請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8754
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 余化龍(Hwa-Lung Yu) | |
dc.contributor.author | Chih-Hsin Wang | en |
dc.contributor.author | 王誌鑫 | zh_TW |
dc.date.accessioned | 2021-05-20T20:00:42Z | - |
dc.date.available | 2010-02-01 | |
dc.date.available | 2021-05-20T20:00:42Z | - |
dc.date.copyright | 2010-02-01 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-01-28 | |
dc.identifier.citation | 王竹方,李崇德(2005),北部空品區懸浮微粒成因探討及改善效益策略研究---子計畫:探討大台北地區懸浮微粒成因及污染來源,行政院國家科學委員會專題研究計畫成果報告(NSC93-EPA-Z007-003)。
王竹方,蔣本基,李崇德(2002),都會型氣膠(PM2.5)管制策略研究---子計畫Ⅲ:以多種化學分析技術探討都會型氣膠(PM2.5)物化特性之研究,行政院國家科學委員會專題研究計畫成果報告(NSC91-EPA-Z007-002)。 王秀娟(1993),台北都會區不同高度懸浮微粒濃度之變異及機動車輛對其之貢獻,國立臺灣大學公共衛生學硏究所碩士學位論文。 王秋森,陳志傑(1999),臭氧及PM1/PM2.5/PM10空氣懸微粒之暴露及健康風險評估---子計畫二:PM1/PM2.5/PM10空氣懸微粒粒徑分佈特性之評估,行政院國家科學委員會專題研究計畫成果報告(NSC90-2621-Z-002-030)。 何怡偉(2004),Nelder-Mead搜尋法處理無限制式及隨機最佳化問題之研究,私立元智大學工業工程與管理系博士學位論文。 李芝珊,氣膠與健康,環保科技通訊,1992,4(5),4。 李崇德,周崇光(2005),微粒空氣污染物研究與修訂空氣品質標準之可行性評估---子計畫二:微粒超級測站微粒監測特性,行政院國家科學委員會專題研究計畫成果報告(NSC94-EPA-Z-008-003)。 邱瑞仙(2008),桃園地區空氣污染物濃度相關性及地理分布,國立中央大學環境工程研究所碩士在職專班論文。 楊忠盛(1998),台北都會區懸浮微粒特性及來源之探討,國立臺灣大學環境工程研究所碩士學位論文。 楊炳隆(2008),不同地域雲凝結核微物理特性之探討,國立中央大學大氣物理所碩士學位論文。 詹俊南(1996),台灣地區PM10污染特性分析,國立臺灣大學環境工程研究所碩士學位論文。 雷侑蓁(2005),空氣懸浮微粒心肺毒性研究,國立臺灣大學職業醫學與工業衛生研究所博士學位論文。 蔣本基(1992),北桃地區空氣污染受體模式應用之研究(三),行政院環境保護署(EPA-81- E3F1-09-06)。 蔣本基,張怡怡,江鴻龍(2003),都會型氣膠(PM2.5)管制策略研究---子計畫一:都會型氣膠(PM2.5)污染源探討分析,行政院國家科學委員會專題研究計畫成果報告(NSC91-EPA-Z-002-003)。 環保署(2003),新莊超級測站年報,行政院環境保護署。 Altman, N. (2000) Krige, smooth, both or neither? (with discussion). Australian & New Zealand Journal of Statistics 42(4), 441-454. Altman, N.S. (1990) Kernel Smoothing of Data with Correlated Errors. Journal of the American Statistical Association 85(411), 749-759. Beckers, F. and Bogaert, P. (1998) Nonstationarity of the mean and unbiased variogram estimation: Extension of the weighted least-squares method. Mathematical Geology 30(2), 223-240. Bell, M.L., Levy, J.K. and Lin, Z. (2008) The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occupational and Environmental Medicine 65(2), 104-111. Chen, M.L., Mao, I.F. and Lin, I.K. (1999) The PM2.5 and PM10 particles in urban areas of Taiwan. Science of the Total Environment 226(2-3), 227-235. Christakos, G. (1991) On Certain Classes of Spatiotemporal Random-Fields with Applications to Space-Time Data-Processing. Ieee Transactions on Systems Man and Cybernetics 21(4), 861-875. Christakos, G. and Olea, R.A. (2005) New space-time perspectives on the propagation characteristics of the Black Death epidemic and its relation to bubonic plague. Stochastic Environmental Research and Risk Assessment 19(5), 307-314. Christakos, G. and Serre, M.L. (2000) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmospheric Environment 34(20), 3393-3406. Christakos,G.(1992), Random Field Models in Earth Sciences. San Diego: Acad Press; New edition, Mineola, N.Y.: Dover Publ.Inc.,2005 Cressie, N. (1985) Fitting Variogram Models by Weighted Least-Squares. Journal of the International Association for Mathematical Geology 17(5), 563-586. Cressie, N. (1987) A Nonparametric View of Generalized Covariances for Kriging. Mathematical Geology 19(5), 425-449. Deutsch, C..V. and A.G.Journel.(1998), Gslib: Geostatistical Software Library and User's Guide.2.0,2nd. Eberhart R, Kennedy J.(1995), A new optimizer using particle swarm theory. Presented at Proceedings of the Sixth InternationalSymposium on Micro Machine and Human Science, Nagora, Japan. Goovaerts, P.(1997), Geostatistics for natural resources evaluation. New York, Oxford University Press. Gotway, C.A. (1991) Fitting Semivariogram Models by Weighted Least-Squares. Computers & Geosciences 17(1), 171-172. Grantz, D.A., Garner, J.H.B. and Johnson, D.W. (2003) Ecological effects of particulate matter. Environment International 29(2-3), 213-239. Hastie, T.and R. Tibshirani,(1990), Generalized additive models. London; New York,Chapman and Hall. Hengl, T., Heuvelink, G.B.M. and Rossiter, D.G. (2007) About regression-kriging: From equations to case studies. Computers & Geosciences 33(10), 1301-1315. Host, G. (1999) Kriging by local polynomials. Computational Statistics & Data Analysis 29(3), 295-312. Jian, X.D., Olea, R.A. and Yu, Y.S. (1996) Semivariogram modeling by weighted least squares. Computers & Geosciences 22(4), 387-397. Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. Siam Journal on Optimization 9(1), 112-147. Lark, R.M. and Papritz, A. (2003) Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma 115(3-4), 245-260. Lei, Y.C., Hwang, J.S., Chan, C.C., Lee, C.T. and Cheng, T.J. (2005) Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles. Environmental Research 99(3), 335-343. Li, C.S. and Lin, C.H. (2002) PM1/PM2.5/PM10 characteristics in the urban atmosphere of Taipei. Aerosol Science and Technology 36(4), 469-473. Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S. (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. Ieee Transactions on Evolutionary Computation 10(3), 281-295. Nelder, J.A. and Mead, R. (1965) A Simplex-Method for Function Minimization. Computer Journal 7(4), 308-313. Neuman, S.P. and Jacobson, E.A. (1984) Analysis of Nonintrinsic Spatial Variability by Residual Kriging with Application to Regional Groundwater Levels. Journal of the International Association for Mathematical Geology 16(5), 499-521. Olea, R. A.(1999), Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publishers. Pardo-Iguzquiza, E. (1999) VARFIT: a fortran-77 program for fitting variogram models by weighted least squares. Computers & Geosciences 25(3), 251-261. Pardo-Iguzquiza, E. and Dowd, P.A. (1998) The second-order stationary universal kriging model revisited. Mathematical Geology 30(4), 347-378. Pelletier, B., Dutilleul, P., Larocque, G. and Fyles, J.W. (2009) Coregionalization analysis with a drift for multi-scale assessment of spatial relationships between ecological variables 1. Estimation of drift and random components. Environmental and Ecological Statistics 16(4), 439-466. Pope, C.A. (2000) Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who's at risk? Environmental Health Perspectives 108, 713-723. Ravagnani, M.A.S.S., Silva, A.P., Biscaia, E.C. and Caballero, J.A. (2009) Optimal Design of Shell-and-Tube Heat Exchangers Using Particle Swarm Optimization. Industrial & Engineering Chemistry Research 48(6), 2927-2935. Shinzawa H, Jiang JH, Iwahashi M, Ozaki Y.(2007), Robust curve fitting method for the Nelder–Mead simplex method in low dimensions, SIAM J. Optim., 9, pp. 112–147. Shinzawa, H., Jiang, J.H., Iwahashi, M. and Ozaki, Y. (2007) Robust curve fitting method for optical spectra by least median squares (LMedS) estimator with particle swarm optimization (PSO). Analytical Sciences 23(7), 781-785. Yanosky, J.D., Paciorek, C.J. and Suh, H.H. (2009) Predicting Chronic Fine and Coarse Particulate Exposures Using Spatiotemporal Models for the Northeastern and Midwestern United States. Environmental Health Perspectives 117(4), 522-529. Yu, H-L, G. Christakos and J-C Chen( 2007), Spatiotemporal air pollution modeling and prediction in epidemiologic research. In Air Pollution Research Trends, Columbus, F. (ed.), Nova Science Publishers, Inc., Hauppauge, NY. 57-75. Zhang, X.F., Vaneijkeren, J.C.H. and Heemink, A.W. (1995) On the Weighted Least-Squares Method for Fitting a Semivariogram Model. Computers & Geosciences 21(4), 605-608. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8754 | - |
dc.description.abstract | 許多地理統計方法都假設資料隨機過程是定常性(stationary)與同質性(homogeneous)。然而在環境資料隨機過程中(例如:PM的時空分佈),常常不具定常性及同質性,也尌是存在著趨勢(trend)。本研究發展一個自動化讓非定常性(non-stationary)及非同質性(non-homogeneous)隨機過程資料的時空共變異數轉換成定常性及同質性資料的時空共變異數。本研究分別使用Kernel smoothing及粒子群最佳化演算法(particle swarm optimization method, PSO)和Nelder-Mead單體法(Nelder-Mead simplex method)來計算趨勢及參數的估計。並利用這些方法來迭代以求得最佳的趨勢與擬合時空共變異數(covariance fitting)。
許多研究指出細懸浮粒子比粗懸浮粒子更容易進入人體造成危隩並影響生態。估算對人類及生態的衝擊需要長期的暴露資料,但是在台北都會區過去並無系統的監測細懸浮粒子,直到2005年8月整個監測網路才完成。台北都會區主要的污染源以工業及交通為主。懸浮粒子相關資料(如:PM10、PM2.5和TSP)獨立搜集於中央及地方政府。在本研究使用貝氏最大熵法(Bayesian Maximum Entropy method, BME)去整合(a)時空的懸浮粒子(b)特殊位置上懸浮粒子的確定性資料(hard data)與不確定性資料(soft data)(c) PM2.5/PM10 and PM10/TSP 比值關係去回推過去2003-2004年台北都會區PM2.5時空分佈機率密度函數(Probability Density Function, PDF)並與觀測值做比較。 本研究利用所提之自動化方法來推估台北市PM10時空分佈中之趨勢與共變異數模式之最佳化參數。PM2.5之回推預測結果顯示本研究可提供合理之推估結果,以2003年新莊超級測站及2004年PM2.5測站為例,其推估相對誤差於分別為10.6%與10.7%,分析結果顯示較高的PM2.5、PM2.5/PM10及PM2.5/TSP值發生在大同區、中山區偏南、中正區及新莊地區。 | zh_TW |
dc.description.abstract | Mary geostatistics approached assume the homogeneity and stationarity of the data process. However, the assumption is not valid for most if environment processes of interest (e.g. spatiotemporal distribution of PM). This study developed an automatic scheme to discompose a nonstationary and nonhomogeneous process into a deterministic trend and a random process which can be characterized by the stationary and homogeneous S/T covariance model. Kernel smoothing method and particle swarm optimization method as well as Nelder-Mead simplex method were applied for trend modeling of parameter estimation, respectively. By the proposed scheme, the spatiotemporal bandwidths as well as the covariance parameters are estimated iteratively in order to account for the goodness-of-fit of trend and covariance modeling as well as the complexity of nested covariance model and S/T correlation among the dataset.
Numerous studies have shown that fine airborne particulate matter particles (PM2.5) are more dangerous to human health than coarse particles, e.g. PM10. The assessment of the impacts to human health or ecological effects by long-term PM2.5 exposure is often limited by lack of PM2.5 measurements. In Taipei, PM2.5 was not systematically observed until August, 2005. Taipei is the largest metropolitan area in Taiwan, where a variety of industrial and traffic emissions are continuously generated and distributed across space and time. PM-related data, i.e., PM10 and Total Suspended Particles (TSP) are independently systematically collected by different central and local government institutes. In this study, the retrospective prediction of spatiotemporal distribution of monthly PM2.5 over Taipei will be performed by using Bayesian Maximum Entropy method (BME) to integrate (a) the spatiotemporal dependence among PM measurements (i.e. PM10, TSP, and PM2.5), (b) the site-specific information of PM measurements which can be certain or uncertain information, and (c) empirical evidence about the PM2.5/PM10 and PM10/TSP ratios. The performance assessment of the retrospective prediction for the spatiotemporal distribution of PM2.5 was performed over space and time during 2003-2004 by comparing the posterior pdf of PM2.5 with the observations. By the proposed scheme, the optimal parameters of trend and covariance models are obtained from PM10 dataset. The retrospective predictions of PM2.5 provide reasonable results in which the relative errors in 2003 at Sinjhuang and 2004 at TWEPA stations are 10.6% and 10.3%, respectively. High values of PM2.5 concentration and the ratios of PM2.5/PM10 and PM2.5/TSP are shown in the areas of Datong district, south of Jungshan district, Jungieng district and Sinjhuang. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:00:42Z (GMT). No. of bitstreams: 1 ntu-99-R96622049-1.pdf: 8141223 bytes, checksum: e91bc72bbb5345b1965f5ec222a59ab0 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 口試委員會審定書
謝誌 I 摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 前言 1 1.1 研究動機 2 1.2 研究目的 3 1.3 研究方法 4 1.3.1 貝氏最大熵法(BME)理論 5 1.3.2 Kernel Smoothing理論 7 1.3.3 交叉驗證(cross validation) 8 1.4 研究區域 8 1.5 本文架構 9 第二章 文獻回顧 10 2.1 計算趨勢相關文獻 10 2.2 擬合共變異數相關文獻 11 2.3 懸浮微粒的影響 12 2.4 台灣懸浮微粒特性 13 2.5 PM2.5組成成份 14 2.6 PM2.5與PM10比值關係 14 第三章 自動化估計在時空非定常性過程之趨勢及共變異數 16 3.1 研究方法 16 3.1.1 粒子群演算法(PSO) 17 3.1.2 Nelder-Mead單體法(NM) 19 3.2 研究資料 21 3.3 研究流程 22 3.4 研究結果 29 3.5 結果討論 38 第四章 台北都會區PM2.5時空分佈推估研究 40 4.1 資料來源 40 4.2 研究流程 42 4.3 結果與討論 47 4.3.1 交叉驗證結果與PM2.5時空推估圖 47 4.3.2 驗證2004年PM2.5結果及PM2.5/PM10、PM2.5/TSP時空分佈圖 60 4.3.3 驗證2003年新莊超級測站PM2.5結果 69 4.4 結果討論 70 4.4.1 交叉驗證結果及推估PM2.5時空分佈之討論 70 4.4.2 回推2004年PM2.5驗證結果及比值時空分佈圖討論 71 4.4.3 回推2003年新莊超級測站PM2.5驗證結果之討論 72 第五章 結論與建議 73 5.1 結論 73 5.2 建議 74 參考文獻 76 附錄一 82 附錄二 84 附錄三 88 | |
dc.language.iso | zh-TW | |
dc.title | 自動化時空過程推估方法之發展及應用,並以台北都會區空氣懸浮粒子時空分佈之研究為例 | zh_TW |
dc.title | Development and Application of Automatic Spatialtemporal Estimation Method
(A Case Study of Spatiotemporal Distribution of Particulate Matter in Taipei) | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳主惠(Chu-Hui Chen),鄭尊仁(Tsun-Jen Cheng),楊長興(Chiang-Hsing Yang),童慶斌(Ching-pin Tung) | |
dc.subject.keyword | 懸浮粒子,貝氏最大熵法,粒子群演算法,NM單體法,擬合共變異數, | zh_TW |
dc.subject.keyword | particulates matter,BME,PSO,NM,covariance fitting, | en |
dc.relation.page | 107 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2010-01-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf | 7.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。