請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87561
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃天偉 | zh_TW |
dc.contributor.advisor | Tian-Wei Huang | en |
dc.contributor.author | 林宜賢 | zh_TW |
dc.contributor.author | Yi-Hsien Lin | en |
dc.date.accessioned | 2023-06-14T16:21:09Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-14 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] J. C. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, no. 10, pp. 1530-1530, Oct. 1975. [2] M. Ambrosanio, S. Franceschini, G. Grassini and F. Baselice, “A multi-channel ultrasound system for non-contact heart rate monitoring,” IEEE Sensors J., vol. 20, no. 4, pp. 2064-2074, Feb. 2020. [3] H. Abuella and S. Ekin, “Non-contact vital signs monitoring through visible light sensing,” IEEE Sensors J., vol. 20, no. 7, pp. 3859-3870, Apr. 2020. [4] J. C. Y. Lai et al., “Wireless sensing of human respiratory parameters by low-power ultrawideband impulse radio radar,” IEEE Trans. Instrum. Meas., vol. 60, no. 3, pp. 928-938, Mar. 2011. [5] B. Schleicher, I. Nasr, A. Trasser and H. Schumacher, “IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076-2085, May 2013. [6] M. Alizadeh, G. Shaker, J. C. M. De Almeida, P. P. Morita and S. Safavi-Naeini, “Remote monitoring of human vital signs using mm-Wave FMCW radar,” IEEE Access, vol. 7, pp. 54958-54968, Apr. 2019. [7] G. Sacco, E. Piuzzi, E. Pittella and S. Pisa, “An FMCW radar for localization and vital signs measurement for different chest orientations,” Sensors, vol. 20, no. 12, Jun. 2020, Art no. 3489. [8] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [9] P.-H. Wu, F.-H. Chung and P. Hsu, “A 5.8 GHz phase- and self-injection-locked CMOS radar sensor chip for vital sign detector miniaturization,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-3. [10] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang and T.-S. Horng, “A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4812-4822, Dec. 2016. [11] C.-H. Tseng and Y.-H. Lin, “24-GHz self-injection-locked vital-sign radar sensor with CMOS injection-locked frequency divider based on push–push oscillator topology,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 11, pp. 1053-1055, Nov. 2018. [12] C.-H. Tseng, L.-T. Yu, J.-K. Huang and C.-L. Chang, “A wearable self-injection-locked sensor with active integrated antenna and differentiator-based envelope detector for vital-sign detection from chest wall and wrist,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2511-2521, May 2018. [13] W.-C. Su, P.-H. Juan, D.-M. Chian, T.-S. Horng, C.-K. Wen and F.-K. Wang, “Human tracking and vital sign monitoring with a switched phased-array self-injection-locked radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Aug. 2020, pp. 659-662. [14] K.-C. Peng, M.-C. Sung, F.-K. Wang and T.-S. Horng, “A wireless-frequency- locked-loop-based vital sign sensor with quadrature tracking and phase-noise reduction capability,” IEEE Sensors J., vol. 21, no. 8, pp. 9706-9715, Apr. 2021. [15] P.-H. Juan, K.-H. Chen and F.-K. Wang, “Frequency-offset self-injection-locked radar with digital frequency demodulation for SNR improvement, elimination of EMI issue, and DC offset calibration,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 1149-1160, Jan. 2021. [16] K.-C. Peng and J.-H. Lee, “A novel active/passive dual-mode sensing technique for detecting vital signs,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 1, pp. 414- 424, Jan. 2020. [17] F. Zhu, K. Wang and K. Wu, “A fundamental-and-harmonic dual-frequency doppler radar system for vital signs detection enabling radar movement self-cancellation,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 5106-5118, Nov. 2018. [18] E. Cardillo, C. Li and A. Caddemi, “Vital sign detection and radar self-motion cancellation through clutter identification,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 3, pp. 1932-1942, Mar. 2021. [19] F. JalaliBidgoli, S. Moghadami and S. Ardalan, “A compact portable microwave life-detection device for finding survivors,” IEEE Embedded Syst. Lett., vol. 8, no. 1, pp. 10-13, Mar. 2016. [20] H.-S. Chang, H.-C. Chu, P.-T. Chen, C.-C. Chang and S.-F. Chang, “Human motion analysis based on multi-channel Doppler radar system,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, Jun. 2019, pp. 1470-1472. [21] Z. Fang et al., “Wide field-of-view locating and multimodal vital sign monitoring based on X-band CMOS-integrated phased-array radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 9, pp. 4054-4065, Sep. 2020. [22] Harikesh, S. S. Chauhan, A. Basu, M. P. Abegaonkar and S. K. Koul, “Through the wall human subject localization and respiration rate detection using multichannel Doppler radar,” IEEE Sensors J., vol. 21, no. 2, pp. 1510-1518, Jan. 2021. [23] C.-H. Chao, T.-W. Hsu and C.-H. Tseng, “Giving Doppler more bounce: A 5.8 GHz microwave high-sensitivity Doppler radar system,” IEEE Microw. Mag., vol. 17, no. 1, pp. 52-57, Jan. 2016. [24] N. T. P. Nguyen, P.-Y. Lyu, M. H. Lin, C.-C. Chang and S.-F. Chang, “A short-time autocorrelation method for noncontact detection of heart rate variability using CW Doppler radar,” in Proc. IEEE MTT-S Int. Microw. Biomed. Conf. (IMBioC), Nanjing, China, May 2019, pp. 1-4. [25] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3143-3152, Dec. 2008. [26] L. Chioukh, H. Boutayeb, D. Deslandes and K. Wu, “Noise and sensitivity of harmonic radar architecture for remote sensing and detection of vital signs,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 1847-1855, Sep. 2014. [27] M. Baboli, A. Singh, B. Soll, O. Boric-Lubecke and V. M. Lubecke, “Wireless sleep apnea detection using continuous wave quadrature Doppler radar,” IEEE Sensors J., vol. 20, no. 1, pp. 538-545, Jan. 2020. [28] C. Li, Y. Xiao and J. Lin, “Experiment and spectral analysis of a low-power Ka- band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464-4471, Dec. 2006. [29] Y. Xiao, J. Lin, O. Boric-Lubecke and M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023-2032, May 2006. [30] T.-H. Liu, M.-L. Hsu and Z.-M. Tsai, “High ranging accuracy and wide detection range interferometry based on frequency-sweeping technique with vital sign sensing function,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 9, pp. 4242-4251, Sep. 2018. [31] T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649-1659, Apr. 2013. [32] J.-H. Cheng, J.-F. Yeh, H.-Y. Yang, J.-H. Tsai, J. Lin and T.-W. Huang, “40-GHz vital sign detection of heartbeat using synchronized motion technique for respiration signal suppression,” in Proc. 42nd Eur. Microw. Conf. (EuMC), Amsterdam, The Netherlands, Oct./Nov. 2012, pp. 21-24. [33] T.-Y. J. Kao, A. Y.-K, Chen, Y. Yan, T.-M. Shen and J. Lin, “A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Montreal, QC, Canada, Jun. 2012, pp. 443-446. [34] H.-R. Chuang, H.-C. Kuo, F.-L. Lin, T.-H. Huang, C.-S. Kuo and Y.-W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring,” IEEE Sensors J., vol. 12, no. 3, pp. 602-609, Mar. 2012. [35] C.-H. Chan, C.-C. Chou and H.-R. Chuang, “Integrated packaging design of low-cost bondwire interconnection for 60-GHz CMOS vital-signs radar sensor chip with millimeter-wave planar antenna,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 8, no. 2, pp. 177-185, Feb. 2018. [36] H. Kim, J. Jeong, “Non-contact measurement of human respiration and heartbeat using W-band Doppler radar sensor,” Sensors, vol. 20, no. 18, p. 5209, Sep. 2020. [37] X. Ma et al., “Design of a 100-GHz double-sideband low-IF CW Doppler radar transceiver for micrometer mechanical vibration and vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2876-2890, Jul. 2020. [38] C. Li and J. Lin, “Optimal carrier frequency of non-contact vital sign detectors,” in IEEE Radio and Wireless Symp. Dig., Long Beach, CA, Jan. 2007, pp. 281-284. [39] F. Weishaupt, I. Walterscheid, O. Biallawons and J. Klare, “Vital sign localization and measurement using an LFMCW MIMO radar,” in Proc. 19th Int. Radar Symp. (IRS), Bonn, Germany, Jun. 2018, pp. 1-8. [40] G.-W. Fang, C.-Y. Huang and C.-L. Yang, “Simultaneous detection of multi-target vital signs using EEMD algorithm based on FMCW radar,” in Proc. IEEE Int. Microw. Biomed. Conf. (IMBioC), Nanjing, China, May 2019, pp. 1-4. [41] M. A. Motin, C. K. Karmakar and M. Palaniswami, “Ensemble empirical mode decomposition with principal component analysis: A novel approach for extracting respiratory rate and heart rate from photoplethysmographic signal,” IEEE J. Biomed. Health Inform., vol. 22, no. 3, pp. 766-774, May 2018. [42] T.-Y. Huang, Y.-H. Lin, J.-H. Cheng, J.-C. Kao, T.-W. Huang and H. Wang, “A high- gain low-noise distributed amplifier with low DC power in 0.18-µm CMOS for vital sign detection radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, May 2015, pp. 1-3. [43] H.-W. Wang, J.-H. Cheng, J.-Y. Zhong, T.-W. Huang and J.-H. Tsai, “A 2-30 GHz ring mixer with active baluns in 0.18-µm CMOS technology for vital sign detection application,” in Proc. Eur. Microw. Conf. (EuMC), Paris, France, Sep. 2015, pp. 901- 904. [44] J.-H. Cheng, Y.-H. Lin, W.-J. Lin, J.-H. Tsai, T.-W. Huang and H. Wang, “An integrated dual-band transmitter for vital sign detection radar applications in 0.18-µm CMOS,” in Proc. 11th Eur. Microw. Integr. Circuits Conf. (EuMIC), London, UK, Oct. 2016, pp. 109-112. [45] M. C. Budge and M. P. Burt, “Range correlation effects on phase and amplitude noise,” in Proc. Southeastcon, Charlotte, NC, 1993, p. 5. [46] A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland and W. B. Jones, “Bessel functions,” in Handbook of Continued Fractions for Special Functions, Dordrecht, Netherlands: Springer, 2008, ch. 17, sec. 1, p. 344. [47] D. M. Pozar, Microwave and RF Wireless System Design, New York: Wiley, 2001. [48] N. Yamada, Y. Tanaka and K. Nishikawa, “Radar cross section for pedestrian in 76GHz band,” in Proc. Eur. Microw. Conf. (EuMC), Paris, France, Oct. 2005, pp. 1-4. [49] J. Fortuny-Guasch and J. Chareau, “Radar cross section measurements of pedestrian dummies and humans in the 24/77 GHz frequency bands,” Publications Office Eur. Union, Luxembourg, Tech. Rep., JRC78619, 2013. [50] O. Aardal, S.-E. Hamran, T. Berger, J. Hammerstad and T. S. Lande, “Radar cross section of the human heartbeat and respiration in the 500MHz to 3GHz band,” in IEEE Radio and Wireless Symp. Dig., Phoenix, AZ, Jan. 2011, pp. 422-425. [51] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-µm CMOS for noncontact vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1410- 1419, May 2010. [52] A. D. Droitcour, O. Boric-Lubecke and G. T. A. Kovacs, “Signal-to-noise ratio in Doppler radar system for heart and respiratory rate measurements,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 10, pp. 2498-2507, Oct. 2009. [53] International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz),” Health Phys., vol. 118, no. 5, pp. 483-524, May 2020. [54] T.-Y. Huang, “Design and research of key components for microwave and millimeter-wave systems,” M.S. thesis, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2015. [55] M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S. Chang and J. G. J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 12, pp. 554-556, Dec. 2004. [56] H.-W. Wang, “Design of broadband down-converted mixer and switch type phase shifter for vital sign detector applications,” M.S. thesis, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2015. [57] Y.-H. Lin, S.-C. Hsiao, J.-H. Tsai and T.-W. Huang, “A 0.7-mW V-Band transformer- based positive-feedback receiver front-end in a 65-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 6, pp. 613-616, Jun. 2020. [58] J.-H. Cheng, “Design of a wideband PLL front-end and a 2-to-30-GHz receiver for noncontact vital sign detection,” Ph.D. dissertation, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2017. [59] INA12x Precision, Low-Power Instrumentation Amplifiers, INA128 datasheet, Texas Instruments, Dallas, TX, USA, Oct. 1995. [60] “Vital signs (body temperature, pulse rate, respiration rate, blood pressure),” Johns Hopkins Medicine. https://www.hopkinsmedicine.org/health/conditions-and-diseases/vital-signs-body-temperature-pulse-rate-respiration-rate-blood-pressure [Accessed Aug. 31, 2022]. [61] “Vital signs,” Cleveland Clinic. https:// my.clevelandclinic.org/ health/ articles/ 10881-vital-signs [Accessed Dec. 2, 2021]. [62] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996. [63] Y.-H. Lin, J.-H. Tsai, Y.-H. Kuo and T.-W. Huang, “An ultra low-power 24 GHz phase-lock-loop with low phase-noise VCO embedded in 0.18 µm CMOS process,” in Proc. Asia-Pacific Microw. Conf. (APMC), Melbourne, Australia, Dec. 2011, pp. 1630-1633. [64] J.-H. Cheng, J.-A. Lin, M.-H. Wu, J.-H. Tsai and T.-W. Huang, “A 6-GHz integer frequency synthesizer for SATA III applications in 0.18-µm CMOS technology,” in Proc. Asia-Pacific Microw. Conf. (APMC), Nanjing, China, Dec. 2015, pp. 1-3. [65] C.-H. Yu, J.-H. Tsai and T.-W. Huang, “A low-power Ka-band frequency synthesizer with transformer feedback VCO embedded in 90-nm COMS technology,” in Proc. IEEE Int. Wireless Symp. (IWS), Beijing, China, Apr. 2013, pp. 1-4. [66] P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai and H. Wang, “Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand balun,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1913- 1923, May 2013. [67] “Buffer amplifier, GaAs MMIC 4-11 GHz,” XB1007-QT datasheet, MACOM, Sep. 2007. [68] “Buffer amplifier 10-21 GHz,” XB1008-QT datasheet, MACOM, Sep. 2007. [69] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838-848, Mar. 2004. [70] I. K. Ukaegbu and K. A. A. Gamage, “Parametric analysis and bandwidth optimisation of hybrid linear-exponential tapered slot Vivaldi antennas,” in Proc. Loughborough Antennas Propag. Conf. (LAPC), Loughborough, UK, Nov. 2017, pp. 1-5. [71] K. T. Selvan and R. Janaswamy, “Fraunhofer and Fresnel distances : Unified derivation for aperture antennas,” IEEE Antennas Propag. Mag., vol. 59, no. 4, pp. 12-15, Aug. 2017. [72] A. Zeiler, R. Faltermeier, I. R. Keck, A. M. Tomé, C. G. Puntonet and E. W. Lang, “Empirical mode decomposition - An introduction,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Barcelona, Spain, Jul. 2010, pp. 1-8. [73] G. Wang, X.-Y. Chen, F.-L. Qiao, Z. Wu, and N. E. Huang, “On intrinsic mode function,” Adv. Adapt. Data Anal., vol. 2, no. 3, pp. 277-293, Jul. 2010. [74] Y. Gao, G. Ge, Z. Sheng and E. Sang, “Analysis and solution to the mode mixing phenomenon in EMD,” in Proc. Congr. Image Signal Process., Sanya, China, May 2008, pp. 223-227. [75] M. E. Torres, M. A. Colominas, G. Schlotthauer and P. Flandrin, “A complete ensemble empirical mode decomposition with adaptive noise,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Prague, Czech Republic, May 2011, pp. 4144-4147. [76] S. Sehgal, H. Singh, M. Agarwal, V. Bhasker and Shantanu, “Data analysis using principal component analysis,” in Proc. Int. Conf. Med. Imag. m-Health Emerg. Commun. Syst. (MedCom), Greater Noida, India, Nov. 2014, pp. 45-48. [77] S. Shan, B. Cao, Y. Su, L. Qing, X. Chen and W. Gao, “Unified principal component analysis with generalized covariance matrix for face recognition,” in Proc. Conf. Comput. Vision Pattern Recognit., Anchorage, AK, Jun. 2008, pp. 1-7. [78] R. Bracewell, “Pentagram notation for cross correlation,” in The Fourier Transform and Its Applications, New York: McGraw-Hill, 1965, pp. 46 and 243. [79] J. Fransaer and D. Fransaer, ”Fast cross-correlation algorithm with application to spectral analysis,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 2089-2092, Sep. 1991. [80] ITU Radio Regulations, CHAPTER II–Frequencies, ARTICLE 5 Frequency allocations, Section IV–Table of Frequency Allocations. [81] RO4000® Series High Frequency Circuit Materials, RO4000 laminates RO4003C and RO4350B data Sheet, Rogers Corporation, Chandler, AZ, USA, 2022. [82] N. E. Huang and S. S. P. Shen, Hilbert-Huang Transform and Its Applications, Singapore: World Scientific, 2005. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87561 | - |
dc.description.abstract | 本論文提出了利用多頻率連續波 (multiple-frequency continuous-wave, MFCW)進行生命體徵偵測的概念。多頻率連續波雷達系統具有應對人體各種生理狀況的能力。根據數學模型,通過分析輸出基頻信號的振幅和頻譜成分,針對不同的胸腔運動振幅,尋找一個該狀況下最佳的偵測載波頻率。此外,也針對了雷達模組的偵測距離進行鏈路分析 (link budget) 計算。數學模型與鏈路計算皆於論文中得到了實驗驗證,理論和實驗結果高度吻合。 在實驗一中,使用一個寬頻接收器前端電路,於 4 GHz 到 30 GHz 的載波頻率之間,驗證了在各種胸腔運動振幅下的生命體徵信號分辨率。實驗結果證明了,在憋氣和在不同強度的呼吸下,個別存在不同的最佳偵測載波頻率。同時,所得的實驗結果與數學模型擁有高吻合度。 應用實驗一中的結果,利用雙頻收發模組開發了一個雙頻偵測流程。雙頻雷達系統的工作頻率為 4.26 GHz 至 4.95 GHz 和 17.06 GHz 至 19.79 GHz。 在實驗二中,模擬了從遠處尋找一生命狀況未知的待測者的情境。實驗過程中,呼吸信號的探測距離可達到 12 公尺,心跳信號的探測距離則可達到 6 公尺。即使用木板或磚牆作為偵測路徑中的障礙物,生命體徵偵測也是可行的。 接著在實驗三中,進行了併行 (concurrent) 雙頻 MFCW 偵測以進行更精確的分析。從併行的偵測結果中,可以通過比較不同載波頻率下的偵測結果來推斷呼吸狀態;此外,通過對集成經驗模態分解(EEMD)和主成分分析(PCA)後的結果進行互相關,可減少呼吸諧波或互調音調的非線性影響,從而實現更準確的心率識別。 接收器前端電路和信號源皆採用台積電 CMOS 180 奈米技術製造,並封裝在Rogers RO4003C 印刷電路板 (PCB) 上。韋瓦第天線由於其寬帶特性,被應用於本論文的各個實驗中。 | zh_TW |
dc.description.abstract | This dissertation presents a concept of vital-sign detection using multiple frequencies of continuous wave. A multiple-frequency continuous-wave (MFCW) radar system has the ability to cope with various physiological conditions of a human subject. Following the mathematical model, the respective favorable carrier frequencies for detection under different thoracic movements are sought, by analyzing the amplitude and spectral com- position of the output baseband signal. Furthermore, the link budget is calculated for the detection distance of the radar module. Both the mathematical model and the link budget calculation have been verified by experiments in this dissertation, and the theoretical and experimental results are highly consistent. In Experiment 1, the resolution of vital-sign signals from carrier frequency of 4 GHz to 30 GHz under various thoracic movements is verified by using a broadband receiver front-end. The results show that there are different favorable detection carrier frequencies for breath-holding and different intensities of respiration. At the same time, the obtained experimental results are in good agreement with the mathematical model. Applying the results in Experiment 1, a dual-band detection process is developed utilizing the dual-band transceiver module. The frequencies of the dual-band radar system are 4.26 GHz to 4.95 GHz and 17.06 GHz to 19.79 GHz. In Experiment 2, it emulates searching for a subject with unknown vital condition from a distance. During the experiment, the respiratory signal could be detected up to 12 meters, and the heartbeat signal could be detected up to 6 meters. Vital-sign detection was satisfactory even with a wooden plank or brick wall as a barrier in the detection path. Later in Experiment 3, a concurrent dual-band MFCW detection is carried out for more precise analyses. From the concurrent detection results, the breathing status can be inferred by comparing the detection results under different carrier frequencies; Besides, by adopting cross-correlation to the results after the ensemble empirical mode decomposition (EEMD) and principal component analysis (PCA), the nonlinear effects of respiratory harmonics or intermodulation tones are reduced, enabling accurate heart rate identification. The receiver front-end and the signal source are both manufactured by TSMC CMOS 180-nm technology, and packaged on an Rogers RO4003C printed-circuit board (PCB). The Vivaldi antenna is applied to the experiments in this dissertation due to its broadband characteristics. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-14T16:21:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-14T16:21:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i 致謝 iii 中文摘要 vii Abstract ix Contents xi List of Figures xv List of Tables xxv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Contributions 6 1.3 Organization of This Dissertation 8 Chapter 2 Detection Theory and Procedure 11 2.1 Resolution Modeling and Spectral Analysis 11 2.1.1 Modeling of the Radar Detection Results 11 2.1.2 Mean Amplitudes of the Detected Vital-Sign Signals 15 2.1.3 Amplitude Fluctuations of the Detected Vital-Sign Signals 21 2.1.4 Output Baseband Spectrums 23 2.2 Link Budget Calculation 26 2.2.1 Mean Effective RCS of Respiration and Heartbeat 26 2.2.2 Mean Maximum Detection Distance 29 2.2.3 Contribution of Different Kinds of Noise Figures 34 2.3 Detection Procedure 36 Chapter 3 System Architecture 39 3.1 Broadband Receiver System Block 39 3.1.1 A 4-30 GHz CMOS Distributed Amplifier 40 3.1.2 A 4-30 GHz CMOS Down-Conversion Mixer 42 3.1.3 Integrated Circuit and Module of the Broadband Receiver Front-End 43 3.1.4 Baseband Design and Setup 53 3.1.5 Performance of the Whole Receiver 55 3.2 Dual-Band Transmitter System Block 58 3.2.1 An X-band CMOS Phase-Locked Loop (PLL) 59 3.2.2 A 17-20 GHz CMOS Frequency Doubler 62 3.2.3 Auxiliary Buffer Amplifiers 64 3.2.4 Integrated Circuit of the Dual-Band Transmitter 65 3.3 Dual-Band Transceiver Front-End Module 71 3.3.1 Dual-Band On-PCB Power Splitting Network 75 3.3.2 Transmitter Performance of the Dual-Band Transceiver Front-End Module 80 3.3.3 Receiver Performance of the Dual-Band Transceiver Front-End Module 85 3.4 Broadband Vivaldi Antenna 88 Chapter 4 Algorithmic Processing for Vital-Sign Identification 95 4.1 Ensemble Empirical Mode Decomposition (EEMD) 95 4.1.1 Empirical Mode Decomposition (EMD) 95 4.1.2 From EMD to EEMD 104 4.1.3 Classification of Vital-Sign Signals After EEMD 107 4.2 Principal Component Analysis (PCA) 109 4.3 Cross-Correlation 113 Chapter 5 Vital-Sign Detection Experiments 117 5.1 Experiment 1: Broadband Frequency Agile Detection 118 5.1.1 With the Subject Holding Breath 121 5.1.2 With the Subject Breathing Normally 125 5.1.3 With the Subject Breathing Heavily 129 5.1.4 Summary 133 5.2 Experiment 2: Dual-Band MFCW Channel Agile Detection 134 5.2.1 Detection from a Distance in Line-of-Sight 136 5.2.2 Detection with a Barrier Blocking the Path 142 5.2.2.1 A 5-cm Thick Wooden Plank Blocking the Path 142 5.2.2.2 A 17-cm Thick Brick Wall Blocking the Path 145 5.2.3 Channel Agility 147 5.2.4 Summary and Discussion 149 5.2.4.1 Summary of the Detection Process Under Various Conditions 149 5.2.4.2 Theoretical Mean Maximum Detection Distance 152 5.2.4.3 Possible Reasons for the Difference Between Experimental Results and Theoretical Values 155 5.3 Experiment 3: Concurrent Dual-Band MFCW Detection 157 5.3.1 Detection of Various Physiological Conditions 159 5.3.2 Flow of the EEMD-PCA and Cross-Correlation Process 167 5.3.3 Summary 172 Chapter 6 Conclusions and Future Works 175 6.1 Conclusions 175 6.2 Future Works 177 6.2.1 On Hardware 177 6.2.2 On Software 179 6.2.3 On the Vital-Sign Detection Experiment 179 References 181 List of Publications 193 | - |
dc.language.iso | en | - |
dc.title | 應用於生理活動偵測之微波/毫米波雙頻段智慧型頻率追蹤雷達研究 | zh_TW |
dc.title | Research on Microwave/Millimeter-Wave Dual-Band Smart Frequency Agile Radar for Physiological Movement Detection | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 洪子聖;張盛富;曾昭雄;張鴻埜;陳士元;劉怡君;蔡政翰;張譽騰 | zh_TW |
dc.contributor.oralexamcommittee | Tzyy-Sheng Horng;Sheng-Fuh Chang;Chao-Hsiung Tseng;Hong-Yeh Chang;Shih-Yuan Chen;Yi-Chun Liu;Jeng-Han Tsai;Yu-Teng Chang | en |
dc.subject.keyword | 都卜勒雷達,生命體徵偵測,互補式金氧半場效電晶體,寬頻接收機,雙頻收發機,頻率捷變,多頻率連續波雷達,併行多頻率連續波偵測,集成經驗模態分解,主成分分析,互相關, | zh_TW |
dc.subject.keyword | Doppler radar,vital-sign detection,CMOS,broadband receiver,dual-band transceiver,frequency agility,multiple-frequency continuous-wave (MFCW) radar,concurrent MFCW detection,ensemble empirical mode decomposition (EEMD),principal component analysis (PCA),cross-correlation, | en |
dc.relation.page | 196 | - |
dc.identifier.doi | 10.6342/NTU202204274 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2022-10-20 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 19.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。