Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87564
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳士元zh_TW
dc.contributor.advisorShih-Yuan Chenen
dc.contributor.author詹昀穎zh_TW
dc.contributor.authorYun-Ying Chanen
dc.date.accessioned2023-06-20T16:05:16Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] T. K. Sarkar, R. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, “Historical Background and Development of Soviet Quasioptics at Nearmm and Submm Wavelengths,” History of Wireless, pp.473-542, ch15, IEEE, 2006.
[2] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd Ed, New York: John Wiley & Sons, Inc., 2013.
[3] D. G. Berry, R. G. Malech, and W. A. Kennedy, “The Reflectarray Antenna,” IEEE Transactions on Antennas and Propagation, vol. AP ‐ 11, pp. 645-651, Nov. 1963.
[4] P. Nayeri, F. Yang, and A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs, and Applications, IEEE, 2018.
[5] Q. Chen, S. Qu, X. Zhang, and M. Xia, “Low-Profile Wideband Reflectarray by Novel Elements with Linear Phase Response,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1545-1547, 2012.
[6] M. H. Dahri, M. H. Jamaluddin, M. I. Abbasi, and M. R. Kamarudin, “A Review of Wideband Reflectarray Antennas for 5G Communication Systems,” IEEE Access, vol. 5, pp. 17803-17815, 2017.
[7] R. Deng, S. Xu, F. Yang, and M. Li, “A Single-Layer High-Efficiency Wideband Reflectarray Using Hybrid Design Approach,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 884-887, 2017.
[8] H. Hasani, C. Peixeiro, A. K. Skrivervik, and J. Perruisseau-Carrier, “Single-Layer Quad-Band Printed Reflectarray Antenna with Dual Linear Polarization,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5522-5528, Dec. 2015.
[9] E. Martinez-de-Rioja, J. A. Encinar, M. Barba, R. Florencio, R. R. Boix, and V. Losada, “Dual Polarized Reflectarray Transmit Antenna for Operation in Ku- and Ka-Bands with Independent Feeds,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 6, pp. 3241-3246, Jun. 2017.
[10] P. Naseri, M. Riel, Y. Demers, and S. V. Hum, “A Dual-Band Dual-Circularly Polarized Reflectarray for K/Ka-Band Space Applications,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4627-4637, Jun. 2020.
[11] R. Florencio, J. A. Encinar, R. R. Boix, M. Barba, and G. Toso, “Flat Reflectarray That Generates Adjacent Beams by Discriminating in Dual Circular Polarization,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3733-3742, Jun. 2019.
[12] Q. Luo, S. Gao, W. Li, M. Sobhy, I. Bakaimi, C. H. K. d. Groot, B. Hayden, I. Reaney, and X. Yang, “Multibeam Dual-Circularly Polarized Reflectarray for Connected and Autonomous Vehicles,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3574-3585, Apr. 2019.
[13] T. Debogovic and J. Perruisseau-Carrier, “Low Loss MEMS-Reconfigurable 1-Bit Reflectarray Cell with Dual-Linear Polarization,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 10, pp. 5055-5060, Oct. 2014.
[14] S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, pp. 183-198, Jan. 2014.
[15] X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A Broadband High-Efficiency Reconfigurable Reflectarray Antenna Using Mechanically Rotational Elements,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 3959-3966, Aug. 2017.
[16] S. Mener, R. Gillard, R. Sauleau, A. Bellion, and P. Potier, “Dual Circularly Polarized Reflectarray With Independent Control of Polarizations,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1877-1881, Apr. 2015.
[17] M.-A. Joyal, R. El Hani, M. Riel, Y. Demers, and J.-J. Laurin, “A Reflectarray-Based Dual-Surface Reflector Working in Circular Polarization,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1306-1313, Apr. 2015.
[18] M. Nagasaka, M. Kojima, H. Sujikai, J. Hirokawa, “12- and 21-GHz Dual-Band Dual-Circularly Polarized Offset Parabolic Reflector Antenna Fed by Microstrip Antenna Arrays for Satellite Broadcasting Reception”, IEICE Transactions on Communications, vol. E102.B, 7, pp. 1323-1333, Jul. 2019.
[19] X. Zhang, F. Yang, S. Xu, and M. Li, “Single-Layer Reflectarray Antenna with Independent Dual-CP Beam Control,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 4, pp. 532-536, Apr. 2020.
[20] J. Huang and J. A. Encinar, Reflectarray Antennas, IEEE, 2008.
[21] A. K. Bhattacharyya, Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems, John Wiley & Sons, Inc., 2006.
[22] B. A. Munk, Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
[23] J. Ethier, M.R. Chaharmir, and J. Shaker, “Reflectarray Design Comprised of Sub-Wavelength Coupled-Resonant Square Loop Elements”, Electronics Letters, vol. 47, 22, pp. 1215-1217, 2011.
[24] P.-Y. Qin, Y. J. Guo, and A. R. Weily, “Broadband Reflectarray Antenna Using Subwavelength Elements Based on Double Square Meander-Line Rings,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 378-383, Jan. 2016.
[25] M. H. Jamaluddin, M. K. A. Rahim, M. Z. A. A. Aziz, and A. Asrokin, “Microstrip dipole antenna analysis with different width and length at 2.4 GHz,” 2005 Asia-Pacific Conference on Applied Electromagnetics, pp. 41-44, 2005.
[26] Q. Chen, S. Qu, J. Li, Q. Chen, and M. Xia, “An X-Band Reflectarray With Novel Elements and Enhanced Bandwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 317-320, Mar. 2013.
[27] M. Zhao, G. Zhang, X. Lei, J. Wu, and J. Shang, “Design of New Single-Layer Multiple-Resonance Broadband Circularly Polarized Reflectarrays,” IEEE Antennas and Wireless Propagation Letters, vol. 12, Mar. 2013.
[28] W.-T. Hung and S.-Y. Chen, “A Varactor-Loaded Cross Dipole Unit Cell for Circularly Polarized Beam-Steering Reflectarray,” IEEE AP-S International Symposium and URSI Radio Science Meeting, Chicago, Illinois, Jul. 2012
[29] Y.-Y. Chan and S.-Y. Chen, “Independent Dual-LP Reflectarray Unit Cell Based on Crossed Dipoles with Split Rings,” 2021 International Symposium on Antennas and Propagation (ISAP), pp. 1-2, 2021.
[30] S. V. Hum and B. Du, “Equivalent Circuit Modeling for Reflectarrays Using Floquet Modal Expansion,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 3, pp. 1131-1140, Mar. 2017.
[31] F. Costa and A. Monorchio, “Closed-Form Analysis of Reflection Losses in Microstrip Reflectarray Antennas,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4650-4660, Oct. 2012.
[32] J. D. Kraus and R. J. Marhefka, Antennas for All Applications, 3rd ed., New York: McGraw-Hill, 2002.
[33] C. K. Lee and R. J. Langley, “Equivalent-Circuit Models for Frequency Selective Surfaces at Oblique Angles of Incidence,” Proceedings of the IEEE, vol. 132, Pt. H, no. 6, pp. 395-399, Jun. 1985.
[34] Y.-Y. Chan and S.-Y. Chen, “Generalized Equivalent Circuit Model of a Split-Ring-Loaded Dipole Reflectarray Unit Cell Under TE Oblique Incidence,” IEICE Communications Express, vol. 11, no. 6, pp. 284-289, Jun. 2022.
[35] D. M. Pozar, Microwave Engineering, 4th ed., Wiley, 2011.
[36] J. Huang, “Analysis of a Microstrip Reflectarray Antenna for Microspacecraft Applications,” Telecommunications and Data Acquisition Progress Report, pp. 153-173, Feb. 1995.
[37] Datasheet of JXTXLB-90-10-C-SF: http://www.ainfoinc.com.cn/en/pro_pdf/new_products/antenna/Standard%20Gain%20Horn%20Antenna/tr_LB-90-10.pdf
[38] L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A Dual-Layer T-Shaped Element for Broadband Circularly Polarized Reflectarray With Linearly Polarized Feed,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 407-410, 2011.
[39] F. Ahmadi, K. Forooraghi, Z. Atlasbaf, and B. Virdee, “Dual Linear-Polarized Dielectric Resonator Reflectarray Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 635-638, 2013.
[40] R. Florencio, J. A. Encinar, R. R. Boix, V. Losada, and G. Toso, “Reflectarray Antennas for Dual Polarization and Broadband Telecom Satellite Applications,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1234-1246, Apr. 2015.
[41] G. Wu, S. Qu, S. Yang, and C. H. Chan, “Broadband, Single-Layer Dual Circularly Polarized Reflectarrays With Linearly Polarized Feed,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4235-4241, Oct. 2016.
[42] R. Deng, F. Yang, S. Xu, and M. Li, “An FSS-Backed 20/30-GHz Dual-Band Circularly Polarized Reflectarray With Suppressed Mutual Coupling and Enhanced Performance,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 926-931, Feb. 2017.
[43] J. Yin, Q. Lou, H. Wang, Z. N. Chen, and W. Hong, “Broadband Dual-Polarized Single-Layer Reflectarray Antenna with Independently Controllable 1-Bit Dual Beams,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3294-3302, Jun. 2021.
[44] L.-X. Wu, Q. Hu, X.-Y. Luo, J. Zhao, T. Jiang, K. Chen, and Y. Feng, “Wideband Dual-Feed Dual-Polarized Reflectarray Antenna Using Anisotropic Metasurface,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 1, pp. 129-133, Jan. 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87564-
dc.description.abstract建立在普通偶極反射天線單元的基礎上,本論文提出應用於雙圓極化反射式陣列天線的交叉偶極負載裂環之天線單元。每單元由一組正交且負載裂環之偶極組成,分別於支撐介質RT/Duroid 5880之印刷電路上下兩面,且此介質下方置有金屬板。其特色為結構簡單,對於兩正交方向之極化皆能提供360度以上的反射相位,且兩極化方向各自獨立。
本論文接著提出正向入射及TE斜向入射下,交叉偶極負載裂環天線單元的等效電路模型。只適用於正向入射的一般模型包含兩組共振的電容電感電阻,兩段相接的傳輸線,以及終端的短路電路。天線單元物理結構不同對於電容電感電阻的變化亦於文中討論。而適用TE斜向入射的廣義模型,只需要於正向入射的一般模型中,額外增加一段傳輸線及一顆電阻即可完成。此將模型廣義化的方法亦適用於偶極單元組成的頻率選擇表面及反射陣列天線單元,且將廣義模型會於代入正向入射條件時,廣義模型退化回適用於正向入射的一般模型。不同斜向入射角度對於電容電感電阻的變化也於文中討論。
最後,我們使用交叉偶極負載裂環單元設計,製作並量測一工作於10 GHz,包含1076天線單元的反射式陣列天線。受惠於單元簡單之特性及廣義模型對於相位之初步估計,全波模擬在無最佳化的情況下便能夠得到與前人特性相當的結果。模擬結果顯示反射式陣列天線只需要旋轉其中的饋入天線,便能得到右手圓極化31.5 dBi和左手圓極化31.1 dBi的高增益。若將饋入天線改為一雙線性極化之饋入天線,雙圓極化反射式陣列天線即可直接實現。此實作之反射式陣列天線在10 GHz量測之右手圓極化增益為29 dBi,對應天線孔徑效率23.5%,另外半功率波束寬度 ,旁波瓣低於主波瓣16.3 dB。造成輻射場型偏差以及增益降低的可能原因亦於文中討論。
zh_TW
dc.description.abstractFrom the plain strip dipole unit cell, the development of the crossed split-ring-loaded dipoles unit cell for a dual circularly polarized reflectarray antenna is presented in this thesis. Consisting of only dipoles and split rings printed on two faces of the supporting RT/Duroid 5880 substrate layer placed above the metal ground plane, the unit cell features simple structures, capability of providing an over 360° reflection phase range for both x- and y-polarization, and independence between the two polarizations.
Then, the corresponding equivalent circuit model is presented, for both the normal incidence cases and the generalized TE oblique incidence cases. The conventional model valid only for normal incidence cases consists of two series RLC resonators, two connected transmission line sections, and a short circuit termination. Influences of the geometric parameters of the unit cell on corresponding RLC values are also discussed. For the TE oblique incidence cases, only an additional transmission line section and an additional resistor is added to form the generalized circuit model, compared to the conventional model under normal incidence. The proposed simple generalization method is also applicable for the dipole array FSS, and the dipole array unit cell, and the generalized models degenerate to the conventional model under normal incidence. The influence of the incident angle on corresponding RLC values are also discussed.
Last, a 10-GHz prototype reflectarray antenna with 1076 crossed split-ring-loaded dipoles unit cell is designed, fabricated, and tested. Benefit from the simplicity of the unit cell structure and the preliminary phase estimation using the generalized circuit model, the full-wave simulation gives promising results comparable to prior works without any optimization during the full array design analysis. The simulation shows that peak gains of 31.5 dBi and 31.1 dBi for the right-handed and the left-handed circular polarization, respectively, could be obtained simply by rotating the feeding horn antenna in the reflectarray. By replacing the feeding antenna with a dual linearly polarized one, a dual circularly polarized reflectarray could readily to realized. The fabricated prototype of the reflectarray antenna exhibits a measured RHCP gain of 29 dBi with an aperture efficiency 23.5%, half-power beamwidth of 3.8°, and sidelobe level below -16.3 dB, and a measured LHCP gain of 28.8 dBi with an aperture efficiency 22.4%, half-power beamwidth of 3.5°, and sidelobe level below -15.9 dB, both at 10 GHz. The possible causes of the deviation between the simulated and measured results are also discussed.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:05:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:05:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Backgrounds of Reflectarray Antennas 1
1.2 Motivations 2
1.3 Overview 4
Chapter 2 Analysis of the Dipole Based Unit Cells 5
2.1 Unit Cell of Dipole (Dipole Array) 6
2.2 Unit Cell of Ring-Loaded Dipole 10
2.3 Unit Cell of Split-Ring-Loaded Dipole 17
2.4 Unit Cell of Crossed Split-Ring-Loaded Dipoles 20
Chapter 3 Equivalent Circuit Models of the Unit Cells 25
3.1 Equivalent Circuit Model of Dipole Array Frequency Selective Surface 26
3.2 Equivalent Circuit Model of Dipole Array Unit Cell 32
3.3 Equivalent Circuit Model of Split-Ring-Loaded Dipole Unit Cell 35
3.4 Generalized Equivalent Circuit Models under TE Oblique Incidence 42
Chapter 4 Analysis of the Reflectarray Antenna 55
4.1 Calculation of Reflection Phase Distribution 55
4.2 Analysis of Focal to Diameter Ratio 57
4.3 Approximation of the Feeding Source 59
4.4 Full Array Simulation Setups and Results 62
Chapter 5 Experiments and Measurements 67
5.1 Fabrication of the Reflectarray Antenna 67
5.2 Measurement Results 70
Chapter 6 Conclusions 79
REFERENCE 81
AWARDS & PUBLICATIONS 87
-
dc.language.isoen-
dc.subjectTE斜向入射zh_TW
dc.subject反射式陣列天線zh_TW
dc.subject等效電路模型zh_TW
dc.subject雙圓極化zh_TW
dc.subjectequivalent circuit modelen
dc.subjectdual circular polarizationen
dc.subjectTE oblique incidenceen
dc.subjectreflectarray antennaen
dc.subjectgeneralized equivalent circuit modelen
dc.title基於交叉偶極負載裂環之雙圓極化反射式陣列天線zh_TW
dc.titleDual Circularly Polarized Reflectarray Antenna Based on Crossed Split-Ring-Loaded Dipoles Unit Cellen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖文照;陳念偉;歐陽良昱zh_TW
dc.contributor.oralexamcommitteeWen-Jiao Liao;Nan-Wei Chen;Liang-Yu Ou Yangen
dc.subject.keyword雙圓極化,等效電路模型,反射式陣列天線,TE斜向入射,zh_TW
dc.subject.keyworddual circular polarization,equivalent circuit model,generalized equivalent circuit model,reflectarray antenna,TE oblique incidence,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202202152-
dc.rights.note未授權-
dc.date.accepted2022-10-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
11.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved