萎凋病通常發生在潮濕和高溫的夏季,常見的病徵為葉片黃化、維管束褐變及植株萎凋。Crz1 是一種鋅指轉錄因子,在許多真菌物種中為鈣調磷酸酶(calcineurin)的重要下游標靶。在鈣調磷酸酶迅號路徑中,鈣調磷酸酶將Crz1去磷酸化,使Crz1得以進入細胞核來調控下游基因,例如與真菌發育,細胞壁完整性和離子平衡有關的基因表達。在實驗室前人的研究中Hou et al. (2020),鈣調磷酸酶已被證實與番茄萎凋菌的菌絲生長、厚膜孢子生合成和毒力有關;然而,Crz1在番茄萎凋病菌中的功能尚未被闡述。透過胺基酸序列比對,找到了兩個可能為Crz1的同源基因FOXG_00040及FOXG_05246,並利用同源重組的技術獲得了兩者的突變株。前人研究顯示,Crz1會透過特定的motifs (PxIxIT、LxVP)與鈣調磷酸酶相互作用。此研究在FOXG_00040上發現PxIxIT及LxVP,而FOXG_05246則無。此外,在鈣離子的刺激下,FOXG_00040聚集於細胞核,而FOXG_05246則無,因此推測FOXG_00040為CRZ1同源基因,並命名為FolCRZ1。∆Folcrz1突變株對得克利呈現敏感性、但對 calcofluor white 則呈現抗性。∆FOXG_05246突變株於氧化壓力下較野生株生長稍微緩慢。盆栽試驗顯示∆FOXG_05246突變株的毒力明顯下降,然而∆Folcrz1突變株的毒力則與野生株相似。此外∆Folcrz1突變株在添加鈣離子的環境下比野生株有更高的耐受性。綜上所述,這些結果表明 FolCrz1 的功能可能迥異於其它真菌。 | zh_TW |
dc.description.abstract | Tomato is one of the widely grown vegetables worldwide. Tomato Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most important plant diseases in the world accompanied by severe economic loss. Generally, it occurs in summer when moisture and temperature are high. Infected plants show yellowing leaves, browning vascular tissues and wilting. Crz1, a downstream target of calcineurin in multiple fungi, is a zinc finger transcription factor. In calcium-calcineurin signaling pathway, calcineurin acts through the Crz1 to differentially regulate the expression of downstream targets, such as genes involved in fungal development, cell wall integrity and ion homeostasis. In our previous study, Hou et al. (2020) demonstrated that calcineurin is required for hyphal growth, chlamydospore formation and virulence in Fol. However, the functions of Crz1 in Fol have not yet been characterized. In this study, we identified two loci (FOXG_00040 and FOXG_05246) as potential orthologs of yeast Crz1. Studies have shown that Crz1 interacts with calcineurin through specific motifs (PxIxIT, LxVP) that are found in FOXG_00040 but not FOXG_05246. Furthermore, subcellular localization of FOXG_00040, but not FOXG_05246, was localized to the nucleus in response to calcium stimuli. Therefore, it is speculated that FOXG_00040 is the yeast CRZ1 ortholog and thereby named as FolCRZ1. ΔFolcrz1 mutant showed sensitivity to tebuconazole, but tolerance to calcofluor white as compared with the wild-type. ΔFOXG_05246 mutant showed sensitivity to oxidative stresses. Interestingly, pathogenicity assays revealed that the virulence of ΔFOXG_05246 mutant, but not ΔFolcrz1 mutant was attenuated as compared with the wild type. In addition, ΔFolcrz1 mutant showed tolerance to calcium stress. Taken together, these results demonstrated that the functions of FolCrz1 may be distinct from other fungi. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:21:07Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:21:07Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書……………………………………………………………………#
誌謝……………………………………………………………………………………II 中文摘要……………………………………………………………………………III Abstract………………………………………………………………………………IV 目錄……………………………………………………………………………………V 表目錄………………………………………………………………………………VII 圖目錄………………………………………………………………………………VIII 1. Introduction………………………………………………………………………1 2. Materials and Methods……………………………………………………………4 2.1 Fungal strain and culture condition…………………………………4 2.2 Strain construction……………………………………………………5 2.3 Construction of GFP fusion cassettes…………………………………7 2.4 Colony morphology observation………………………………………8 2.5 Fluorescent microscopy analysis……………………………………8 2.6 Chlamydospore formation……………………………………………9 2.7 Plant infection assay…………………………………………………10 3. Results…………………………………………………………………………10 3.1 Identification of Crz1 transcription factor in F. oxysporum f. sp. lycopersici……………………………………………………………10 3.2 FolCrz1 can translocate to nucleus under calcium stimulation………11 3.3 The radial growth of the ΔFolcrz1 mutant was similar to the wild type……………………………………………………………………11 3.4 ΔFolcrz1 mutant shows tolerance to calcium stress, but not to osmotic stress……………………………………………………………………12 3.5 ΔFolcrz1 mutant is tolerant to calcofluor white, while ΔFOXG_05246 mutant is sensitive to calcofluor white and SDS……………………12 3.6 FolCrz1 plays a role in tebuconazole tolerance, while ΔFolcrz1 and ΔFOXG_05246 mutants are sensitive to oxidative stress……………13 3.7 FolCrz1 and FOXG_05246 mediate chlamydospore production……………………………………………………………13 3.8 ΔFOXG_05246, but not ΔFolcrz1 mutant exhibited attenuated virulence in plant infection assay…………………………………………………14 4. Discussions………………………………………………………………………14 5. Future prospects…………………………………………………………………20 6. References………………………………………………………………………21 7. Tables……………………………………………………………………………29 8. Figures……………………………………………………………………………32 9. Supplementary data………………………………………………………………45 | - |
dc.language.iso | en | - |
dc.title | 番茄萎凋病菌鈣調磷酸酶之下游標靶 CRZ1基因功能之探討 | zh_TW |
dc.title | Functional characterization of calcineurin target CRZ1 in tomato Fusarium wilt fungus | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林乃君;鍾嘉綾 | zh_TW |
dc.contributor.oralexamcommittee | Nai-Chun Lin;Chia-Lin Chung | en |
dc.subject.keyword | 番茄萎凋病菌,鈣調磷酸酶,Crz1,轉錄因子,毒力, | zh_TW |
dc.subject.keyword | Fusarium oxysporum f. sp. lycopersici,calcineurin,Crz1,transcription factor,virulence, | en |
dc.relation.page | 47 | - |
dc.identifier.doi | 10.6342/NTU202300329 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-02-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 植物病理與微生物學系 | - |
dc.date.embargo-lift | 2026-02-15 | - |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 1.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。