請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | zh_TW |
| dc.contributor.advisor | Chih-Kung Lee | en |
| dc.contributor.author | 陳宣蓉 | zh_TW |
| dc.contributor.author | Hsuan-Jung Chen | en |
| dc.date.accessioned | 2023-06-20T16:17:42Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-06-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-16 | - |
| dc.identifier.citation | [1] Fact.MR, "Piezoelectric Motor Market worth US$ 93 million by 2030 ". [Online]. Available: https://www.globalbankingandfinance.com/piezoelectric-motor-market-worth-us-93-million-by-2030-exclusive-report-by-fact-mr/
[2] Techavio, "Electric Motor Sales Market by Application and Geography - Forecast and Analysis 2022-2026," Sep, 2022. [Online]. Available: https://www.technavio.com/report/electric-motor-sales-market-industry-analysis [3] Techavio, "Global Piezoelectric Actuators and Motors Market 2020-2024." [Online]. Available: https://www.prnewswire.com/news-releases/usd-7-61-bn-growth-in-piezoelectric-actuators-and-motors-market--driven-by-use-of-thinner-multilayer-actuators-in-smartphones--technavio-301525826.html [4] M. Alexander, "Converting electrical oscillations into mechanical movement," ed: Google Patents, 1931. [5] A. L. W. Williams and W. J. Brown, "Piezoelectric motor," ed: Google Patents, 1948. [6] T. Sashida, "Motor device utilizing ultrasonic oscillation," ed: Google Patents, 1985. [7] G. L. Smith, R. Q. Rudy, R. G. Polcawich, and D. L. DeVoe, "Integrated thin-film piezoelectric traveling wave ultrasonic motors," Sensors and Actuators A: Physical, vol. 188, pp. 305-311, 2012. [8] M. Kuribayashi, S. Ueha, and E. Mori, "Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor," The Journal of the Acoustical Society of America, vol. 77, no. 4, pp. 1431-1435, 1985. [9] Y. Liu, W. Chen, X. Yang, and J. Liu, "A rotary piezoelectric actuator using the third and fourth bending vibration modes," IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4366-4373, 2013. [10] H. Hariri, Y. Bernard, and A. Razek, "A traveling wave piezoelectric beam robot," Smart Materials and Structures, vol. 23, no. 2, p. 025013, 2013. [11] 吳昇勳, "單頻雙模態及雙頻雙模態行進波壓電聲波馬達之最佳化設計," 國立臺灣大學應用力學硏究所 碩士論文, 2017. [12] H. Hariri, Y. Bernard, and A. Razek, "2-D traveling wave driven piezoelectric plate robot for planar motion," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 242-251, 2018. [13] 林育民, "以雙頻雙模態激發之二維傳遞波產生器開發及在二維壓電馬達之應用," 國立臺灣大學工程科學及海洋工程學系暨研究所 碩士論文, 2019, pp. 15-23. [14] 蘇文群, "以希爾伯特轉換設計多頻多模態壓電線性馬達," 國立臺灣大學應用力學硏究所 碩士論文, 2020, pp. 38-45. [15] 林子勛, "以相位補償驅動雙頻雙模態行進波壓電聲波馬達之研究," 國立臺灣大學應用力學硏究所 碩士論文, 2021, pp. 55-59. [16] 潘忠岳, "以單頻雙模態驅動彎曲扭曲複合模態壓電馬達之研究," 國立臺灣大學工學院應用力學研究所 碩士論文, 2022, pp. 13-14. [17] 潘忠岳, "以單頻雙模態驅動彎曲扭曲複合模態壓電馬達之研究," 國立臺灣大學工學院應用力學研究所 碩士論文, 2022, pp. 10-11. [18] 陳存勗, "TiOPc 光壓電致動器線性音波馬達之開發," 國立臺灣大學應用力學研究所 碩士論文, 2016. [19] 朱宗祐, "雙頻雙模態壓電馬達之最佳化設計," 2018. [20] 林育民, "以雙頻雙模態激發之二維傳遞波產生器開發及在二維壓電馬達之應用," 國立臺灣大學工程科學及海洋工程學系暨研究所 碩士論文, 2019. [21] 蘇文群, "以希爾伯特轉換設計多頻多模態壓電線性馬達," 國立臺灣大學應用力學研究所 碩士論文, 2020. [22] 林子勛, "以相位補償驅動雙頻雙模態行進波壓電聲波馬達之研究," 國立臺灣大學應用力學硏究所 碩士論文, 2021. [23] 潘忠岳, "以單頻雙模態驅動彎曲扭曲複合模態壓電馬達之研究," 國立臺灣大學工學院應用力學研究所 碩士論文, 2022. [24] W. G. Hankel, "Uber die aktinound piezoelektrischen eigenschaften des bergkrystalles und ihre beziehung zu den thermoelektrischen," Abh. Sächs, vol. 12, no. s 457, 1881. [25] M. G. Lippmann, "On the principle of the conservation of electricity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 12, no. 73, pp. 151-154, 1881. [26] E. Fukada and I. Yasuda, "On the piezoelectric effect of bone," Journal of the physical society of Japan, vol. 12, no. 10, pp. 1158-1162, 1957. [27] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣資訊圖書股份有限公司,台北市, 1994. [28] 溫志偉, "以溶-凝膠法製備之層狀鋯鈦酸薄膜微結構分析及生物相容性評估," 國立高雄應用科技大學機械與精密工程研究所 碩士論文, 2005. [29] D. F. Nelson, "Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals," The Journal of the Acoustical Society of America, vol. 63, no. 6, pp. 1738-1748, 1978. [30] 陳存勗, "TiOPc 光壓電致動器線性音波馬達之開發," 國立臺灣大學應用力學研究所 碩士論文, 2016, pp. 12-31. [31] J. Yang, An introduction to the theory of piezoelectricity. Springer, 2005. [32] C.-K. Lee, "Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships," The Journal of the Acoustical Society of America, vol. 87, no. 3, pp. 1144-1158, 1990. [33] A. Warner, D. Berlincourt, A. Meitzler, H. Tiersten, G. Coquin, and I. Welsh, "IEEE standard on piezoelectricity," in "ANSI/IEEE Std," Technical report, The Institute of Electrical and Electronics Engineers, Inc, 1988. [34] K. F. Graff, Wave motion in elastic solids. Courier Corporation, 2012. [35] M. Feldman, "Hilbert transform in vibration analysis," Mechanical systems and signal processing, vol. 25, no. 3, pp. 735-802, 2011. [36] V. Malladi, D. Avirovik, S. Priya, and P. Tarazaga, "Characterization and representation of mechanical waves generated in piezo-electric augmented beams," Smart Materials and Structures, vol. 24, no. 10, p. 105026, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87600 | - |
| dc.description.abstract | 本研究旨在開發一使用單頻驅動二彎曲模態以疊加產生旋轉行進波之二維壓電馬達,不同於以往以雙彎曲模態疊加產生單一方向行進波於結構上,本研究透過空間與時間上之理論設計,產生反向行進波於結構x方向及y方向上,進而產生旋轉行進波。本研究設計四片12×20×0.2mm3壓電致動器於100×77×0.5 mm3一不鏽鋼薄板上,以單頻分別驅動其中兩片壓電片使所要激發之雙彎曲模態可以分開驅動,並進行雙彎曲模態之最佳化驅動參數設計,使雙彎曲模態疊加出菱形形狀之旋轉行進波,並於壓電馬達結構上方驅動載物旋轉,透過改變驅動訊號之電壓比及相位差,以達到精確控制載物之旋轉效果。本研究透過壓電片之間對稱位置黏貼於不鏽鋼薄板上,並設計夾具以於x方向模擬雙簡支端之邊界條件,並於y方向邊界產生雙自由端。在驅動方法上,將四片壓電片分成兩組做驅動,以分別激發雙彎曲模態之Ф34 與 Ф43模態陣型。本研究開發分析方法將菱形旋轉行進波切分成四段行進波,分別以希爾伯特轉換理論,及成本函數定量得到最佳化的驅動參數,以數值模擬分析在不同電壓比及相位差驅動下的四段行進波之效率及振幅一致性,再以有限元素模擬分析並驗證其可行性。最後本研究以實驗驗證所設計之壓電馬達旋轉行進波之驅動效率。當輸入2.757kHz作為單頻驅動頻率,輸入電壓16Vpp,相位差為73.35°,荷重為1.187g之載物,可達平均角速度為22.49deg/s之順時鐘旋轉,在改變相位差為253.85°,即可產生平均角速度為15.4deg/s的逆時針旋轉,當增加載物荷重為1.903g,其平均角速度降為7.39deg/s及6.18deg/s,當提高輸入電壓為24Vpp,其平均角速度即可提高到12.12deg/s,及15deg/s。本研究成功地在有限之二維結構上 開發以雙向行進波驅動旋轉功能之壓電馬達,並證明可以改變輸入訊號之電壓比及相位差來控制載物之旋轉方向及速度,達到控制載物旋轉之研究目標。 | zh_TW |
| dc.description.abstract | In this study, bi-directional traveling waves are generated to create a rotational piezoelectric motor. It is different from previously reported piezoelectric motors that only can generate linear traveling waves. The present rotational piezoelectric motor is constructed by four 12×20×0.2mm3piezoelectric actuators that attached symmetrically to the surface of a 100×77×0.5 mm3 stainless steel plate. The fixture are designed to simulate the boundary conditions of double simply-supported in the x-direction and double free ends in the y-direction. The 34-th and 43-th bending modes are stimulated to generate rotational traveling waves propagate on a rectangular plate. To analyze the vibration profile, an analytical solution is developed. The generated rotating traveling wave is separated into four segments, and the driving parameters are optimized using the Hilbert transformation and the cost function. The performance of the traveling waves is analyzed by numerical simulation and finite element analysis, and it is verified with experimental studies. The experimental results demonstrated that driving at 2.757kHz, 16Vpp, and 73.35° phase difference, a 1.187g object can be rotated at an average velocity of 22.49deg/s. Its direction can be changed using a phase difference of 253.85°,with an average angular velocity is 15.4deg/s. When the load is increased to 1.903g, the average angular velocity decreased to 7.39deg/s and 6.18deg/s. When the input voltage is increased to 24Vpp, the average angular velocity reached 12.12deg/s and 15deg/s. The experimental results demonstrate that by changing the voltage ratio and phase difference of the input signal, the rotating direction and velocity of the load can be controlled. These results demonstrated the feasibility of this piezoelectric rotational motor. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:17:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-20T16:17:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xv 第1章 緒論 1 1.1 壓電致動器與馬達之市場趨勢分析 1 1.2 壓電馬達介紹與文獻回顧 1 1.3 研究背景與動機 9 1.4 論文架構 11 第2章 壓電馬達結構設計 12 2.1 設計理念 12 2.2 壓電材料介紹 16 2.2.1 起源 16 2.2.2 壓電效應 16 2.2.3 壓電材料種類 17 2.3 研究架構 18 2.4 結構設計 18 2.4.1 材料選擇 18 2.4.2 壓電馬達結構 21 第3章 壓電理論推導 22 3.1 理論推導 22 3.1.1 壓電物性組成律方程式 22 3.1.2 壓電薄板物性方程式 25 3.1.3 有效表面電極 30 3.1.4 壓電馬達統御方程式推導 31 3.2 希爾伯特轉換(Hilbert Transform) 44 3.2.1 介紹與理論說明 44 3.2.2 最佳化分析與定量行進波效率 45 3.3 驅動設計 51 第4章 壓電馬達系統開發與製程 52 4.1 不鏽鋼薄板結構設計 52 4.2 壓電片位置設計與結構模態分析 53 4.3 雙簡支端夾具設計 56 4.4 不同壓電片位置之壓電馬達結構比較 58 第5章 數值模擬分析 59 5.1 數值模型之建立與參數設定 59 5.2 結構模態分析 60 5.3 以希爾伯特轉換分析行進波最佳驅動參數 61 5.3.1 驅動不同相位差之影響 63 5.3.2 驅動不同電壓比之影響 75 5.3.3 最佳化驅動參數之波峰軌跡 82 5.4 驅動不同壓電片位置之壓電馬達行進波分析與比較 85 第6章 有限元素模擬分析 91 6.1 有限元素模型之建立與參數設定 91 6.2 結構模態分析 93 6.3 驅動訊號相位補償分析 94 6.4 以希爾伯特轉換分析行進波最佳驅動參數 96 6.4.1 驅動不同相位差之模擬驗證 97 6.4.2 驅動不同電壓比之模擬驗證 108 6.4.3 最佳化驅動參數之波峰軌跡驗證 114 6.5 驅動不同壓電片位置之壓電馬達行進波分析與比較 117 第7章 實驗結果與討論 124 7.1 壓電馬達之共振頻量測與模態振型驗證 124 7.2 驅動訊號相位補償分析 128 7.3 最佳化驅動參數之實驗驗證 131 7.3.1 驅動不同相位差之實驗驗證 131 7.3.2 驅動不同電壓比之實驗驗證 143 7.3.1 最佳化驅動參數之波峰軌跡實驗驗證 149 7.4 不同壓電片位置之實驗驗證 157 7.5 載物驅動實驗 164 7.5.1 載物設計 164 7.5.2 不同載物尺寸影響 165 7.5.3 驅動載物於不同相位差之影響 167 7.5.4 驅動於最佳化參數之相位差容忍度 170 7.5.5 驅動不同載物荷重之影響 176 7.5.6 驅動載物於不同電壓之影響 179 第8章 結論與未來展望 184 8.1 結論 184 8.2 未來展望 185 REFERENCE 186 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單頻雙模態 | zh_TW |
| dc.subject | 希爾伯特轉換 | zh_TW |
| dc.subject | 旋轉行進波 | zh_TW |
| dc.subject | 旋轉壓電馬達 | zh_TW |
| dc.subject | Hilbert transform | en |
| dc.subject | One-Frequency Two-modes | en |
| dc.subject | piezoelectric rotary motor | en |
| dc.subject | rotational traveling wave | en |
| dc.title | 單頻雙彎曲模態驅動旋轉壓電馬達之分析與最佳化 | zh_TW |
| dc.title | Analysis and Optimization of Rotary Piezoelectric Motor driven by One-Frequency Two-Bending Modes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 許聿翔;吳光鐘 | zh_TW |
| dc.contributor.coadvisor | Yu-Hsiang Hsu ;Kuang-Chong Wu | en |
| dc.contributor.oralexamcommittee | 謝志文;柯文清 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Wen Hsieh;Wen-Ching Ko | en |
| dc.subject.keyword | 旋轉壓電馬達,旋轉行進波,單頻雙模態,希爾伯特轉換, | zh_TW |
| dc.subject.keyword | piezoelectric rotary motor,Hilbert transform,rotational traveling wave,One-Frequency Two-modes, | en |
| dc.relation.page | 188 | - |
| dc.identifier.doi | 10.6342/NTU202300487 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-02-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-02-20 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 22.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
