請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87587
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂桐睿 | zh_TW |
dc.contributor.advisor | Todd L. Lowary | en |
dc.contributor.author | 蔡理安 | zh_TW |
dc.contributor.author | Li-An Tsai | en |
dc.date.accessioned | 2023-06-20T16:13:04Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-13 | - |
dc.identifier.citation | WHO. (2022). Global tuberculosis report 2022.
Baykan, A. H., Sayiner, H. S., Aydin, E., Koc, M., Inan, I., & Erturk, S. M. (2022). Extrapulmonary tuberculosıs: an old but resurgent problem. Insights into Imaging, 13(1). https://doi.org/10.1186/s13244-022-01172-0 Lerner, T. R., Borel, S., & Gutierrez, M. G. (2015). The innate immune response in human tuberculosis. Cell Microbiol, 17(9), 1277-1285. https://doi.org/10.1111/cmi.12480 Pai, M., Behr, M. A., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C. C., Ginsberg, A., Swaminathan, S., Spigelman, M., Getahun, H., Menzies, D., & Raviglione, M. (2016). Tuberculosis. Nature Reviews Disease Primers, 2(1), 16076. https://doi.org/10.1038/nrdp.2016.76 Ehlers, S., & Schaible, U. E. (2012). The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol, 3, 411. https://doi.org/10.3389/fimmu.2012.00411 Zhai, W., Wu, F., Zhang, Y., Fu, Y., & Liu, Z. (2019). The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci, 20(2). https://doi.org/10.3390/ijms20020340 Flynn, J. L., & Chan, J. (2001). Tuberculosis: latency and reactivation. Infect Immun, 69(7), 4195-4201. https://doi.org/10.1128/IAI.69.7.4195-4201.2001 Narasimhan, P., Wood, J., Macintyre, C. R., & Mathai, D. (2013). Risk factors for tuberculosis. Pulm Med, 2013, 828939. https://doi.org/10.1155/2013/828939 Huang, Y., Ai, L., Wang, X., Sun, Z., & Wang, F. (2022). Review and Updates on the Diagnosis of Tuberculosis. J Clin Med, 11(19). https://doi.org/10.3390/jcm11195826 Martínez-Martínez, Y. B., Martínez-Rodríguez, H. G., & Said-Fernández, S. L. (2018). Conventional and Molecular Diagnosis of Drug-Sensitive and Drug-Resistant Pulmonary Tuberculosis. In Mycobacterium - Research and Development. https://doi.org/10.5772/intechopen.75004 Russell, D. G. (2001). Mycobacterium tuberculosis: here today, and here tomorrow. Nature Reviews Molecular Cell Biology, 2(8), 569-578. https://doi.org/10.1038/35085034 Abrahams, K. A., & Besra, G. S. (2018). Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology, 145(2), 116-133. https://doi.org/10.1017/S0031182016002377 Cambier, C. J., Takaki, K. K., Larson, R. P., Hernandez, R. E., Tobin, D. M., Urdahl, K. B., Cosma, C. L., & Ramakrishnan, L. (2014). Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature, 505(7482), 218-222. https://doi.org/10.1038/nature12799 Vergne, I., Gilleron, M., & Nigou, J. (2014). Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol, 4, 187. https://doi.org/10.3389/fcimb.2014.00187 Gagneux, S. (2018). Ecology and evolution of Mycobacterium tuberculosis. Nature Reviews Microbiology, 16(4), 202-213. https://doi.org/10.1038/nrmicro.2018.8 Saelens, J. W., Viswanathan, G., & Tobin, D. M. (2019). Mycobacterial Evolution Intersects With Host Tolerance. Front Immunol, 10, 528. https://doi.org/10.3389/fimmu.2019.00528 Gill, C. M., Dolan, L., Piggott, L. M., & McLaughlin, A. M. (2022). New developments in tuberculosis diagnosis and treatment. Breathe, 18(1), 210149. https://doi.org/10.1183/20734735.0149-2021 Sariem, C. N., Odumosu, P., Dapar, M. P., Musa, J., Ibrahim, L., & Aguiyi, J. (2020). Tuberculosis treatment outcomes: a fifteen-year retrospective study in Jos-North and Mangu, Plateau State, North - Central Nigeria. BMC Public Health, 20(1). https://doi.org/10.1186/s12889-020-09289-x Poulton, N. C., & Rock, J. M. (2022). Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol, 12, 997283. https://doi.org/10.3389/fcimb.2022.997283 Twort, F. W. (2011). An investigation on the nature of ultra-microscopic viruses. Bacteriophage, 1(3), 127-129. https://doi.org/10.4161/bact.1.3.16737 D'Herelle, F. (2007). On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux. 1917. Res Microbiol, 158(7), 553-554. https://doi.org/10.1016/j.resmic.2007.07.005 Hatfull, G. F., Dedrick, R. M., & Schooley, R. T. (2022). Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu Rev Med, 73, 197-211. https://doi.org/10.1146/annurev-med-080219-122208 Comeau, A. M., Hatfull, G. F., Krisch, H. M., Lindell, D., Mann, N. H., & Prangishvili, D. (2008). Exploring the prokaryotic virosphere. Res Microbiol, 159(5), 306-313. https://doi.org/10.1016/j.resmic.2008.05.001 Ackermann, H. W. (2007). 5500 Phages examined in the electron microscope. Archives of Virology, 152(2), 227-243. https://doi.org/10.1007/s00705-006-0849-1 Rogovski, P., Cadamuro, R. D., da Silva, R., de Souza, E. B., Bonatto, C., Viancelli, A., Michelon, W., Elmahdy, E. M., Treichel, H., Rodriguez-Lazaro, D., & Fongaro, G. (2021). Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Front Microbiol, 12, 793135. https://doi.org/10.3389/fmicb.2021.793135 Nobrega, F. L., Vlot, M., de Jonge, P. A., Dreesens, L. L., Beaumont, H. J. E., Lavigne, R., Dutilh, B. E., & Brouns, S. J. J. (2018). Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol, 16(12), 760-773. https://doi.org/10.1038/s41579-018-0070-8 Campbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471-477. Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption. FEMS Microbiol Lett, 363(4). https://doi.org/10.1093/femsle/fnw002 Zampara, A., Sørensen, M. C. H., Grimon, D., Antenucci, F., Vitt, A. R., Bortolaia, V., Briers, Y., & Brøndsted, L. (2020). Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68983-3 Catalao, M. J., Gil, F., Moniz-Pereira, J., Sao-Jose, C., & Pimentel, M. (2013). Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev, 37(4), 554-571. https://doi.org/10.1111/1574-6976.12006 Cieslik, M., Baginska, N., Jonczyk-Matysiak, E., Wegrzyn, A., Wegrzyn, G., & Gorski, A. (2021). Temperate Bacteriophages-The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses, 13(6). https://doi.org/10.3390/v13061013 Salmond, G. P. C., & Fineran, P. C. (2015). A century of the phage: past, present and future. Nature Reviews Microbiology, 13(12), 777-786. https://doi.org/10.1038/nrmicro3564 Hatfull, G. F. (2020). Actinobacteriophages: Genomics, Dynamics, and Applications. Annual Review of Virology, 7(1), 37-61. https://doi.org/10.1146/annurev-virology-122019-070009 Hatfull, G. F. (2018). Mycobacteriophages. Microbiol Spectrum, 6(5). https://doi.org/10.1128/microbiolspec.GPP3-0026-2018 Russell, D. A., & Hatfull, G. F. (2017). PhagesDB: the actinobacteriophage database. Bioinformatics, 33(5), 784-786. https://doi.org/10.1093/bioinformatics/btw711 Hatfull, G. F., Jacobs-Sera, D., Lawrence, J. G., Pope, W. H., Russell, D. A., Ko, C. C., Weber, R. J., Patel, M. C., Germane, K. L., Edgar, R. H., Hoyte, N. N., Bowman, C. A., Tantoco, A. T., Paladin, E. C., Myers, M. S., Smith, A. L., Grace, M. S., Pham, T. T., O'Brien, M. B., . . . Hendrix, R. W. (2010). Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol, 397(1), 119-143. https://doi.org/10.1016/j.jmb.2010.01.011 Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66-85. https://doi.org/10.4161/bact.1.2.15845 Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K., Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A., . . . Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother, 61(10). https://doi.org/10.1128/AAC.00954-17 Chan, B. K., Turner, P. E., Kim, S., Mojibian, H. R., Elefteriades, J. A., & Narayan, D. (2018). Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health, 2018(1), 60-66. https://doi.org/10.1093/emph/eoy005 Dedrick, R. M., Guerrero-Bustamante, C. A., Garlena, R. A., Russell, D. A., Ford, K., Harris, K., Gilmour, K. C., Soothill, J., Jacobs-Sera, D., Schooley, R. T., Hatfull, G. F., & Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med, 25(5), 730-733. https://doi.org/10.1038/s41591-019-0437-z Nick, J. A., Dedrick, R. M., Gray, A. L., Vladar, E. K., Smith, B. E., Freeman, K. G., Malcolm, K. C., Epperson, L. E., Hasan, N. A., Hendrix, J., Callahan, K., Walton, K., Vestal, B., Wheeler, E., Rysavy, N. M., Poch, K., Caceres, S., Lovell, V. K., Hisert, K. B., . . . Davidson, R. M. (2022). Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 185(11), 1860-1874.e1812. https://doi.org/10.1016/j.cell.2022.04.024 Dedrick, R. M., Freeman, K. G., Nguyen, J. A., Bahadirli-Talbott, A., Smith, B. E., Wu, A. E., Ong, A. S., Lin, C. T., Ruppel, L. C., Parrish, N. M., Hatfull, G. F., & Cohen, K. A. (2021). Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nature Medicine, 27(8), 1357-1361. https://doi.org/10.1038/s41591-021-01403-9 Allue-Guardia, A., Saranathan, R., Chan, J., & Torrelles, J. B. (2021). Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci, 22(2). https://doi.org/10.3390/ijms22020735 Hall, A. R., De Vos, D., Friman, V. P., Pirnay, J. P., & Buckling, A. (2012). Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol, 78(16), 5646-5652. https://doi.org/10.1128/AEM.00757-12 Hussain, W., Ullah, M. W., Farooq, U., Aziz, A., & Wang, S. (2021). Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron, 177, 112973. https://doi.org/10.1016/j.bios.2021.112973 Meile, S., Kilcher, S., Loessner, M. J., & Dunne, M. (2020). Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses, 12(9). https://doi.org/10.3390/v12090944 T, J. A. S., J, R., Rajan, A., & Shankar, V. (2020). Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health, 13(9), 1255-1264. https://doi.org/10.1016/j.jiph.2020.06.023 Shiloh, M. U., & Champion, P. A. (2010). To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr Opin Microbiol, 13(1), 86-92. https://doi.org/10.1016/j.mib.2009.11.006 Acs, N., Gambino, M., & Brondsted, L. (2020). Bacteriophage Enumeration and Detection Methods. Front Microbiol, 11, 594868. https://doi.org/10.3389/fmicb.2020.594868 Singh, A. K., & Reyrat, J. M. (2009). Laboratory Maintenance of Mycobacterium smegmatis. Current Protocols in Microbiology, 14(1). https://doi.org/10.1002/9780471729259.mc10c01s14 Cresawn, S. G., Bogel, M., Day, N., Jacobs-Sera, D., Hendrix, R. W., & Hatfull, G. F. (2011). Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics, 12(1), 395. https://doi.org/10.1186/1471-2105-12-395 Delcher, A. L., Bratke, K. A., Powers, E. C., & Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 23(6), 673-679. https://doi.org/10.1093/bioinformatics/btm009 Borodovsky, M., & Lomsadze, A. (2011). Gene Identification in Prokaryotic Genomes, Phages, Metagenomes, and EST Sequences with GeneMarkS Suite. Current Protocols in Bioinformatics. https://doi.org/10.1002/0471250953.bi0405s35 Altschul SF, G. W., Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment search tool. J Mol Biol., 215(3), 403–410. Soding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res, 33(Web Server issue), W244-248. https://doi.org/10.1093/nar/gki408 Laslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res, 32(1), 11-16. https://doi.org/10.1093/nar/gkh152 Chan, P. P., & Lowe, T. M. (2019). tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. In (pp. 1-14). Springer New York. https://doi.org/10.1007/978-1-4939-9173-0_1 Lima-Junior, J. D., Viana-Niero, C., Conde Oliveira, D. V., Machado, G. E., Rabello, M. C., Martins-Junior, J., Martins, L. F., Digiampietri, L. A., da Silva, A. M., Setubal, J. C., Russell, D. A., Jacobs-Sera, D., Pope, W. H., Hatfull, G. F., & Leao, S. C. (2016). Characterization of mycobacteria and mycobacteriophages isolated from compost at the Sao Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U. BMC Microbiol, 16(1), 111. https://doi.org/10.1186/s12866-016-0734-3 Heisey, S., Ryals, R., Maaz, T. M., & Nguyen, N. H. (2022). A Single Application of Compost Can Leave Lasting Impacts on Soil Microbial Community Structure and Alter Cross-Domain Interaction Networks. Frontiers in Soil Science, 2. https://doi.org/10.3389/fsoil.2022.749212 Hatfull, G. F. (2018). Mycobacteriophages. Microbiol Spectr, 6(5). https://doi.org/10.1128/microbiolspec.GPP3-0026-2018 Shen, A., & Millard, A. (2021). Phage Genome Annotation: Where to Begin and End. Phage (New Rochelle), 2(4), 183-193. https://doi.org/10.1089/phage.2021.0015 Garneau, J. R., Depardieu, F., Fortier, L. C., Bikard, D., & Monot, M. (2017). PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep, 7(1), 8292. https://doi.org/10.1038/s41598-017-07910-5 Russell, D. A. (2018). Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes. In (pp. 109-125). Springer New York. https://doi.org/10.1007/978-1-4939-7343-9_9 Pope, W. H., & Jacobs-Sera, D. (2018). Annotation of Bacteriophage Genome Sequences Using DNA Master: An Overview. Methods Mol Biol, 1681, 217-229. https://doi.org/10.1007/978-1-4939-7343-9_16 Steven G Cresawn, M. B., Nathan Day, Deborah Jacobs-Sera, Roger W Hendrix & Graham F Hatfull (2011). Phamerator: a bioinformatic tool for comparative bacteriophage genomics.pdf. BMC Bioinformatics, 12, 395. https://doi.org/10.1186/1471-2105-12-395 Hatfull, G. F. (2010). Mycobacteriophages: genes and genomes. Annu Rev Microbiol, 64, 331-356. https://doi.org/10.1146/annurev.micro.112408.134233 Xu, J., Hendrix, R. W., & Duda, R. L. (2004). Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell, 16(1), 11-21. https://doi.org/10.1016/j.molcel.2004.09.006 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87587 | - |
dc.description.abstract | 結核病(Tuberculosis, TB)是由結核桿菌(Mycobacterium tuberculosis, M. tb)感染而造成的疾病。根據世界衛生組織的統計,大約四分之一的世界人口感染結核桿菌。雖然結核病為可治癒的疾病,但是抗藥性菌株的出現讓治療變得困難。因此,尋找替代的治療方法十分重要。其中噬菌體療法(Bacteriophage therapy)是具有潛力的方法之一,它利用分枝桿菌噬菌體(Mycobacteriophage)感染細菌達到治療抗藥性菌株感染的目的。分枝桿菌噬菌體是可感染分枝桿菌(Mycobacteria)的病毒,透過其尾部的受體結合蛋白(Receptor binding protein, RBP)與細菌宿主細胞壁上的受體(Receptor)專一性結合,可將遺傳物質送入細菌細胞中。噬菌體利用宿主的複製機制產生新的病毒顆粒,並在成熟後殺死宿主,釋放新的噬菌體。雖然許多分枝桿菌噬菌體已在過去研究中被分離,但是目前在臺灣並沒有分離的紀錄。臺灣地理位置相對其地區獨立,環境中的分枝桿菌噬菌體也可能較為獨特。本研究利用恥垢分枝桿菌 (Mycobacterium smegmatis, M. smegmatis)作為宿主,欲從土壤中分離分枝桿菌噬菌體,並分析其特性,從而驗證這個假設。自2021年6月至2022年2月,我們已從107個環境檢體中分離19株分枝桿菌噬菌體。其中,17株成功完成定序並經過序列組裝(Genome assembly)分入7個已知的簇(Cluster),包含Cluster A、B、C、E、K、L以及R。我們進一步對5株來自不同簇的噬菌體進行基因註釋(Genome annotation)分析,僅約30%的基因的功能已知。根據分析定序的結果可知來自不同簇噬菌體的基因具有較低的相似度,但某些基因——例如結構相關的基因——具有相似的排列方式。綜合分離的結果,從臺灣分離的分枝桿菌噬菌體都可以被歸入已知的各簇中,並沒有分離出較獨特的分枝桿菌噬菌體,所以無法驗證上述的假設。然而,本實驗只分離少數的分枝桿菌噬菌體,若增加分離的數目,較獨特的噬菌體有可能被發現。另外,改變實驗的條件也有機會分離出新的噬菌體。將來,我們計劃測試分離的噬菌體對於卡介苗(Mycobacterium bovis BCG strain)、從台灣病人分離的結核桿菌,以及非結核分枝桿菌(Non-tuberculosis mycobacterium, NTM)的感染能力,進一步確認這些噬菌體是否具有治療抗藥性結核病的效果。 | zh_TW |
dc.description.abstract | Tuberculosis (TB) is an airborne transmitted disease caused by Mycobacterium tuberculosis (M. tb). According to the 2022 WHO TB report, about a quarter of the world’s population is infected with M. tb. Although TB is curable, the emergence of drug-resistant strains of M. tb. makes treatment more challenging. Therefore, alternative therapies, such as bacteriophage treatment, are appealing. Mycobacteriophages are viruses that infect mycobacteria. They can specifically recognize the host cell wall then lyse the cell wall after replication. Although many mycobacteria have been reported, at the start of my thesis, none of those reported had been isolated from Taiwan. We wanted to test our hypothesis that, due to its relatively isolated nature as an island, Taiwan may have unique mycobacteriophages. In this study, mycobacteriophages were isolated from environmental samples in Taiwan. Mycobacterium smegmatis (M. smegmatis) was used as an alternative host because it is non-pathogenic and has a similar cell wall to M. tb. Moist topsoil samples were collected from vegetable farms, parks, lawns, flower beds, and the beach. After enrichment, the extracted samples were mixed with M. smegmatis for infection and the double-layer agar method was used to screen for the presence of mycobacteriophages. Nineteen mycobacteriophages were isolated from 107 different samples and a whole-genome sequencing was conducted to determine the identity of the mycobacteriophages. Isolated mycobacteriophages were grouped into seven known mycobacteriophage clusters: Cluster A, B, C, E, K, L and R. Five mycobacteriophages were annotated. Gene function was assigned to around 30% of these genes. The genomes from different clusters have lower sequence similarity. However, the gene organizations between different clusters have high sequence similarity with Siphoviridae, especially for the genes encoding for virion structure and the assembly genes. The isolation results do not support the hypothesis that Taiwan has unique mycobacteriophages. However, it should be noted that only a small number of phages were isolated and characterized and if a larger number of phages were isolated, some new singleton phages might be identified. In addition, using alternate infection conditions (e.g., different host organisms, infection temperatures) may lead to the identification of new phages. In the future, the infectivity of the isolated mycobacteriophages will be tested using M. bovis BCG strain, M. tb strains isolated from TB patients in Taiwan and other non-tuberculosis mycobacterial species as hosts to determine if these mycobacteriophages can be used as a potential treatment for mycobacterial infection, including drug-resistant TB infection. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:13:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:13:04Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgement i
摘要 ii Abstract iv Table of Contents vi List of Tables ix List of Figures x 1. Introduction 1 1.1 Tuberculosis (TB) 1 1.1.1 Causes and Symptoms 1 1.1.2 Mycobacterium tuberculosis 3 1.1.3 Treatment 4 1.1.4 Drug-resistant TB 4 1.2 Mycobacteriophages 6 1.2.1 Bacteriophages 6 1.2.2 Bacteriophage infection cycles 7 1.2.3 Mycobacteriophages 9 1.2.4 Phage therapy 11 1.2.5 Other phage applications 13 1.3 Surrogate hosts for phage isolation 13 1.3.1 Mycobacterium smegmatis strain mc2155 13 1.4 Aim of study 14 2. Material and method 15 2.1 Media 15 2.1.1 Growth media 15 2.1.2 Bottom agar 15 2.1.3 Soft top agar 16 2.2 Phage buffer 16 2.3 Albumin dextrose complex (ADC) 16 2.4 Bacterial strains 16 2.4.1 Glycerol stock preparation 16 2.4.2 Bacteria culture for phage infection 17 2.5 Spot test 17 2.6 Isolation of phages from soil 18 2.6.1 Soil collection 18 2.6.2 Phage isolation 18 2.6.3 Phage purification 19 2.6.4 Phage amplification 20 2.6.4.1 Small-scale amplification 20 2.6.4.2 Large-scale amplification 20 2.6.5 Phage concentration 22 2.6.5.1 Phage precipitation and resuspension 22 2.6.5.2 Cesium chloride (CsCl) ultracentrifugation 22 2.7 DNA extraction 23 2.8 Restriction enzyme digestion 24 2.9 Whole genome sequencing (WGS) 25 2.10 Phage genome assembly 25 2.11 Phage genome annotation 25 2.12 Transmission electron microscopy (TEM) 26 2.12.1 Phage sample preparation 26 2.12.2 TEM grid preparation 26 3. Results and discussion 28 3.1. Phage isolation and purification 28 3.2. Phage morphology 36 3.3. Phage characterization by restriction enzyme digestion 41 3.4. Phage genome sequencing and assembly 43 3.5. Phage genome annotation 50 3.6. Summarized results for isolated phages 60 4. Conclusion 62 References 65 Appendix 70 | - |
dc.language.iso | en | - |
dc.title | 臺灣環境中新分枝桿菌噬菌體之分離及特性分析 | zh_TW |
dc.title | Isolating and characterizing novel mycobacteriophages from Taiwan’s environment | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 何孟樵;陳可萱;蔡怡陞 | zh_TW |
dc.contributor.oralexamcommittee | Meng-Chiao Ho;Ko-Hsuan Chen;I-Sheng Jason Tsai | en |
dc.subject.keyword | 結核病,分枝桿菌,分枝桿菌噬菌體,恥垢分枝桿菌,台灣環境檢體, | zh_TW |
dc.subject.keyword | Tuberculosis,Mycobacterium tuberculosis,Mycobacteriophage,Mycobacterium smegmatis,Taiwan’s environmental samples, | en |
dc.relation.page | 81 | - |
dc.identifier.doi | 10.6342/NTU202300347 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-02-14 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科學研究所 | - |
dc.date.embargo-lift | 2028-02-10 | - |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 12.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。