Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊顯zh_TW
dc.contributor.advisorChun-Hsien Chenen
dc.contributor.author顏秀恩zh_TW
dc.contributor.authorHsiu-En Yenen
dc.date.accessioned2023-06-20T16:08:42Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2022-
dc.date.submitted2022-11-10-
dc.identifier.citation[1]Xin, N.; Guan, J.; Zhou, C.; Chen, X.; Gu, C.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X., Concepts in the Design and Engineering of Single-Molecule Electronic Devices. Nat. Rev. Phys. 2019, 1, 211-230.
[2]Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C., Chemical Principles of Single-Molecule Electronics. Nat. Rev. Mater. 2016, 1, 16002.
[3]Qiu, K.; Fato, T. P.; Yuan, B.; Long, Y. T., Toward Precision Measurement and Manipulation of Single?Molecule Reactions by a Confined Space. Small 2019, 15, 1805426.
[4]Liu, J.; Huang, X.; Wang, F.; Hong, W., Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application. Acc. Chem. Res. 2019, 52, 151-160.
[5]Fu, B.; Mosquera, M. A.; Schatz, G. C.; Ratner, M. A.; Hsu, L. Y., Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor. Nano Lett. 2018, 18, 5015-5023.
[6]Manso, M.; Koole, M.; Mulder, M.; Olavarria-Contreras, I. J.; Andersen, C. L.; Jevric, M.; Broman, S. L.; Kadziola, A.; Hammerich, O.; Van Der Zant, H. S. J., Synthesis and Single-Molecule Conductances of Neutral and Cationic Indenofluorene-Extended Tetrathiafulvalenes: Kondo Effect Molecules. J. Org. Chem. 2016, 81, 8406-8414.
[7]Ke, G.; Duan, C.; Huang, F.; Guo, X., Electrical and Spin Switches in Single?Molecule Junctions. InfoMater. 2021 2, 92-112.
[8]Gu, C.; Hu, C.; Wei, Y.; Lin, D.; Jia, C.; Li, M.; Su, D.; Guan, J.; Xia, A.; Xie, L.; Nitzan, A.; Guo, H.; Guo, X., Label-Free Dynamic Detection of Single-Molecule Nucleophilic-Substitution Reactions. Nano Lett. 2018, 18, 4156-4162.
[9]Yang, C.; Zhang, L.; Lu, C.; Zhou, S.; Li, X.; Li, Y.; Yang, Y.; Li, Y.; Liu, Z.; Yang, J.; Houk, K. N.; Mo, F.; Guo, X., Unveiling the Full Reaction Path of the Suzuki-Miyaura Cross-Coupling in a Single-Molecule Junction. Nat. Nanotechnol. 2021, 16, 1214-1223.
[10]Yang, C.; Liu, Z. T.; Li, Y. W.; Zhou, S. Y.; Lu, C. X.; Guo, Y. L.; Ramirez, M.; Zhang, Q. Z.; Li, Y.; Liu, Z. R.; Houk, K. N.; Zhang, D. Q.; Guo, X. F., Electric Field-catalyzed Single-Molecule Diels-Alder Reaction Dynamics. Sci. Adv. 2021, 7, No. eabf0689.
[11]Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X., Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318-4440.
[12]Zhao, Y.; Liu, W.; Zhao, J.; Wang, Y.; Zheng, J.; Liu, J.; Hong, W.; Tian, Z.-Q., The Fabrication, Characterization and Functionalization in Molecular Electronics. Int. J. Extreme Manuf. 2022, 4, 022003.
[13]Cuevas, J. C.; Scheer, E., Molecular electronics: an introduction to theory and experiment. World Scientific: 2010.
[14]Tsutsui, M.; Taniguchi, M., Single Molecule Electronics and Devices. Sensors 2012, 12, 7259-7298.
[15]Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L., Single-Molecule Circuits with Well-Defined Molecular Conductance. Nano Lett. 2006, 6, 458-462.
[16]Chen, F.; Li, X. L.; Hihath, J.; Huang, Z. F.; Tao, N. J., Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules. J. Am. Chem. Soc. 2006, 128, 15874-15881.
[17]Aradhya, S. V.; Venkataraman, L., Single-Molecule Junctions Beyond Electronic Transport. Nat. Nanotechnol. 2013, 8, 399-410.
[18]Jia, C.; Guo, X., Molecule-Electrode Interfaces in Molecular Electronic Devices. Chem. Soc. Rev. 2013, 42, 5642-5660.
[19]Yang, C.; Qin, A.; Tang, B. Z.; Guo, X., Fabrication and Functions of Graphene-Molecule-Graphene Single-Molecule Junctions. J. Chem. Phys. 2020, 152, 120902.
[20]Feldman, A. K.; Steigerwald, M. L.; Guo, X.; Nuckolls, C., Molecular Electronic Devices Based on Single-Walled Carbon Nanotube Electrodes. Acc. Chem. Res. 2008, 41, 1731-1741.
[21]Jia, C.; Ma, B.; Xin, N.; Guo, X., Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics. Acc. Chem. Res. 2015, 48, 2565-2575.
[22]Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M.; van der Zant, H. S., Room-Temperature Gating of Molecular Junctions Using Few-Layer Graphene Nanogap Electrodes. Nano Lett. 2011, 11, 4607-4611.
[23]Lau, C. S.; Mol, J. A.; Warner, J. H.; Briggs, G. A. D., Nanoscale Control of Graphene Electrodes. Phys. Chem. Chem. Phys. 2014, 16, 20398-20401.
[24]Cao, Y.; Dong, S.; Liu, S.; He, L.; Gan, L.; Yu, X.; Steigerwald, M. L.; Wu, X.; Liu, Z.; Guo, X., Building High-Throughput Molecular Junctions Using Indented Graphene Point Contacts. Angew. Chem. Int. Ed. 2012, 51, 12228-12232.
[25]Nef, C.; P?sa, L.; Makk, P.; Fu, W.; Halbritter, A.; Sch?nenberger, C.; Calame, M., High-Yield Fabrication of nm-Size Gaps in Monolayer CVD Graphene. Nanoscale 2014, 6, 7249-7254.
[26]Avouris, P., Molecular Electronics with Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1026-1034.
[27]Dai, H., Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res. 2002, 35, 1035-1044.
[28]Qi, P.; Javey, A.; Rolandi, M.; Wang, Q.; Yenilmez, E.; Dai, H., Miniature Organic Transistors with Carbon Nanotubes as Quasi-One-Dimensional Electrodes. J. Am. Chem. Soc. 2004, 126, 11774-11775.
[29]Wei, D.; Liu, Y.; Cao, L.; Wang, Y.; Zhang, H.; Yu, G., Real Time and in Situ Control of the Gap Size of Nanoelectrodes for Molecular Devices. Nano Lett. 2008, 8, 1625-1630.
[30]Guo, X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; Brien, S.; Yan, J.; Breslow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C., Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules. Science 2006, 311, 356-359.
[31]Guo, X.; Nuckolls, C., Functional Single-Molecule Devices Based on SWNTs as Point Contacts. J. Mater. Chem. 2009, 19, 5470-5473.
[32]Roy, S.; Vedala, H.; Roy, A. D.; Kim, D.-h.; Doud, M.; Mathee, K.; Shin, H.-k.; Shimamoto, N.; Prasad, V.; Choi, W., Direct Electrical Measurements on Single-Molecule Genomic DNA Using Single-Walled Carbon Nanotubes. Nano Lett. 2008, 8, 26-30.
[33]Thiele, C.; Vieker, H.; Beyer, A.; Flavel, B. S.; Hennrich, F.; Mu?oz Torres, D.; Eaton, T. R.; Mayor, M.; Kappes, M. M.; G?lzh?user, A., Fabrication of Carbon Nanotube Nanogap Electrodes by Helium Ion Sputtering for Molecular Contacts. Appl. Phys. Lett. 2014, 104, 103102.
[34]Zhu, J.; McMorrow, J.; Crespo-Otero, R.; Ao, G.; Zheng, M.; Gillin, W. P.; Palma, M., Solution-Processable Carbon Nanoelectrodes for Single-Molecule Investigations. J. Am. Chem. Soc. 2016, 138, 2905-2908.
[35]Barsan, O. A.; Hoffmann, G. G.; van der Ven, L. G. J.; de With, G., Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites. ACS Appl. Mater. Interfaces 2016, 8, 19701-19708.
[36]Ocola, L. E.; Gosztola, D. J.; Rosenmann, D.; Lopez, G., Automated Geometry Assisted Proximity Effect Correction for Electron Beam Direct Write Nanolithography. J. Vac. Sci. Technol. B 2015, 33, 06FD02.
[37]Das, B.; Subramaniam, S.; Melloch, M., Effects of Electron-Beam-Induced Damage on Leakage Currents in Back-Gated GaAs/AlGaAs Devices. Semicond. Sci. Technol. 1993, 8, 1347-1351.
[38]Teweldebrhan, D.; Balandin, A. A., Modification of Graphene Properties Due to Electron-Beam Irradiation. Appl. Phys. Lett. 2009, 94, 013101.
[39]Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V., Structural Defects in Graphene. ACS Nano 2011, 5, 26-41.
[40]Rawlings, C.; Wolf, H.; Hedrick, J. L.; Coady, D. J.; Duerig, U.; Knoll, A. W., Accurate Location and Manipulation of Nanoscaled Objects Buried Under Spin-Coated Films. ACS Nano 2015, 9, 6188-6195.
[41]Paul, P. C., Thermal Scanning Probe Lithography. In Frontiers of Nanoscience, Elsevier: 2016; Vol. 11, pp 543-561.
[42]Zheng, X.; Cal?, A.; Albisetti, E.; Liu, X.; Alharbi, A. S. M.; Arefe, G.; Liu, X.; Spieser, M.; Yoo, W. J.; Taniguchi, T.; Watanabe, K.; Aruta, C.; Ciarrocchi, A.; Kis, A.; Lee, B. S.; Lipson, M.; Hone, J.; Shahrjerdi, D.; Riedo, E., Patterning Metal Contacts on Monolayer MoS2 with Vanishing Schottky Barriers Using Thermal Nanolithography. Nat. Electron. 2019, 2, 17-25.
[43]Wolf, H.; Rawlings, C.; Mensch, P.; Hedrick, J. L.; Coady, D. J.; Duerig, U.; Knoll, A. W., Sub-20?nm Silicon Patterning and Metal Lift-Off Using Thermal Scanning Probe Lithography. J. Vac. Sci. Technol. B 2015, 33, 02B102.
[44]Rawlings, C.; Ryu, Y. K.; Ruegg, M.; Lassaline, N.; Schwemmer, C.; Duerig, U.; Knoll, A. W.; Durrani, Z.; Wang, C.; Liu, D.; Jones, M. E., Fast Turnaround Fabrication of Silicon Point-Contact Quantum-Dot Transistors Using Combined Thermal Scanning Probe Lithography and Laser Writing. Nanotechnology 2018, 29, 505302.
[45]Song, H.; Reed, M. A.; Lee, T., Single Molecule Electronic Devices. Adv. Mater. 2011, 23, 1583-1608.
[46]Galperin, M.; Ratner, M. A.; Nitzan, A.; Troisi, A., Nuclear Coupling and Polarization in Molecular Transport Junctions: Beyond Tunneling to Function. Science 2008, 319, 1056-1060.
[47]Hihath, J.; Tao, N., Electron-Phonon Interactions in Atomic and Molecular Devices. Prog. Surf. Sci. 2012, 87, 189-208.
[48]Okabayashi, N.; Paulsson, M.; Komeda, T., Inelastic Electron Tunneling Process for Alkanethiol Self-Assembled Monolayers. Prog. Surf. Sci. 2013, 88, 1-38.
[49]Reed, M. A., Inelastic Electron Tunneling Spectroscopy. Mater. Today 2008, 11, 46-50.
[50]Hansma, P. K., Inelastic Electron Tunneling. Phys. Rep. 1977, 30, 145-206.
[51]Deng, M. S.; Ye, G.; Cai, S. H.; Sun, G. Y.; Jiang, J., Probing Flexible Conformations in Molecular Junctions by Inelastic Electron Tunneling Spectroscopy. AIP Adv. 2015, 5, 017144.
[52]Wang, W.; Lee, T.; Kretzschmar, I.; Reed, M. A., Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer. Nano Lett. 2004, 4, 643-646.
[53]Stipe, B. C.; Rezaei, M. A.; Ho, W., Single-Molecule Vibrational Spectroscopy and Microscopy. Science 1998, 280, 1732-1735.
[54]Kushmerick, J. G.; Lazorcik, J.; Patterson, C. H.; Shashidhar, R.; Seferos, D. S.; Bazan, G. C., Vibronic Contributions to Charge Transport Across Molecular Junctions. Nano Lett. 2004, 4, 639-642.
[55]Kushmerick, J.; Naciri, J.; Yang, J.; Shashidhar, R., Conductance Scaling of Molecular Wires in Parallel. Nano Lett. 2003, 3, 897-900.
[56]Hihath, J.; Arroyo, C. R.; Rubio-Bollinger, G.; Tao, N.; Agra?t, N., Study of Electron?Phonon Interactions in a Single Molecule Covalently Connected to Two Electrodes. Nano Lett. 2008, 8, 1673-1678.
[57]Seo, S.; Min, M.; Lee, S. M.; Lee, H., Photo-Switchable Molecular Monolayer Anchored between Highly Transparent and Flexible Graphene Electrodes. Nat. Commun. 2013, 4, 1920.
[58]Li, T.; Jevric, M.; Hauptmann, J. R.; Hviid, R.; Wei, Z.; Wang, R.; Reeler, N. E.; Thyrhaug, E.; Petersen, S.; Meyer, J. A., Ultrathin Reduced Graphene Oxide Films as Transparent Top?Contacts for Light Switchable Solid?State Molecular Junctions. Adv. Mater. 2013, 25, 4164-4170.
[59]Martin, C. A.; Smit, R. H. M.; Egmond, R.; van der Zant, H. S. J.; van Ruitenbeek, J. M., A Versatile Low-Temperature Setup for the Electrical Characterization of Single-Molecule Junctions. Rev. Sci. Instrum. 2011, 82, 053907.
[60]Ueno, S.; Tomoda, Y.; Kume, W.; Hanada, M.; Takiya, K.; Shirakashi, J., Field-Emission-Induced Electromigration Method for the Integration of Single-Electron Transistors. Appl. Surf. Sci. 2012, 258, 2153-2156.
[61]Song, H.; Kim, Y.; Ku, J.; Jang, Y. H.; Jeong, H.; Lee, T., Vibrational Spectra of Metal-Molecule-Metal Junctions in Electromigrated Nanogap Electrodes by Inelastic Electron Tunneling. Appl. Phys. Lett. 2009, 94, 103110.
[62]Jeong, H.; Hwang, W. T.; Kim, P.; Kim, D.; Jang, Y.; Min, M.; Xiang, D.; Song, H.; Park, Y. D.; Jeong, H.; Lee, T., Investigation of Inelastic Electron Tunneling Spectra of Metal-Molecule-Metal Junctions Fabricated Using Direct Metal Transfer Method. Appl. Phys. Lett. 2015, 106, 063110.
[63]Dresselhaus, M.; Dresselhaus, G.; Saito, R., Physics of Carbon Nanotubes. Carbon 1995, 33, 883-891.
[64]Laird, E. A.; Kuemmeth, F.; Steele, G. A.; Grove-Rasmussen, K.; Nyg?rd, J.; Flensberg, K.; Kouwenhoven, L. P., Quantum Transport in Carbon Nanotubes. Rev. Mod. Phys. 2015, 87, 703-764.
[65]Kalamkarov, A. L.; Georgiades, A. V.; Rokkam, S. K.; Veedu, V. P.; Ghasemi-Nejhad, M. N., Analytical and Numerical Techniques to Predict Carbon Nanotubes Properties. Int. J. Solids Struct. 2006, 43, 6832-6854.
[66]Reich, S.; Thomsen, C.; Maultzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley-VCH: Weinheim, Cambridge, 2004.
[67]Jorio, A.; Saito, R., Raman Spectroscopy for Carbon Nanotube Applications. J. Appl. Phys. 2021, 129, 021102.
[68]Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Saito, R., Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon 2002, 40, 2043-2061.
[69]Jorio, A.; Pimenta, M. A.; Souza Filho, A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Characterizing Carbon Nanotube Samples with Resonance Raman Scattering. New J. Phys. 2003, 5, 139.
[70]Ma, P.-C.; Siddiqui, N. A.; Marom, G.; Kim, J.-K., Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. A: Appl. Sci. Manuf. 2010, 41, 1345-1367.
[71]Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E., Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357-13367.
[72]Cheng, Q.; Debnath, S.; O'Neill, L.; Hedderman, T. G.; Gregan, E.; Byrne, H. J., Systematic Study of the Dispersion of SWNTs in Organic Solvents. J. Phys. Chem. C 2010, 114, 4857-4863.
[73]Lu, K.; Lago, R. M.; Chen, Y. K.; Green, M. L. H.; Harris, P. J. F.; Tsang, S. C., Mechanical Damage of Carbon Nanotubes by Ultrasound. Carbon 1996, 34, 814-816.
[74]Balasubramanian, K.; Burghard, M., Chemically Functionalized Carbon Nanotubes. Small 2005, 1, 180-192.
[75]Kang, Y.; Taton, T. A., Micelle-Encapsulated Carbon Nanotubes: A Route to Nanotube Composites. J. Am. Chem. Soc. 2003, 125, 5650-5651.
[76]Vaisman, L.; Wagner, H. D.; Marom, G., The Role of Surfactants in Dispersion of Carbon Nanotubes. Adv. Colloid Interface Sci. 2006, 128, 37-46.
[77]Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G., DNA-Assisted Dispersion and Separation of Carbon Nanotubes. Nat. Mater. 2003, 2, 338-342.
[78]Ma, Y.; Ali, S. R.; Dodoo, A. S.; He, H., Enhanced Sensitivity for Biosensors: Multiple Functions of DNA-Wrapped Single-Walled Carbon Nanotubes in Self-Doped Polyaniline Nanocomposites. J. Phys. Chem. B 2006, 110, 16359-16365.
[79]Strano, M. S.; Moore, V. C.; Miller, M. K.; Allen, M. J.; Haroz, E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R. E., The Role of Surfactant Adsorption During Ultrasonication in the Dispersion of Single-Walled Carbon Nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 81-86.
[80]Berry, J. F.; Cotton, F. A.; Murillo, C. A., Making Connections with Molecular Wires: Extending Tri-Nickel Chains with Axial Cyanide, Dicyanamide, and Phenylacetylide Ligands. Dalton Trans. 2003, 15, 3015-3021.
[81]Howell, S. T.; Grushina, A.; Holzner, F.; Brugger, J., Thermal Scanning Probe Lithography-A Review. Microsyst. Nanoeng. 2020, 6, 21.
[82]Paul, P. C.; Knoll, A. W.; Holzner, F.; Despont, M.; Duerig, U., Rapid Turnaround Scanning Probe Nanolithography. Nanotechnology 2011, 22, 275306.
[83]Rawlings, C. D.; Zientek, M.; Spieser, M.; Urbonas, D.; Stoferle, T.; Mahrt, R. F.; Lisunova, Y.; Brugger, J.; Duerig, U.; Knoll, A. W., Control of the Interaction Strength of Photonic Molecules by Nanometer Precise 3D Fabrication. Sci. Rep. 2017, 7, 16502.
[84]Coulembier, O.; Knoll, A.; Pires, D.; Gotsmann, B.; Duerig, U.; Frommer, J.; Miller, R. D.; Dubois, P.; Hedrick, J. L., Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography. Macromolecules 2009, 43, 572-574.
[85]Harman, G. G.; Albers, J., The Ultrasomnic Welding Mechanism as Applied to Aluminum- and Gold-Wire Bonding in Microelectronics. IEEE Trans. Parts, Hybrids, Packag. 1977, 13, 406-412.
[86]De Vries, E., Mechanics and mechanisms of ultrasonic metal welding. The Ohio State University: 2004.
[87]Tsutsui, M.; Taniguchi, M., Vibrational Spectroscopy of Single-Molecule Junctions by Direct Current Measurements. J. Appl. Phys. 2013, 113, 084301.
[88]Hipps, K. W.; Mazur, U., Inelastic Electron Tunneling: An Alternative Molecular Spectroscopy. J. Phys. Chem. 1993, 97, 7803-7814.
[89]Adler, J. G., Computer-Assisted Determination of Peak Profiles, Intensities, and Positions. In Tunneling Spectroscopy, Springer: 1982; pp 423-450.
[90]Lambe, J.; Jaklevic, R. C., Molecular Vibration Spectra by Inelastic Electron Tunneling. Phys. Rev. 1968, 165, 821-832.
[91]Klein, J.; L?ger, A.; Belin, M.; D?fourneau, D.; Sangster, M. J. L., Inelastic-Electron-Tunneling Spectroscopy of Metal-Insulator-Metal Junctions. Phys. Rev. B 1973, 7, 2336-2348.
[92]Lauhon, L. J.; Ho, W., Effects of Temperature and Other Experimental Variables on Single Molecule Vibrational Spectroscopy with the Scanning Tunneling Microscope. Rev. Sci. Instrum. 2001, 72, 216-223.
[93]Nelson, B. A.; King, W. P., Modeling and Simulation of the Interface Temperature Between a Heated Silicon Tip and a Substrate. Nanoscale Microscale Thermophys. Eng. 2008, 12, 98-115.
[94]Raghuraman, S.; Elinski, M. B.; Batteas, J. D.; Felts, J. R., Driving Surface Chemistry at the Nanometer Scale Using Localized Heat and Stress. Nano Lett. 2017, 17, 2111-2117.
[95]Marshall, M. W.; Popa-Nita, S.; Shapter, J. G., Measurement of Functionalised Carbon Nanotube Carboxylic Acid Groups Using A Simple Chemical Process. Carbon 2006, 44, 1137-1141.
[96]Sianipar, M.; Kim, S. H.; Iskandar, F.; Wenten, I. G., Functionalized Carbon Nanotube (CNT) Membrane: Progress and Challenges. RSC Adv. 2017, 7, 51175-51198.
[97]Liu, W.; Hierold, C.; Haluska, M., Electrical Contacts to Individual SWCNTs: A Review. Beilstein J. Nanotechnol. 2014, 5, 2202-2215.
[98]Liu, W.; Chikkadi, K.; Muoth, M.; Hierold, C.; Haluska, M., The Impact of Cr Adhesion Layer on CNFET Electrical Characteristics. Nanotechnology 2015, 27, 015201.
[99]de Araujo, E. N. D.; de Sousa, T. A. S. L.; de Moura Guimar?es, L.; Plentz, F., Effects of Post-Lithography Cleaning on the Yield and Performance of CVD Graphene-Based Devices. Beilstein J. Nanotechnol. 2019, 10, 349-355.
[100]Khamis, S. M.; Jones, R.; Johnson, A. C., Optimized Photolithographic Fabrication Process for Carbon Nanotube Devices. Aip Adv. 2011, 1, 022106.
[101]Kim, Y. L.; Jung, H. Y.; Kar, S.; Jung, Y. J., Cleaning Organized Single-Walled Carbon Nanotube Interconnect Structures for Reduced Interfacial Contact Resistance. Carbon 2011, 49, 2450-2458.
[102]Felten, A.; Bittencourt, C.; Pireaux, J. J.; Van Lier, G.; Charlier, J. C., Radio-Frequency Plasma Functionalization of Carbon Nanotubes Surface O2, NH3, and CF4 Treatments. J. Appl. Phys. 2005, 98, 074308.
[103]Kouklin, N.; Tzolov, M.; Straus, D.; Yin, A.; Xu, J. M., Infrared Absorption Properties of Carbon Nanotubes Synthesized by Chemical Vapor Deposition. Appl. Phys. Lett. 2004, 85, 4463-4465.
[104]Ward, D. R.; Corley, D. A.; Tour, J. M.; Natelson, D., Vibrational and Electronic Heating in Nanoscale Junctions. Nat. Nanotechnol. 2011, 6, 33-38.
[105]Oron-Carl, M.; Krupke, R., Raman Spectroscopic Evidence for Hot-Phonon Generation in Electrically Biased Carbon Nanotubes. Phys. Rev. Lett. 2008, 100, 127401.
[106]Baratoff, A.; Persson, B. N. J., Theory of the Local Tunneling Spectrum of a Vibrating Adsorbate. J. Vac. Sci. Technol. A 1988, 6, 331-335.
[107]Galperin, M.; Ratner, M. A.; Nitzan, A., On the Line Widths of Vibrational Features in Inelastic Electron Tunneling Spectroscopy. Nano Lett. 2004, 4, 1605-1611.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87574-
dc.description.abstract以單分子接合點(即「電極−分子−電極」)為基礎的分子電性量測平台,可在單分子的尺度下探討物理及化學現象的基本原理。如何製作結構穩定的「電極−分子−電極」以將分子連接至外部量測電路並擷取其電性訊號,是重要的課題。本研究以奈米碳管作為單分子接合點之電極,待測分子為兩端軸向頭基為乙腈(NCMe, acetonitrile)之直線型三核鎳金屬串錯合物[Ni3(dpa)4(NCMe)2][(PF6)2],進行單分子元件製程及其電性量測的研究。
單分子元件製程的部分,藉由末端羧酸化之碳管的R-COO‒取代分子的頭基NCMe,使碳管與分子以配位共價鍵(dative covalent bond)的形式接合,形成「碳管–分子–碳管」的結構。為了將「碳管–分子–碳管」連接至外部電路進行電性量測,本實驗室以熱敏式掃描探針微影(thermal scanning probe lithography, t-SPL)製作「金屬電極–碳管–分子–碳管–金屬電極」的量測平台,而本研究解決了過去造成此製程良率低下的3個關鍵問題:(1)透過「碳管–分子–碳管」AFM影像疊加的方式輔助探針刻劃位置的設定,並校正刻劃位置的偏移,提升探針刻劃「碳管–分子–碳管」結構末端處之上層光阻的位置準確度;(2)增加探針單位像素的刻劃時間及重複刻劃次數,避免刻劃區域光阻殘留;(3)調整光阻軟烤溫度、時間及烘烤方式,避免顯影後光阻塌陷。
單分子元件電性量測的部分,為了探究分子電性隨溫度的變化,本研究共量測2個「金屬電極–碳管–分子–碳管–金屬電極」元件在不同溫度下(4~300 K)的I-V曲線,並觀察到元件電性隨溫度的變化含有來自碳管與金屬電極的貢獻。而10個不同的「金屬電極–碳管–金屬電極」之I-V曲線的量測結果,反映出連接分子的電極系統會造成每個元件之間的差異,使單分子元件電性量測結果的分析變得複雜,除了每根碳管本身性質的差異,也需考慮金屬電極的接觸電阻。以電性訊號為基礎的非彈性電子穿隧能譜(inelastic electron tunneling spectroscopy, IETS)可提供單分子元件振動能譜的資訊,有助於其電性量測結果的分析。然而,以實驗室過去量測參數所得之IETS無法獲得單分子尺度的結構資訊,故本研究進行量測參數的優化,調整量測系統中鎖相放大器之參考訊號的頻率和振幅、時間常數以及掃描速率後,成功測得符合Raman振動光譜之單根單壁奈米碳管的IETS,為後續單分子元件的結構鑑定提供了可靠的途徑。
zh_TW
dc.description.abstractMolecular electrical detection platforms based on single-molecule junctions (electrode–molecule–electrode, EME) enable monitoring of physical and chemical processes at the single-molecule level. Realization of stable EME structures and detection of molecular electrical signals in the structures are key scientific issues. In this study, electrodes are carbon nanotubes (CNTs), and molecules are [Ni3(dpa)4(NCMe)2][(PF6)2], one-dimension metal atoms with labile acetonitrile (NCMe) ligands in the axial positions, also known as extended metal-atom chains (EMACs). This study contains two parts: fabrication of single-molecule devices and measurement of molecular electrical signal.
In the part of single-molecule device fabrication, to form CNT–molecule–CNT, R-COO‒ on the ends of the acid-functionalized CNTs are substituted for NCMe ligands of the molecules, and the CNT and the molecule can be connected via the dative covalent bond. For the purpose of connecting the CNT–molecule–CNT to external circuits for electrical measurement, thermal scanning probe lithography (t-SPL) is adopted to fabricate metal electrode–CNT–molecule–CNT–metal electrode platforms. In this study, three problems are solved that result in low yields of device fabrication in the past: (1) by overlaying AFM image of CNT–molecule–CNT and correcting patterning position shift, accuracy of position to CNT–molecule–CNT during t-SPL patterning was improved; (2) by increasing pixel time and field during t-SPL patterning, photoresist residues in the patterned area were prevented; (3) by optimizing the soft bake temperature, time and method, photoresist collapsing after developing was prevented.
In the part of electrical signal measurement of the single-molecule devices, current-voltage (I-V) curves of two devices are measured at 300 K~4 K to investigate electrical properties of the molecules with temperature. The I-V curves show that the electrical characteristics is contributed not only from the molecule, but from the CNTs and the metal electrodes. To clarify the role of CNTs in the device, I-V curves of ten different metal electrode–CNT–metal electrode are measured, which implies that variability in the properties of each CNT electrode would complex the discussion on electrical measurements of the single-molecule devices. Besides, the contact resistance of the metal electrodes also needs to be considered. Inelastic electron tunneling spectroscopy (IETS) provides information about vibration modes of the single-molecule devices, facilitating analysis on device electrical measurements. However, the IETS derived from previous measurement parameters does not reflect information at the single-molecule level. Through optimization of measurement parameters, including reference frequency, modulation voltage, time constant, and scan rate, signals attributed to the vibration modes of single-walled carbon nanotube in the devices are successfully obtained from IETS. This IETS measurement system paves the way for characterization of molecular electrical properties in the single-molecule devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:08:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:08:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 建構單分子電性量測平台 5
1.2.1 金屬電極系統 5
1.2.2 碳電極系統 7
1.3 熱敏式掃描探針微影技術 15
1.4 非彈性電子穿隧能譜 19
1.5 單壁奈米碳管 25
1.5.1 奈米碳管的結構與分類 25
1.5.2 奈米碳管的拉曼光譜 27
1.5.3 奈米碳管的分散 28
1.6 研究動機 29
第二章 實驗部分 31
2.1 藥品、耗材與儀器 31
2.1.1 藥品與耗材 31
2.1.2 儀器 32
2.2 單分子元件的製作 34
2.2.1 製作基底電極 35
2.2.2 配製奈米碳管溶液並沉積於晶片上之電極間隙 37
2.2.3 固-液異相合成「碳管–分子–碳管」 38
2.2.4 製作金屬外接電極形成「金屬電極–碳管–分子–碳管–金屬電極」 39
2.2.5 超音波焊線 44
2.3 單分子元件的量測 45
2.3.1 搭載真空降溫系統之元件量測平台 45
2.3.2 非彈性電子穿隧能譜量測系統 46
第三章 結果與討論–單分子元件的製作 51
3.1 固-液異相合成「碳管–分子–碳管」 51
3.2 優化「碳管–分子–碳管」外接電極製程 53
3.2.1 NanoFrazor刻劃位置準確度 53
3.2.2 NanoFrazor刻劃區域PPA殘留 58
3.2.3 顯影後PMGI過度溶解使PPA塌陷 61
3.3 優化超音波焊線機參數 65
3.4 單分子元件製作結果 65
第四章 結果與討論–單分子元件的量測 67
4.1 電性量測 67
4.1.1 不同溫度下之I-V曲線 67
4.1.2 不同元件之間的差異 71
4.2 非彈性電子穿隧能譜 74
4.2.1 以二極體標準品確認IETS系統架設 74
4.2.2 以「金屬電極–碳管–金屬電極」測試及優化IETS量測參數 75
4.2.3 「金屬電極–碳管–金屬電極」之IETS 80
4.2.4 「金屬電極–碳管–分子–碳管–金屬電極」元件之IETS 83
第五章 結論 85
參考文獻 87
-
dc.language.isozh_TW-
dc.title以單壁奈米碳管為電極之單分子電性量測平台的製程與分析zh_TW
dc.titleSingle-Molecule Electrical Detection Platforms Based on Single-Walled Carbon Nanotubes: Fabrication and Analysisen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖尉斯;鄭修偉;黃茂榕zh_TW
dc.contributor.oralexamcommitteeWei-Ssu Liao;Hsiu-Wei Cheng;Mao-Jung Huangen
dc.subject.keyword單壁奈米碳管,單分子元件,熱敏式掃描探針微影,非彈性電子穿隧能譜,zh_TW
dc.subject.keywordSingle-walled Carbon Nanotube,Single-molecule Junction,Thermal Scanning Probe Lithography,Inelastic Electron Tunneling Spectroscopy,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202210036-
dc.rights.note未授權-
dc.date.accepted2022-11-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
9.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved