請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87565
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊吉水 | zh_TW |
dc.contributor.advisor | Jye-Shane Yang | en |
dc.contributor.author | 王芷宣 | zh_TW |
dc.contributor.author | Chih-Hsuan Wang | en |
dc.date.accessioned | 2023-06-20T16:05:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-14 | - |
dc.identifier.citation | 正文
1. Tian, H.; Tang, X.; Dong, Y. Q., Construction of Luminogen Exhibiting Multicolored Emission Switching through Combination of Twisted Conjugation Core and Donor-Acceptor Units. Molecules 2017, 22, 2222. 2. Hatanaka, S.; Ono, T.; Hisaeda, Y., Turn‐On Fluorogenic and Chromogenic Detection of Small Aromatic Hydrocarbon Vapors by a Porous Supramolecular Host. Chem. - Eur. J. 2016, 22, 10346-10350. 3. Yamada, S.; Katsuki, A.; Nojiri, Y.; Tokugawa, Y., Vapochromism associated with the changes in the molecular arrangement of organic crystals. CrystEngComm 2015, 17, 1416-1420. 4. Xue, P.; Chen, P.; Jia, J.; Xu, Q.; Sun, J.; Yao, B.; Zhang, Z.; Lu, R., A triphenylamine-based benzoxazole derivative as a high-contrast piezofluorochromic material induced by protonation. Chem. Commun. 2014, 50, 2569-2571. 5. Koenig, M.; Storti, B.; Bizzarri, R.; Guldi, D. M.; Brancato, G.; Bottari, G., A fluorescent molecular rotor showing vapochromism, aggregation-induced emission, and environmental sensing in living cells. J. Mater. Chem. C 2016, 4, 3018-3027. 6. Prusti, B.; Chakravarty, M., Carbazole-Anthranyl π-Conjugates as Small and Stable Aggregation-Induced Emission-Active Fluorogens: Serving as a Reusable and Efficient Platform for Anticounterfeiting Applications with an Acid Key and Multicolor Ink for a Quill Pen. ACS Omega 2019, 4, 16963-16971. 7. Gao, Z.; Chen, Z.; Han, Y.; Wang, F., Cyanostilbene-based vapo-fluorochromic supramolecular assemblies for reversible 3D code encryption. Nanoscale Horizons 2020, 5, 1081-1087. 8. Liu, H.; Shen, Y.; Yan, Y.; Zhou, C.; Zhang, S.; Li, B.; Ye, L.; Yang, B., One Stimulus In Situ Induces Two Sequential Luminescence Switchings in the Same Solvent-Fuming Process: Anthracene Excimer as the Intermediate. Advanced Functional Materials 2019, 29, 1901895. 9. Ochi, J.; Tanaka, K.; Chujo, Y., Dimerization-Induced Solid-State Excimer Emission Showing Consecutive Thermochromic Luminescence Based on Acridine-Modified o-Carboranes. Inorganic Chemistry 2021, 60, 8990-8997. 10. Ito, H.; Muromoto, M.; Kurenuma, S.; Ishizaka, S.; Kitamura, N.; Sato, H.; Seki, T., Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nature Communications 2013, 4, 2009. 11. Ding, Z.; Lu, T.; Bi, C.; Li, B.; Zhang, S.-T.; Xu, W.; Jiang, S., A multifunctional material with distinct mechanochromic and piezochromic properties: π-stacking in play. Materials Chemistry Frontiers 2022, 6, 86-93. 12. Li, N.-Y.; Liu, D.; Ren, Z.-G.; Lollar, C.; Lang, J.-P.; Zhou, H.-C., Controllable Fluorescence Switching of a Coordination Chain Based on the Photoinduced Single-Crystal-to-Single-Crystal Reversible Transformation of a syn-[2.2]Metacyclophane. Inorganic Chemistry 2018, 57, 849-856. 13. Wang, H.; Tang, Q.; Zhao, X.; Tong, Y.; Liu, Y., Ultrasensitive Flexible Proximity Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Interfaces 2018, 10, 2785-2792. 14. Lv, S.; Dudek, D. M.; Cao, Y.; Balamurali, M. M.; Gosline, J.; Li, H., Designed biomaterials to mimic the mechanical properties of muscles. Nature 2010, 465, 69-73. 15. Kitagawa, D.; Kobatake, S., Photoreversible current ON/OFF switching by the photoinduced bending of gold-coated diarylethene crystals. Chem. Commun. 2015, 51, 4421-4424. 16. Han, D.-D.; Zhang, Y.-L.; Ma, J.-N.; Liu, Y.-Q.; Han, B.; Sun, H.-B., Light-Mediated Manufacture and Manipulation of Actuators. Adv. Mater. 2016, 28, 8328-8343. 17. Hasebe, S.; Hagiwara, Y.; Komiya, J.; Ryu, M.; Fujisawa, H.; Morikawa, J.; Katayama, T.; Yamanaka, D.; Furube, A.; Sato, H.; Asahi, T.; Koshima, H., Photothermally Driven High-Speed Crystal Actuation and Its Simulation. J. Am. Chem. Soc. 2021, 143, 8866-8877. 18. Lu, Z.; Zhang, Y.; Liu, H.; Ye, K.; Liu, W.; Zhang, H., Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features. Angew. Chem., Int. Ed. 2020, 59, 4299-4303. 19. Gupta, P.; Karothu, D. P.; Ahmed, E.; Naumov, P.; Nath, N. K., Thermally Twistable, Photobendable, Elastically Deformable, and Self-Healable Soft Crystals. Angew. Chem., Int. Ed. 2018, 57, 8498-8502. 20. Yu, Q.; Aguila, B.; Gao, J.; Xu, P.; Chen, Q.; Yan, J.; Xing, D.; Chen, Y.; Cheng, P.; Zhang, Z.; Ma, S., Photomechanical Organic Crystals as Smart Materials for Advanced Applications. Chemistry – A European Journal 2019, 25, 5611-5622. 21. Kohlschütter, V.; Haenni, P., Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Zeitschrift für anorganische und allgemeine Chemie 1919, 105, 121-144. 22. Cohen, M. D.; Schmidt, G. M. J., 383. Topochemistry. Part i. A survey. Journal of the Chemical Society 1964, 1996-2000. 23. Biradha, K.; Santra, R., Crystal engineering of topochemical solid state reactions. Chem. Soc. Rev. 2013, 42, 950-967. 24. Ihmels, H.; Leusser, D.; Pfeiffer, M.; Stalke, D., Solid-State Photolysis of Anthracene-Linked Ammonium Salts: The Search for Topochemical Anthracene Photodimerizations. Tetrahedron 2000, 56, 6867-6875. 25. Naumov, P.; Chizhik, S.; Panda, M. K.; Nath, N. K.; Boldyreva, E., Mechanically Responsive Molecular Crystals. Chem. Rev. 2015, 115, 12440-12490. 26. Al-Kaysi, R. O.; Müller, A. M.; Bardeen, C. J., Photochemically Driven Shape Changes of Crystalline Organic Nanorods. J. Am. Chem. Soc. 2006, 128, 15938-15939. 27. Naumov, P.; Sahoo, S. C.; Zakharov, B. A.; Boldyreva, E. V., Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping (The Photosalient Effect). Angew. Chem., Int. Ed. 2013, 52, 9990-9995. 28. Zhu, L.; Tong, F.; Salinas, C.; Al-Muhanna, M. K.; Tham, F. S.; Kisailus, D.; Al-Kaysi, R. O.; Bardeen, C. J., Improved Solid-State Photomechanical Materials by Fluorine Substitution of 9-Anthracene Carboxylic Acid. Chem. Mater. 2014, 26, 6007-6015. 29. Kitagawa, D.; Tsujioka, H.; Tong, F.; Dong, X.; Bardeen, C. J.; Kobatake, S., Control of Photomechanical Crystal Twisting by Illumination Direction. J. Am. Chem. Soc. 2018, 140, 4208-4212. 30. Xu, T.-Y.; Tong, F.; Xu, H.; Wang, M.-Q.; Tian, H.; Qu, D.-H., Engineering Photomechanical Molecular Crystals to Achieve Extraordinary Expansion Based on Solid-State [2 + 2] Photocycloaddition. J. Am. Chem. Soc. 2022, 144, 6278-6290. 31. Hasebe, S.; Hagiwara, Y.; Takechi, K.; Katayama, T.; Furube, A.; Asahi, T.; Koshima, H., Polymorph-Derived Diversification of Crystal Actuation by Photoisomerization and the Photothermal Effect. Chem. Mater. 2022, 34, 1315-1324. 32. Panda, M. K.; Ghosh, S.; Yasuda, N.; Moriwaki, T.; Mukherjee, G. D.; Reddy, C. M.; Naumov, P., Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nat. Chem. 2015, 7, 65-72. 33. Hayashi, S.; Koizumi, T., Elastic Organic Crystals of a Fluorescent π-Conjugated Molecule. Angew. Chem., Int. Ed. 2016, 55, 2701-2704. 34. Liu, H.; Lu, Z.; Tang, B.; Qu, C.; Zhang, Z.; Zhang, H., A Flexible Organic Single Crystal with Plastic-Twisting and Elastic-Bending Capabilities and Polarization-Rotation Function. Angew. Chem., Int. Ed. 2020, 59, 12944-12950. 35. VR, S.; Shalaev, V., AROMATIC-HYDROCARBONS-NEW ARYN-2, 3-DEHYDROTRIPTYCENE IN REACTION WITH ANTHRACENE. Doklady Akademii Nauk SSSR 1974, 216, 110-112. 36. Yang, J.-S.; Yan, J.-L., Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem. Commun. 2008, 1501-1512. 37. Matsunaga, Y.; Yang, J.-S., Multicolor Fluorescence Writing Based on Host–Guest Interactions and Force-Induced Fluorescence-Color Memory. Angew. Chem., Int. Ed. 2015, 54, 7985-7989. 38. Hsu, L.-Y.; Maity, S.; Matsunaga, Y.; Hsu, Y.-F.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S., Photomechanochromic vs. mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chem. Sci. 2018, 9, 8990-9001. 39. Kuo, C.-Z.; Hsu, L.-Y.; Chen, Y.-S.; Goto, K.; Maity, S.; Liu, Y.-H.; Peng, S.-M.; Kong, K. V.; Shinmyozu, T.; Yang, J.-S., Alkyl Chain Length- and Polymorph-Dependent Photomechanochromic Fluorescence of Anthracene Photodimerization in Molecular Crystals: Role of the Lattice Stiffness. Chemistry – A European Journal 2020, 26, 11511-11521. 40. Chopra, D.; Row, T. N. G., Role of organic fluorine in crystal engineering. CrystEngComm 2011, 13, 2175-2186. 41. 胡雨旋, 氟取代基效應對蒽-五苯荑衍生物之晶體結構及光致機械力放光變色之探討. 台灣大學化學研究所學位論文 2020, 1-178. 42. 陳俞杉, 附錄:彈性彎曲和光機械效應對氟取代五苯荑-蒽系統之分子晶體之探究. 台灣大學化學研究所學位論文 2021, 195-320. 43. Lohr, A.; Swager, T. M., Stabilization of the nematic mesophase by a homogeneously dissolved conjugated polymer. Journal of Materials Chemistry 2010, 20, 8107-8111. 44. Zhu, X.-Z.; Chen, C.-F., Iptycene Quinones: Synthesis and Structure. The Journal of Organic Chemistry 2005, 70, 917-924. 45. Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.; Lee, G.-H.; Peng, S.-M., Probing the Intrachain and Interchain Effects on the Fluorescence Behavior of Pentiptycene-Derived Oligo(p-phenyleneethynylene)s. J. Am. Chem. Soc. 2006, 128, 14109-14119. 46. Tan, J. C.; Cheetham, A. K., Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 2011, 40, 1059-1080. 47. Ghosh, S.; Mishra, M. K.; Kadambi, S. B.; Ramamurthy, U.; Desiraju, G. R. Designing elastic organic crystals: highly flexible polyhalogenated N-enzylideneanilines. Angew. Chem., Int. Ed. 2015, 54, 2674-2678. 48. Mishra, M. K.; Sun, C. C. Conformation directed interaction anisotropy leading to distinct bending behaviors of two ROY polymorphs. Cryst. Growth Des. 2020, 20, 4764-4769. 附錄 1. Bangs, L.B., New developments in particle-based immunoassays: introduction. Pure Appl. Chem. 1996, 68, 1873-1879. 2. Li, C.-J.; Yao, X., Water-Triggered and Gold(I)-Catalyzed Cascade Addition/Cyclization of Terminal Alkynes with ortho-alkynylaryl Aldehyde. Org. Lett. 2006, 8, 1953-1955. 3. Schmidbaur, H.; Raubenheimer, H. G., Excimer and Exciplex Formation in Gold(I) Complexes Preconditioned by Aurophilic Interactions. Angew. Chem. Int. Ed. 2020, 59, 14748-14771. 4. Yam, V.- W., Wong, K.- M., Luminescent molecular rods - transition-metal alkynyl complexes. Top Curr Chem. 2005; 257, 1-32. 5. Che, C.-M.; Hong, X.; Li, D.; Peng, S.-M.; Lo, W.-C., Luminescent Gold(I) Acetylide Complexes. Photophysical and Photoredox Propeeties and Crystal Structure of [{Au(C≡CPh)}2(-Ph2PCH2CH2PPh2)]. J. Chem. Soc. Dalton trans. 1993, 19, 2929-2932. 6. Che, C.-M.; Hong, X.; Cheung, K.-K., Photophysical properties and crystal structures of luminescent phenylethynylgold(I) complexes of alkyl and aryl isocyanides. J. Chem. SOC. Dalton Trans. 1996, 18, 3699-3703. 7. Shiotsuka, M.; Yamamoto, Y.; Okuno, S.; Onaka, S., The First Luminescent Anionic Bis(ethynylphenanthroline)gold(I) Complex. Chemistry Letters. 2004, 33, 210-211. 8. Hsu, Y.-F.; Chen, S.-Y.; Maity, S.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S., A polymorphic pentiptycene-containing gold(I) isocyanide complex: solvent- and conformationdependent supramolecular luminescence. Dalton Trans. 2020, 49, 15602-15606. 9. Hsu, Y.-F.; Wu, T.-W.; Kang, Y.-H.; Wu, C.-Y.; Liu, Y.-H.; Peng, S.-M.; Kong, K.-V.; Yang, J.-S., Porous Supramolecular Assembly of Pentiptycene-Containing Gold(I) Complexes: Persistent Excited-State Aurophilicity and Inclusion-Induced Emission Enhancement. Inorg. Chem. 2022, 61, 11981-11991. 10. Koshevoy, I. O.; Chang, Y.-C.; Karttunen, A. J.; Selivanov, S. I.; Jänis, J.; Haukka, M.; Pakkanen, T.; Tunik, S. P.; Chou, P.-T.; Intensely Luminescent Homoleptic Alkynyl Decanuclear Gold(I) Clusters and Their Cationic Octanuclear Phosphine Derivatives. Inorg. Chem. 2012, 51, 7392-7403. 11. Hsu, L.-Y.; Maity, S.; Matsunaga, Y.; Hsu, Y.-F.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S., Photomechanochromic vs. mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chem. Sci. 2018, 9, 8990-9001. 12. Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Tsai, H.-H. G.; Lee, G.-H.; Peng, S.-M. Probing the Intrachain and Interchain Effects on the Fluorescence Behavior of Pentiptycene-Derived Oligo(p-phenyleneethynylene)s. J. Am. Chem. Soc. 2006, 43, 14109-14119. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87565 | - |
dc.description.abstract | 光響應的有機晶體已經成為一類新的傳感器和執行器材料。本實驗室先前發展了一系列五苯荑-蒽衍生物P(Cn),通過改變五苯荑中心環的烷基鏈長度,具有不同的同質多形體,因為晶體內部不同的排列模式,使晶體的剛硬性有所不同,蒽環在發生二聚化反應時表現出特殊的光機械力致螢光變色(Photomechanofluorochromism, PMFC)現象。近期,實驗室將氟原子引入烷基中,合成出具有半氟烷基鏈的F-C4C4化合物,晶體在光刺激下,由於二聚體不均勻的產生,毫米級晶體發生伸長及彎曲的光機械效應,同時具有彈性彎曲的現象,此性質在過去文獻中相當少見。
本研究乃針對F-C4C4化合物作進一步分析和討論,包含利用共軛焦顯微鏡了解晶體的PMFC性質,利用奈米壓痕來測量晶體對外部應力的適應性,也記錄了晶體的伸長前後的三維變化量及利用粉末繞射來探討晶體在光機械效應過程中的變化,排除晶體晶格缺陷造成晶體伸長的可能性。 另外,透過設計不同碳氟鏈取代之分子,分別為F-C4C2、F-C4C8、F-C8C4、F-C3C8,對其進行晶體結構、光物理參數、二聚體程度與F-C4C4比較,深入探討氟鏈對光機械效應及彈性彎曲的變化機制。 | zh_TW |
dc.description.abstract | Photo-responsive organic crystals have emerged as a new class of sensor and actuator materials in recent years. Our laboratory has previously developed a series of pentiptycene-anthracene derivatives P(Cn) by changing the length of the alkyl chain. P(Cn) exhibits a special polymorph-dependent photomechanofluorochromism (PMFC) during photodimerization. Recently, fluorine atoms were introduced into the alkyl chain to form compound F-C4C4 with a semi-fluoroalkyl chain, and its rod-shaped crystals are elastic. In addition, when the crystals are irradiated with light, the millimeter-scale crystals undergo elongation and photomechanical bending due to the generation of dimers. This property is quite rare in the literature.
In this thesis, the photomechanical properties of F-C4C4 are further explored, including the use of confocal microscopy to understand the PMFC propertie, the use of nanoindentation to measure the hardness and elastic modulus, the investigation of the crystal size effect on elongation, and powder X-ray diffraction anaylsis on the irradiated crystals.We also designed and synthesized compounds F-C4C2, F-C4C8, F-C8C4 and F-C3C8 differing in the fluoroalkyl chain for studies and comparison with F-C4C4 in their photomechanical and mechanical properties. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:05:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:05:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 I
摘要 IV Abstract V 目錄 VI 圖目錄 IX 表目錄 XV 附圖目錄 XVI 附表目錄 XIX 附錄附圖目錄 XX 附錄附表目錄 XXII 第一章 緒論 1 1-1 智能材料-放光變色材料 1 1-1-1 薰致放光變色 1 1-1-2 熱致放光變色 2 1-1-3 力致放光變色 3 1-1-4 光致放光變色 5 1-2 智能材料-動態分子晶體 6 1-2-1 塑性晶體 7 1-2-1.1 光化學反應 7 1-2-1.2 光機械效應 10 1-2-1.3 其他刺激致機械效應 17 1-2-2 彈性晶體 20 1-3 五苯荑衍生物之固態智能材料 23 1-3-1 五苯荑簡介 23 1-3-2 含五苯荑基團之固態智能材料之應用 24 1-4 研究動機 34 第二章 結果與討論 36 2-1 目標化合物之合成 36 2-2 目標化合物之光物理性質 37 2-2-1 目標化合物之溶液態光物理性質 37 2-2-1.1 目標化合物於二氯甲烷的吸收光譜 38 2-2-1.2 目標化合物於二氯甲烷的激發光譜及放光光譜 38 2-2-2 目標化合物之固態光物理性質 39 2-3 F-C4C4化合物之延伸研究 43 2-3-1 F-C4C4化合物之晶體結構分析 43 2-3-2 F-C4C4化合物之光機械力致螢光變色 45 2-3-3 F-C4C4化合物晶體之光機械效應 47 2-3-4 F-C4C4化合物晶體之彈性彎曲性質 53 2-3-4.1 F-C4C4晶體之彈性彎曲性質 53 2-3-4.2 F-C4C4晶體之機械力致螢光變色 57 2-4 其他目標化合物之分析 58 2-4-1 其他目標化合物之光機械力致放光變色 58 2-4-1.1 F-C4C2之光機械力致螢光變色 61 2-4-1.2 F-C4C8之光機械力致螢光變色 63 2-4-1.3 F-C8C4之光機械力致螢光變色 66 2-4-1.4 F-C3C8之光機械力致螢光變色 68 2-4-2 其他目標化合物晶體之光機械效應 70 2-4-2.1 F-C4C8 之光機械性質 71 2-4-2.2 F-C8C4 之光機械性質 72 第三章 結論 74 第四章 實驗部分 75 4-1 藥品與溶劑 75 4-2 實驗儀器 77 4-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance) 77 4-2-2 高解析度質譜儀 (High Resolution Mass) 77 4-2-3 熔點測定儀 (Melting Point Apparatus) 77 4-2-4 紫外光/可見光吸收光譜儀(Ultraviolet/VisibleSpectrophotometer) 78 4-2-5 螢光光譜儀 (Fluorescence Spectrometer) 78 4-2-6 螢光顯微鏡 (Fluorescence Microscopy) 79 4-2-7 X-光粉末繞射儀 (X-ray Powder Diffractometer) 79 4-2-8 X-光單晶繞射儀 (X-ray Single Crystal Diffractometer) 80 4-2-9 奈米壓痕機械性質分析儀 (Nanoindenter) 80 4-2-10 偏光顯微鏡 80 4-3 實驗方法 80 4-3-1 目標化合物粉末及晶體之製備 80 4-3-1.1粉末樣品製備 80 4-3-1.2晶體樣品製備 81 4-3-2 目標化合物之二聚體的定量方法 81 4-3-3 光反應器進行之伸長量及熱回復數據 83 4-3-4 目標化合物的合成 87 參考資料 102 附圖附表 108 附錄:吡啶配體對金 (I) 炔基錯合物之自耦合反應行為之探究 270 附錄 第一章 緒論 270 附錄 1-1 金化合物之應用 270 附錄 1-2 金 (I) 錯合物之介紹 271 附錄 1-3 炔基配體之金 (I) 錯合物及其光物理性質 272 附錄 1-4 含五苯荑基團之金 (I) 錯合物介紹 274 附錄 1-5 研究動機 278 附錄第二章 結果與討論 279 附錄2-1 目標化合物之合成 279 附錄2-2 目標化合物合成過程之討論 280 附錄第三章 結論 283 附錄第四章 實驗部分 283 附錄參考資料 284 | - |
dc.language.iso | zh_TW | - |
dc.title | 半氟鏈對五苯荑−蒽π系統衍生物之光機械性質調控之研究 | zh_TW |
dc.title | Photomechanical Properties of a Pentiptycene- Anthracene π-System with Different Semifluorinated Alkyl Chain | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 彭旭明;林哲仁;王建隆 | zh_TW |
dc.contributor.oralexamcommittee | Shie-Ming Peng;Che-Jen Lin;Chien-Lung Wang | en |
dc.subject.keyword | 光機械效應,五苯荑,彈性彎曲晶體, | zh_TW |
dc.subject.keyword | photomechanical effect,pentiptycene,elastic bending crystal, | en |
dc.relation.page | 285 | - |
dc.identifier.doi | 10.6342/NTU202300323 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-02-15 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
dc.date.embargo-lift | 2028-02-13 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 此日期後於網路公開 2028-02-13 | 26.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。