Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87604
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡韶逸zh_TW
dc.contributor.advisorShao-Yi Chienen
dc.contributor.author孫名志zh_TW
dc.contributor.authorMing-Jhih Sunen
dc.date.accessioned2023-06-20T16:19:05Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2022-
dc.date.submitted2022-12-13-
dc.identifier.citationA. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105, 2012.
NTU IOX center project, “Intel-ntu connected context computing center,” 2018.
K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “Hybrid task cascade for instance segmentation,” in Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4969–4978.
D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network dissection: Quantifying interpretability of deep visual representations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
M. Long, Z. CAO, J. Wang, and P. S. Yu, “Learning multiple tasks with multilinear relationship networks,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/03e0704b5690a2dee1861dc3ad3316c9-Paper.pdf
S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard, “Sluice networks: Learning what to share between loosely related tasks,” ArXiv, vol. abs/1705.08142, 2017.
P.-C. Tsai, “Autonatic search algorithm for integrated neural network,” Master’s thesis, National Taiwan University, 2021.
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” ICLR, 2021.
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer: Federated learning of large cnns at the edge,” in Proceedings of the 34th International Conference on Neural Information Processing Systems, ser. NIPS’20. Red Hook, NY, USA: Curran Associates Inc., 2020.
T. Ucar, A. Gonz´alez-Mart´ın, M. Lee, and A. D. Szwarc, “One-shot learning for language modelling,” ArXiv, vol. abs/2007.09679, 2020.
C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining. ACM, 2006, pp. 535–541.
G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” ArXiv, vol. abs/1503.02531, 2015.
“Neural network distiller. knowledge distillation,” 2017. [Online]. Available: https://intellabs.github.io/distiller/knowledge distillation.html
Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 4793–4801.
C. Yang, L. Xie, S. Qiao, and A. L. Yuille, “Training deep neural networks in generations: A more tolerant teacher educates better students,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 5628–5635, Jul. 2019. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/4506
M. Phuong and C. Lampert, “Distillation-based training for multi-exit architectures,” in Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1355–1364.
R. Adriana, B. Nicolas, K. S. Ebrahimi, C. Antoine, G. Carlo, and B. Yoshua, “Fitnets: Hints for thin deep nets,” Proc. ICLR, vol. 2, 2015.
S. Zagoruyko and N. Komodakis, “Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer,” arXiv preprint arXiv:1612.03928, 2016.
J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast optimization, network minimization and transfer learning,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 7130–7138.
F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
H. Lee, S. J. Hwang, and J. Shin, “Self-supervised label augmentation via input transformations,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 5714–5724. [Online]. Available: https://proceedings.mlr.press/v119/lee20c.html
K. Kim, B. Ji, D. Yoon, and S. Hwang, “Self-knowledge distillation with progressive refinement of targets,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 6567–6576.
L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own teacher: Improve the performance of convolutional neural networks via self distillation,” in Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3712–3721.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944.
R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015.
A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose estimation,” in Proceedings of European Conference on Computer Vision (ECCV), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 483–499.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M.Wells, and A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp. 234–241.
M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Nas-fpn: Learning scalable feature pyramid architecture for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
X. Peng, Z. Huang, X. Sun, and K. Saenko, “Domain agnostic learning with disentangled representations,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 5102–5112. [Online]. Available: https://proceedings.mlr.press/v97/peng19b.html
A. Wu, Y. Han, L. Zhu, and Y. Yang, “Instance-invariant domain adaptive object detection via progressive disentanglement,” in Proceedings of IEEE Conference Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp. 4178–4193, 2022.
A. Wu and C. Deng, “Single-domain generalized object detection in urban scene via cyclic-disentangled self-distillation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 847–856.
M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Proceedings of European Conference on Computer Vision (ECCV), D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp. 818–833.
K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps,” in Workshop at International Conference on Learning Representations, 2014.
D. Smilkov, N. Thorat, F. V. Been Kim, and M. Wattenberg, “Smoothgrad: removing noise by adding noise,” arXiv preprint arXiv:1706.03825, 2017.
J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding neural networks through deep visualization,” arXiv preprint arXiv:1506.06579, 2015.
A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play generative networks: Conditional iterative generation of images in latent space,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3510–3520.
A.-r. Mohamed, G. Hinton, and G. Penn, “Understanding how deep belief networks perform acoustic modelling,” in Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 4273–4276.
A. Howard, A. Zhmoginov, L.-C. Chen, M. Sandler, and M. Zhu, “Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface: Singleshot multi-level face localisation in the wild,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained categorization,” in 2013 IEEE International Conference on Computer Vision Workshops, 2013, pp. 554–561.
S. Yang, P. Luo, C. C. Loy, and X. Tang, “Wider face: A face detection benchmark,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016. [Online]. Available: http://arxiv.org/abs/1602.07360
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 6105–6114. [Online]. Available: https://proceedings.mlr.press/v97/tan19a.html
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87604-
dc.description.abstract隨著深度學習與神經網路的快速發展,許多高效能但龐大的模型被廣泛運用。然而,談及終端設備的訓練及運用,由於他們需要巨量的運算量和儲存資源,這種樣式的模型顯得不切實際。因此,有了輕量化模型解決此類問題,但是這類模型在各種任務上效能的損失是無可避免的,尤其是在多任務學習這個領域。換句話說,對輕量化模型而言,單單只靠相同的特徵參數卻要同時兼顧兩、三個以上的任務非常具有難度。本論文研究了這塊領域,並在不損失效能且在受限的運算資源下,對於同一組特徵,提出了一個可行、實際又泛用的訓練方法。
進一步來說,首先,考慮到知識蒸餾的技術,論文中訓練了一連串的專家模型,這種專家模型只單獨對於某種任務特別專精,透過這些專家模型向目標模型去傳遞、教學有用的知識;其次,還考慮自蒸餾的技術,提升每個任務的效能;再者,透過這種自蒸餾的模組去做特徵融合,可以在不同任務及不同層之間分享有用的資訊,以提升目標模型的知識量。透過上述的訓練方法,目標模型在特定任務上的表現達到比原先專家模型更好,這意味著,所使用的知識交換模組確實能有效運用其他任務的特徵以利訓練。更棒的是,與原本的模型相比,論文中所提出的方法幾乎不會造成額外的運算成本及資源使用卻又能達到更好的表現。
zh_TW
dc.description.abstractWith the steep growth of the deep learning field and the neural networks, several strong but giant models are proposed. However, when it comes to edge training or inference on local or edge devices, it becomes a big issue to deploy them in the real world because of the large number of resources and computational cost. Hence, lightweight models solve the current problem, while some performance drops are inevitable, especially those on multi-task learning. That is, it’s challenging to complete two or three jobs so well for a lightweight model with the same set of features. In the thesis, we dig into the problem and propose a practical training methodology to make a better utility for the same features without the loss of performance and generosity on multi-task training under the limited usage of resources.
To be specific, first, we consider the method of knowledge distillation. We train several expert models proficient at only one task and apply them to individually teach a student model helpful knowledge in one particular field. Second, we use the method of self distillation in each task. Third, through self distillation modules, we fuse different features not only in the different layers but also in the different tasks together while training. Applying the training methodology, it turns out to be even more robust in some particular tasks, meaning that it does help and take advantage of the fusing features in another task. What is better is that we take almost the exact computational cost and the usage of the resources and get better performance compared with the original model.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:19:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:19:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract i
List of Figures iv
List of Tables vi
1 Introduction 1
1.1 Multi-task Learning 2
1.2 Challenge 3
1.3 Contribution 6
1.4 Thesis Organization 7
2 Related Work 8
2.1 Knowledge Distillation 8
2.1.1 Knowledge Distillation with the Teacher Model 8
2.1.2 Self-knowledge Distillation 12
2.2 Feature Fusion and Disentanglement 14
2.2.1 Feature Fusion 15
2.2.2 Feature Disentanglement 15
2.3 Explainable Artificial Intelligence 19
3 Proposed Method 22
3.1 Framework 22
3.2 Scheme of Connectors 24
3.3 Knowledge Distillation 25
3.4 Self Distillation 27
3.5 Feature Fusion through Self Distillation 31
3.6 Objective Functions and Summary 32
4 Experimental Results 35
4.1 Experimental Setup 35
4.2 Implementation Details 38
4.3 Effectiveness of the Proposed Method 39
4.3.1 Performance 39
4.3.2 Cost 41
4.3.3 Early Exit Gates 43
4.4 Comparison with Other Models 44
4.5 Minor Data Training 48
4.6 Ablation Study 49
5 Conclusion 51
Reference 52
-
dc.language.isoen-
dc.subject自蒸餾zh_TW
dc.subject深度學習zh_TW
dc.subject多任務學習zh_TW
dc.subject知識蒸餾zh_TW
dc.subject特徵融合zh_TW
dc.subjectmulti-task learningen
dc.subjectdeep learningen
dc.subjectfeature fusionen
dc.subjectself-distillationen
dc.subjectknowledge distillationen
dc.title基於知識交換之多任務學習訓練zh_TW
dc.titleAn Effective and Efficient Learning Method for Knowledge Exchanging on Multi-task Learningen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李育杰;曹昱;鮑興國zh_TW
dc.contributor.oralexamcommitteeYuh-Jye Lee;Yu Tsao;Hsing-Kuo Paoen
dc.subject.keyword深度學習,多任務學習,知識蒸餾,自蒸餾,特徵融合,zh_TW
dc.subject.keyworddeep learning,multi-task learning,knowledge distillation,self-distillation,feature fusion,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202210103-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-12-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2023-12-06-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf6.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved