請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87599
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴文崧 | zh_TW |
dc.contributor.advisor | Wen-Sung Lai | en |
dc.contributor.author | 謝依眞 | zh_TW |
dc.contributor.author | Yi-Chen Hsieh | en |
dc.date.accessioned | 2023-06-20T16:17:21Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2022-12-22 | - |
dc.identifier.citation | Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus predictability reduces responses in primary visual cortex. Journal of Neuroscience, 30(8), 2960-2966.
Amiez, C., Joseph, J. P., & Procyk, E. (2005). Anterior cingulate error-related activity is modulated by predicted reward. European Journal of Neuroscience, 21(12), 3447-3452. Anderson, E. J., Dakin, S. C., & Rees, G. (2009). Monocular signals in human lateral geniculate nucleus reflect the Craik–Cornsweet–O'Brien effect. Journal of Vision, 9(12), 14-14. Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J., Oostenveld, R., Dowdall, J. R., Weerd, P. D., Kennedy, H., & Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390-401. https://doi.org/10.1016/j.neuron.2014.12.018 Boksem, M. A., & De Cremer, D. (2010). Fairness concerns predict medial frontal negativity amplitude in ultimatum bargaining. Social Neuroscience, 5(1), 118-128. Brascamp, J., Sterzer, P., Blake, R., & Knapen, T. (2018). Multistable Perception and the Role of the Frontoparietal Cortex in Perceptual Inference. Annual Review of Psychology, 69(1), 77-103. https://doi.org/10.1146/annurev-psych-010417-085944 Brydevall, M., Bennett, D., Murawski, C., & Bode, S. (2018). The neural encoding of information prediction errors during non-instrumental information seeking. Scientific Reports, 8(1), 6134. https://doi.org/10.1038/s41598-018-24566-x Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421. Coren, S. (2012). Sensation and perception. In D. K. Freedheim & I. B. Weiner (Eds.), Handbook of psychology (2nd ed.). John Wiley & Sons, Inc.. Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 52(2), 95-111. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. Deregowski, J. B., & Bentley A. M. (1987). Seeing the impossible and building the likely. British Journal of Psychology 78(1), 91-97. Donchin, E., Gratton, G., Dupree, D., & Coles, M. (1988). After a rash action: Latency and amplitude of the P300 following fast guesses. In G. C. Galbraith, M. L. Kietzman, & E. Donchin (Eds.), Neurophysiology and Psychophysiology: Experimental and Clinical Applications (pp. 173-188). Taylor and Francis. https://doi.org/10.4324/9781003164647-21 Du, R. & Lee, H. J. (2014). Power spectral performance analysis of EEG during emotional auditory experiment. In I. Staff, W. Wan, X. Yu, & F. L. Luo (Eds.), 2014 International Conference on Audio, Language and Image Processing (ICALIP) (pp. 64-68). IEEE. https://doi.org/10.1109/ICALIP.2014.7009758 Du, R., Lee, H. J., & Wei, R. (2017). Brain emotional oscillatory activity during the different affective picture and sound experience. In I. Staff (Ed.), 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1-6). IEEE. https://doi.org/10.1109/CISP-BMEI.2017.8302298 Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172-179. Fahrenfort, J. J., Grubert, A., Olivers, C. N. L., & Eimer, M. (2017). Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection. Scientific Reports, 7(1), 1-15. doi: 10.1038/s41598-017-01911-0 Falkenstein, M., Koshlykova. N. A., Kiroj, V. N., Hoormann, J., & Hohnsbein, J. (1995). Late ERP components in visual and auditory Go/Nogo tasks. Electroencephalography and Clinical Neurophysiology. 96(1), 36-43. Frassle, S., Sommer, J., Jansen, A., Naber, M., & Einhäuser, W. (2014). Binocular rivalry: Frontal activity relates to introspection and action but not to perception. Journal of Neuroscience, 34(5), 1738-1747. Friedman, D., & Cycowicz, Y. M. (2006). Repetition priming of possible and impossible objects from ERP and behavioral perspectives. Psychophysiology, 43(6), 569-578. https://doi.org/10.1111/j.1469-8986.2006.00466.x Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815-836. Friston, K. (2010). The free-energy principle: A unified brain theory?. Nature Reviews Neuroscience, 11(2), 127-138. Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1-3), 70-87. Friston, K. J., Harrison, L. M., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage. 19(4), 1273-1302. Freud, E., Ganel, T., & Avidan, G. (2015). Impossible expectations: fMRI adaptation in the lateral occipital complex (LOC) is modulated by the statistical regularities of 3D structural information. NeuroImage, 122, 188-194. https://doi.org/10.1016/j.neuroimage.2015.07.085 Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychologcial Science, 4(6), 385-390. Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468-484. Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS Technical Report, 14(1), 5-16. Hajcak, G., MacNamara, A., & Olvet, D. M. (2010). Event-related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35(2), 129-155. Kalfaoglu, C., Stafford, T., & Milne, E. (2017) Frontal theta band oscillations predict error correction and posterror slowing in typing. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 69. ISSN 0096-1523 https://doi.org/10.1037/xhp0000417 Keil, A., Bradley, M. A., Hauk, O., Rockstroh, B., Elbert, T., & Lang, P. J. (2002). Large-scale neural correlates of affective picture processing. Psychophysiology, 39(5), 641-649. King, J. R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: The temporal generalization method. Trends in Cognitive Sciences, 18(4), 203-210. https://doi.org/10.1016/j.tics.2014.01.002 Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: changing views in perception. Trends in Cognitive Sciences, 3(7), 254-264. Luck, S. J. (2014). An introduction to the event-related potential technique. Cambridge, MA: MIT Press. Luu, P., & Tucker, D. M. (2001). Regulating action: Alternating activation of midline frontal and motor cortical networks. Clinical Neurophysiology, 112(7), 1295-1306. Makeig, S. (1993). Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and Clinical Neurophysiology 86(4), 283-293. Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. In D. Touretzky, M. Mozer, M. Hasselmo (Eds.), Advances in neural information processing systems, 8, 145-151. Mars, R. B., Coles, M. G. H., Grol, M. J., Holroyd, C. B., Nieuwenhuis, S., Hulstijn, W., & Toni, I. (2005). Neural dynamics of error processing in medial frontal cortex. NeuroImage, 28(4), 1007-1013. Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788-798. Walsh, M. M., & Anderson, J. R. (2011). Modulation of the feedback-related negativity by instruction and experience. Proceedings of the National Academy of Sciences, 108(47), 19048-19053. Peirce, J., Gray, J.R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195-203. https://doi.org/10.3758/s13428-018-01193-y Peters, B. O., Pfurtscheller, G., & Flyvbjerg, H. (1998). Mining multi-channel EEG for its information content: An ANN-based method for a brain-computer interface. Neural Network, 11(7-8), 1429-1433. https://doi.org/10.1016/S0893-6080(98)00060-4 Picton, T.W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9(4), 456-479. Purves, D., Shimpi, A., & Lotto, R. B. (1999). An empirical explanation of the Cornsweet effect. Journal of Neuroscience, 19(19), 8542-8551. Rahnev, D., Nee, D. E., Riddle, J., Larson, A. S., & D’Esposito, M. (2016). Causal evidence for frontal cortex organization for perceptual decision making. Proceedings of the National Academy of Sciences, 113(21), 6059-6064. Savoie, F. A., Thénault, F., Whittingstall, K., & Bernier, P. M. (2018). Visuomotor prediction errors modulate EEG activity over parietal cortex. Scientific Reports, 8(1), 1-16. https://doi.org/10.1038/s41598-018-30609-0 Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. J. (2000). Affective picture processing: the late positive potential is modulated by motivational relevance. Psychophysiology, 37(2). 257-261. https://doi.org/10.1111/1469-8986.3720257 Shigemura, J., Yoshino, A., Kobayashi, Y., Takahashi, Y., & Nomura, S. (2004). Spatiotemporal differences between cognitive processes of spatially possible and impossible objects: A high-density electrical mapping study. Cognitive Brain Research, 18(3), 301-305. https://doi.org/10.1016/j.cogbrainres.2003.10.017 Stefanics, G., Kremlácek, J., & Czigler, I. (2014). Visual mismatch negativity: a predictive coding view. Front Human Neuroscience, 8, 666. https://doi.org/10.3389/fnhum.2014.00666 Sugihara, K. (2015). Ambiguous cylinders: A new class of impossible objects. Computer Aided Drafting, Design and Manufacturing 25(4), 19-25. Sugihara, K. (2016a). Anomalous mirror symmetry generated by optical illusion. Symmetry, 8(4), 21. Sugihara, K. (2016b). A new type of impossible objects that become partly invisible in a mirror. Japan Journal of Industrial and Applied Mathematics, 33(3), 525-535. Sugihara, K. (2018a). Topology-disturbing objects: a new class of 3D optical illusion. Journal of Mathematics and the Arts, 12(1), 2-18. Sugihara, K. (2018b). Evolution of Impossible Objects. In 9th International Conference on Fun with Algorithms (FUN 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. Sur, S., & Sinha, V. K. (2009). Event-related potential: An overview. Industrial Psychiatry Journal, 18(1), 70-73. https://doi.org/10.4103/0972-6748.57865 Symonds, R. M., Lee, W. W., Kohn, A., Schwartz, O., Witkowski, S., & Sussman, E. S. (2017). Distinguishing neural adaptation and predictive coding hypotheses in auditory change detection. Brain Topography, 30(1), 136-148. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational intelligence and neuroscience, 2011, 879716. https://doi.org/10.1155/2011/879716 van Driel, J., Swart, J., Egner, T., Ridderinkhof, K., & Cohen, M. (2015). (No) time for control: Frontal theta dynamics reveal the cost of temporally guided conflict anticipation. Cognitive, Affective, and Behavioral Neuroscience, 15(4), 787-807. https://doi.org/10.3758/s13415-015-0367-2 Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108(51), 20754-20759. Wu, X., Li, W., Zhang, M., & Qiu, J. (2012). The neural basis of impossible figures: Evidence from an fMRI study of the two-pronged trident. Neuroscience Letters, 508(1), 17-21. https://doi.org/10.1016/j.neulet.2011.11.064 Young, A., & Deregowski, J. (1981). Learning to see the impossible. Perception, 10(1), 91-105. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87599 | - |
dc.description.abstract | 人類借助經驗比對接收到的感覺訊息,以處理眼花撩亂的世界,大腦做出的預測可加速此過程,但這樣的預測可能出現錯誤—錯覺。以往針對視錯覺相關之研究,多是以二維刺激材料進行,幾乎沒有關於三維錯覺之研究。日本數學藝術家—杉原厚吉教授,將二維錯覺轉換為獨特的三維不可能物體,使更深入的研究得以進行。藉由杉原教授提供的三維不可能物體(這些物體在鏡子前後擁有截然不同的兩個形狀),本研究以空間性向測驗挑選出30個物體作為刺激材料,並將物體拍攝成一系列之刺激影片,建立「鏡像辨識作業」及「知覺推論作業」,搭配腦電波來同步量測及探討其創造之不可能物體形成的預測錯誤之知覺訊號,以及知覺推論歷程的神經活動。根據鏡像辨識作業,當非預期的鏡像呈現時,腦波事件關聯電位及事件關聯頻譜震盪分析皆顯示可能的預測錯誤之相關信號,並且有類似情緒反應之晚期正電位。同時透過多元模式分析,知覺推論不同物體時的腦神經動態可以被分辨,且物體的複雜程度亦可影響其效果,而透過事件關聯電位分析得以進一步確認相關腦波成分分布。本論文以探索性之研究,強調錯覺相關知覺歷程之神經動態,開啟往後進一步探討三維錯覺實證研究之路。 | zh_TW |
dc.description.abstract | We lean on matching sensory inputs with experiences to process the dazzling world. Our brain tends to make predictions to facilitate this processing; however, the brain could commit errors—illusions. In contrast to the various research on 2-dimensional (2D) optical illusory stimuli, there is hardly any empirical neural investigation of 3D authentic misrepresentation. Professor Kokichi Sugihara, a Japanese mathematician as well as artist, has turned the 2D illusions into 3D impossible objects, which allowed in-depth investigation into these intriguing perceptual field. Professor Kokichi Sugihara kindly provided the authentic 3D impossible objects whose appearance from the front view is incongruent with their reflection in the mirror. After conducting a spatial aptitude test to select 30 suitable 3D objects for this study, I created a set of video clips of authentic 3D impossible objects. Through the designed tasks: the peekaboo task and the perceptual inference task, I investigated the incongruent perceptions and the neural dynamics underlying the inference process of 3D illusion with the electroencephalogram (EEG). The result of the peekaboo task revealed significant differences between impossible objects and their counterparts in the time segment after the expected or unexpected sensory data inputs, which reflected the potential predictive error signals and also possible affective arousal. Applying multivariate pattern analysis (MVPA) to simultaneous EEG recordings, my result indicated that the impossible objects can be discriminated from the possible ones in the perceptual inference task, even between two configuration levels. With these exploratory results, this study highlights the neural dynamics underlying illusory-like perception and sheds the light on the sensory processing of these unique 3D impossible objects. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:17:21Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:17:21Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Exam Committee i
Acknowledgements ii Chinese Abstract iv English Abstract v Chapter 1. General Introduction 1 1.1. Illusory Perception 1 1.2. Turning Professor Kokichi Sugihara’s Unique Visual Arts into Experimental Stimuli to Study Perceptual Process 2 1.3. Sensory Prediction Error Signals 3 1.4. Perceptual Inference 5 1.5. Research Purposes 6 Chapter 2. Material and Methods 7 2.1. Participants 7 2.2. Stimuli 7 2.3. Experimental Procedure 7 2.4. EEG Acquisition and Data Analysis 10 2.5. Statistical Analyses 12 Chapter 3. Results 13 3.1. Peekaboo Task 13 3.2. Perceptual Inference Task. 15 Chapter 4. Discussion and Conclusion 19 4.1. Overlaid ERP Components and Distinct Oscillation Pattern in the Peekaboo Task 19 4.2. Successfully MVPA Decoding and the Role of the Frontal-Parietal Network in the Perceptual Inference Task 21 4.3. Limitation and Future Studies 23 References 25 Tables 33 Figures 35 Appendix A 43 Stimuli Selection 43 Participants 43 Task Design 43 Task Results 44 Configuration Complexity Level Reassigned 45 Figure A 47 Table A 51 Appendix B 61 Figure B 61 Table B 67 | - |
dc.language.iso | en | - |
dc.title | 從「不可能」到「可能」:探討三維不可能物體的知覺推論與神經活動 | zh_TW |
dc.title | From “Impossible” to “Possible”: Investigating Perceptual Inference and Neural Activity on 3D Impossible Objects | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭仕坤;曾祥非;謝伯讓;黃榮村 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Kuen Cheng;Philip Tseng;Po-Jang Hsieh;Jong-Tsun Huang | en |
dc.subject.keyword | 三維不可能物體,錯覺,預測錯誤,知覺推論,腦電波,事件關聯電位,事件關聯頻譜震盪,多元模式分析, | zh_TW |
dc.subject.keyword | 3D impossible object,illusion,prediction error,perceptual inference,electroencephalogram (EEG),event-related potential (ERP),event-related spectral perturbation (ERSP),multivariate pattern analysis (MVPA), | en |
dc.relation.page | 71 | - |
dc.identifier.doi | 10.6342/NTU202210143 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-12-26 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 心理學系 | - |
dc.date.embargo-lift | 2025-12-01 | - |
顯示於系所單位: | 心理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 此日期後於網路公開 2025-12-01 | 12.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。