Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張惠婷zh_TW
dc.contributor.advisorHui-Ting Changen
dc.contributor.author何語佟zh_TW
dc.contributor.authorYu-Tung Hoen
dc.date.accessioned2023-06-14T16:10:41Z-
dc.date.available2026-02-07-
dc.date.copyright2023-06-14-
dc.date.issued2023-
dc.date.submitted2023-02-10-
dc.identifier.citation劉怡秀、林群雅、張銀珏、鄭森松、張上鎮 (2016) 香桂葉子精油及其成分之抗病媒蚊幼蟲活性。臺大實驗林研究報告 30(1):1-10。
Adams, R. P. (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry 4th ed. Allured publishing corporation Carol Stream, USA. pp. 804.
Ahmad, N. S., M. Farman, M. H. Najmi, K. B. Mian, and A. Hasan (2008) Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout. Journal of Ethnopharmacology 117(3): 478-482.
Ancans, J., D. J. Tobin, M. J. Hoogduijn, N. P. Smit, K. Wakamatsu, and A. J. Thody (2001) Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Experimental Cell Research 268(1): 26-35.
Anderson, J. E., C. M. Goetz, J. L. McLaughlin, and M. Suffness (1991) A blind comparison of simple bench-top bioassays and human tumour cell cytotoxicities as antitumor prescreens. Phytochemical Analysis 2(3): 107-111.
Avetisyan, A., A. Markosian, M. Petrosyan, N. Sahakyan, A. Babayan, S. Aloyan, and A. Trchounian (2017) Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. Bmc Complementary and Alternative Medicine 17: 8. 60.
Balocchi, F., M. J. Wingfield, T. Paap, R. Ahumada, and I. Barnes (2022) Pathogens of the Araucariaceae: how much do we know? Current Forestry Reports 8(2): 124-147.
Bosly, H. A. E. (2022) Evaluation of larvicidal enhanced activity of sandalwood oil via nano-emulsion against Culex pipiens and Ades aegypti. Saudi Journal of Biological Sciences 29(12): 9. 103455.
Brophy, J. J., R. J. Goldsack, M. Z. Wu, C. J. R. Fookes, and P. I. Forster (2000) The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria). Biochemical Systematics and Ecology 28(6): 563-578.
Camp, E., and M. Lardelli (2001) Tyrosinase gene expression in zebrafish embryos. Development Genes and Evolution 211(3): 150-153.
Chang, C. J., R. Y. Dai, Y. L. Leu, and T. Y. Tsai (2015) Effects of the melanogenic inhibitor, uracil, derived from Lactobacillus plantarum TWK10-fermented soy milk on anti-melanogenesis in B16F0 mouse melanoma cells. Journal of Functional Foods 17: 314-327.
Chang, T. S. (2009) An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences 10(6): 2440-2475.
Chang, T. S. (2012) Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 5(9): 1661-1685.
Chen, W. C., T. S. Tseng, N. W. Hsiao, Y. L. Lin, Z. H. Wen, C. C. Tsai, Y. C. Lee, H. H. Lin, and K. C. Tsai (2015a) Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific Reports 5: 8. 7995.
Chen, Z., D. He, J. Deng, J. Zhu, and Q. Mao (2015b) Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves. Natural Product Research 29(21): 2050-2053.
Cheng, S. S., H. T. Chang, S. T. Chang, K. H. Tsai, and W. J. Chen (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology 89(1): 99-102.
Choi, T. Y., J. H. Kim, D. H. Ko, C. H. Kim, J. S. Hwang, S. Ahn, S. Y. Kim, C. D. Kim, J. H. Lee, and T. J. Yoon (2007) Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Research 20(2): 120-127.
Chou, S. T., W. L. Chang, C. T. Chang, S. L. Hsu, Y. C. Lin, and Y. Shih (2013) Cinnamomum cassia essential oil inhibits alpha-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. International Journal of Molecular Sciences 14(9): 19186-19201.
D’Mello, S. A. N., G. J. Finlay, B. C. Baguley, and M. E. Askarian-Amiri (2016) Signaling pathways in melanogenesis. International Journal of Molecular Sciences 17(7): 1144.
Danna, C., L. Cornara, A. Smeriglio, D. Trombetta, G. Amato, P. Aicardi, L. De Martino, V. De Feo, and L. Caputo (2021) Eucalyptus gunnii and Eucalyptus pulverulenta ‘baby blue' essential oils as potential natural herbicides. Molecules 26(21): 18. 6749.
de Vera, P. J. D., J. C. Tayone, and M. C. S. De las Llagas (2022) Cyperus iria linn. roots ethanol extract: its phytochemicals, cytotoxicity, and anti-inflammatory activity. Journal of Taibah University for Science 16(1): 854-862.
Deveci, E., G. Tel-Cayan, O. Usluer, and M. E. Duru (2019) Chemical composition, antioxidant, anticholinesterase and anti-tyrosinase activities of essential oils of two Sideritis species from Turkey. Iranian Journal of Pharmaceutical Research 18(2): 903-913.
Enzell, C. R., and B. R. Thomas (1965) Chemistry of order Araucariales .2. Wood resin of Agathis australis. Acta Chemica Scandinavica 19(4): 913-919.
Escapa, I. H., A. Iglesias, P. Wilf, S. A. Catalano, M. A. Caraballo-Ortiz, and N. R. Cuneo (2018) Agathis trees of Patagonia's Cretaceous-Paleogene death landscapes and their evolutionary significance. American Journal of Botany 105(8): 1345-1368.
Feng, D. N., Z. X. Fang, and P. Z. Zhang (2022) The melanin inhibitory effect of plants and phytochemicals: A systematic review. Phytomedicine 107: 19. 154449.
Frezza, C., A. Venditti, D. De Vita, C. Toniolo, M. Franceschin, A. Ventrone, L. Tomassini, S. Foddai, M. Guiso, M. Nicoletti, A. Bianco, and M. Serafini (2020) Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family-a review. Plants-Basel 9(7): 73. 888.
Frohnhöfer, H. G., J. Krauss, H.-M. Maischein, and C. Nüsslein-Volhard (2013) Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development 140(14): 2997-3007.
Fujita, H., T. Motokawa, T. Katagiri, S. Yokota, A. Yamamoto, M. Himeno, and Y. Tanaka (2009) Inulavosin, a melanogenesis inhibitor, leads to mistargeting of tyrosinase to lysosomes and accelerates its degradation. Journal of Investigative Dermatology 129(6): 1489-1499.
Garrison, M. S., A. K. Irvine, and W. N. Setzer (2016) Chemical composition of the resin essential oil from Agathis atropurpurea from North Queensland, Australia. American Journal of Essential Oils and Natural Products 4: 4-5.
Goldsmith, P. (2004) Zebrafish as a pharmacological tool: the how, why and when. Current Opinion in Pharmacology 4(5): 504-512.
Govindarajan, M., M. Rajeswary, and G. Benelli (2016) Delta-cadinene, calarene and delta-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Combinatorial Chemistry & High Throughput Screening 19(7): 565-571.
Govindasamy, B., A. Dhayalan, K. Chinnaperumal, D. Paramasiyam, A. Dilipkumar, J. Kannupaiyan, S. Perumal, and P. Pachiappan (2019) Comparative extraction of Salmonella bongori derived metabolites and their toxicity on bacterial pathogens, mosquito-larvae, zebrafish-embryo and brine-shrimp: a modified approach. Ecotoxicology and Environmental Safety 169: 192-206.
Hashim, N. A., F. Ahmad, N. A. Jani, and D. Susanti (2017) In vitro antioxidant, antityrosinase, antibacterial and cytotoxicity activities of the leaf and stem essential oil from Piper magnibaccum C. DC. Journal of Essential Oil Bearing Plants 20(1): 223-232.
Howe, K., M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J. E. Collins, S. Humphray, K. McLaren, L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Churcher, C. Scott, J. C. Barrett, R. Koch, G. J. Rauch, S. White, W. Chow, B. Kilian, L. T. Quintais, J. A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J. H. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. X. Chi, B. Y. Fu, E. Langley, S. F. Maguire, G. K. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida-King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Eliott, G. Threadgold, G. Harden, D. Ware, B. Mortimer, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. Barker, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. Leongamornlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, S. Whitehead, M. Kay, J. Brown, C. Murnane, E. Gray, M. Humphries, N. Sycamore, D. Barker, D. Saunders, J. Wallis, A. Babbage, S. Hammond, M. Mashreghi-Mohammadi, L. Barr, S. Martin, P. Wray, A. Ellington, N. Matthews, M. Ellwood, R. Woodmansey, G. Clark, J. Cooper, A. Tromans, D. Grafham, C. Skuce, R. Pandian, R. Andrews, E. Harrison, A. Kimberley, J. Garnett, N. Fosker, R. Hall, P. Garner, D. Kelly, C. Bird, S. Palmer, I. Gehring, A. Berger, C. M. Dooley, Z. Ersan-Urun, C. Eser, H. Geiger, M. Geisler, L. Karotki, A. Kirn, J. Konantz, M. Konantz, M. Oberlander, S. Rudolph-Geiger, M. Teucke, K. Osoegawa, B. L. Zhu, A. Rapp, S. Widaa, C. Langford, F. T. Yang, N. P. Carter, J. Harrow, Z. M. Ning, J. Herrero, S. M. J. Searle, A. Enright, R. Geisler, R. H. A. Plasterk, C. Lee, M. Westerfield, P. J. de Jong, L. I. Zon, J. H. Postlethwait, C. Nusslein-Volhard, T. J. P. Hubbard, H. Roest Crollius, J. Rogers, and D. L. Stemple (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446): 498-503.
Huang, C. Y., Y. Y. Chang, S. T. Chang, and H. T. Chang (2022) Xanthine oxidase inhibitory activity and chemical composition of Pistacia chinensis leaf essential oil. Pharmaceutics 14(10): 10. 1982.
Huang, C. Y., I. H. Liu, X. Z. Huang, H. J. Chen, S. T. Chang, M. L. Chang, Y. T. Ho, and H. T. Chang (2021) Antimelanogenesis effects of leaf extract and phytochemicals from ceylon olive (Elaeocarpus serratus) in zebrafish model. Pharmaceutics 13(7): 11. 1059.
Imran, M., H. Jan, S. Faisal, S. A. Shah, S. Shah, M. N. Khan, M. T. Akbar, M. Rizwan, F. Jan, and S. Syed (2021) In vitro examination of anti-parasitic, anti-Alzheimer, insecticidal and cytotoxic potential of Ajuga bracteosa Wallich leaves extracts. Saudi Journal of Biological Sciences 28(5): 3031-3036.
Jayaraman, M., A. Senthilkumar, and V. Venkatesalu (2015) Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitology Research 114(4): 1511-1518.
Jeong, E. T., M. H. Jin, M. S. Kim, Y. H. Chang, and S. G. Park (2010) Inhibition of melanogenesis by piceid isolated from Polygonum cuspidatum. Archives of Pharmacal Research 33(9): 1331-1338.
Jiang, H. Z., R. Tan, R. H. Jiao, X. Z. Deng, and R. X. Tan (2016) Herpecaudin from Herpetospermum caudigerum, a xanthine oxidase inhibitor with a iovel isoprenoid scaffold. Planta Medica 82(11-12): 1122-1127.
Judzentiene, A., J. Budiene, I. Nedveckyte, and R. Garjonyte (2022) Antioxidant and toxic activity of Helichrysum arenarium (L.) Moench and Helichrysum italicum (Roth) G. Don essential oils and extracts. Molecules 27(4): 19. 1311.
Kang, S. H., Y. D. Jeon, J. Y. Cha, S. W. Hwang, H. Y. Lee, M. Park, B. R. Lee, M. K. Shin, S. J. Kim, S. M. Shin, D. K. Kim, J. S. Jin, and Y. M. Lee (2018) Antioxidant and skin-whitening effects of aerial part of Euphorbia supina Raf. extract. Bmc Complementary and Alternative Medicine 18: 8. 256.
Khan, N. U., N. Kawano, M. Okigawa, W. Rahman, T. Mashima, and M. Ilyas (1972) Biflavones from leaves of Araucaria bidwillii hooker and Agathis alba foxworthy (Araucariaceae). Tetrahedron 28(23): 5689-5695.
Kim, Y. J., and H. Uyama (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cellular and Molecular Life Sciences 62(15): 1707-1723.
Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling (1995) Stages of embryonic development of the zebrafish. Developmental Dynamics 203(3): 253-310.
Kumar, R., S. S. Darpan, and R. Singh (2011) Xanthine oxidase inhibitors: a patent survey. Expert Opinion on Therapeutic Patents 21(7): 1071-1108.
Lassak, E. V., and J. J. Brophy (2008) The steam-volatile oil of commercial "almaciga" resin (Agathis philippinensis Warb.) from the Philippines. Journal of Essential Oil Bearing Plants 11(6): 634-637.
Lawrence, C. (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269(1-4): 1-20.
Lecker, S. H., A. L. Goldberg, and W. E. Mitch (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. Journal of the American Society of Nephrology 17(7): 1807-1819.
Lee, R., H. J. Ko, K. Kim, Y. Sohn, S. Y. Min, J. A. Kim, D. Na, and J. H. Yeon (2019) Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. Journal of Extracellular Vesicles 9(1): 1703480.
Lieschke, G. J., and P. D. Currie (2007) Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics 8(5): 353-367.
Lin, F. J., H. Li, D. T. Wu, Q. G. Zhuang, H. B. Li, F. Geng, and R. Y. Gan (2021) Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Critical Reviews in Food Science and Nutrition: 1-29.
MacRae, C. A., and R. T. Peterson (2015) Zebrafish as tools for drug discovery. Nature Reviews Drug Discovery 14(10): 721-731.
Malaspina, P., E. Catellani, B. Burlando, D. Brignole, L. Cornara, M. Bazzicalupo, S. Candiani, V. Obino, V. De Feo, L. Caputo, and P. Giordani (2020) Depigmenting potential of lichen extracts evaluated by in vitro and in vivo tests. Peerj 8: 16. e9150.
Masuda, T., D. Yamashita, Y. Takeda, and S. Yonemori (2005) Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Bioscience, Biotechnology and Biochemistry 69(1): 197-201.
Matoba, Y., T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. Journal of Biological Chemistry 281(13): 8981-8990.
McLaughlin, J. L., and L. L. Rogers (1998) The use of biological assays to evaluate botanicals. Drug Information Journal 32(2): 513-524.
Meyer, B. N., N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin (1982) Brine shrimp - a convenient general bioassay for active-plant constituents. Planta Medica 45(1): 31-34.
Monzote, L., A. Piñón, and W. N. Setzer (2014) Antileishmanial potential of tropical rainforest plant extracts. Medicines (Basel) 1(1): 32-55.
Munoz-Munoz, J. L., F. Garcia-Molina, R. Varon, P. A. Garcia-Ruiz, J. Tudela, F. Garcia-Canovas, and J. N. Rodriguez-Lopez (2010) Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase. IUBMB Life 62(7): 539-547.
Ngoc, T. M., I. Lee, D. T. Ha, H. Kim, B. Min, and K. Bae (2009) Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia. Journal of Natural Products 72(6): 1205-1208.
Niksic, H., F. Becic, E. Koric, I. Gusic, E. Omeragic, S. Muratovic, B. Miladinovic, and K. Duric (2021) Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Scientific Reports 11(1): 9. 13178.
Ofman, D. J., K. R. Markham, C. Vilain, and B. P. J. Molloy (1995) Flavonoid profiles of New-Zealand kauri and other species of Agathis. Phytochemistry 38(5): 1223-1228.
Oh, T. I., H. J. Jung, Y. M. Lee, S. Lee, G. H. Kim, S. Y. Kan, H. Kang, T. Oh, H. M. Ko, K. C. Kwak, and J. H. Lim (2018) Zerumbone, a tropical ginger sesquiterpene of Zingiber officinale Roscoe, α-MSH-induced melanogenesis in B16F10 cells. International Journal of Molecular Sciences 19(10): 3149.
Oladimeji, A. O., M. B. Aliyu, A. L. Ogundajo, O. Babatunde, O. I. Adeniran, and O. S. Balogun (2016) Identification and comparison of the volatile constituents of fresh and dried leaves of Spondias mombin found in North-central Nigeria: in vitro evaluation of their cytotoxic and antioxidant activities. Pharmaceutical Biology 54(11): 2674-2678.
Ouknin, M., A. Aghraz, M. Chibane, A. Boumezzourh, J. Costa, and L. Majidi (2021) Enzyme inhibitory, antioxidant activity and phytochemical analysis of essential oil from cultivated Rosmarinus officinalis. Journal of Food Measurement and Characterization 15(4): 3782-3790.
Pathak, N. H., and M. J. F. Barresi (2020) Zebrafish as a model to understand vertebrate development. In S. C. Cartner, J. S. Eisen, S. C. Farmer, K. J. Guillemin, M. L. Kent, and G. E. Sanders Eds., The Zebrafish in Biomedical Research.Academic Press,pp. 559-591.
Pavic, A., T. Ilic-Tomic, and J. Glamoclija (2021) Unravelling anti-melanogenic potency of edible mushrooms Laetiporus sulphureus and Agaricus silvaticus in vivo using the zebrafish model. Journal of Fungi 7(10): 12. 834.
Pei, J., G. Wang, L. Feng, J. Zhang, T. Jiang, Q. Sun, and L. Ouyang (2021) Targeting lysosomal degradation pathways: New strategies and techniques for drug discovery. Journal of Medicinal Chemistry 64(7): 3493-3507.
Pillaiyar, T., M. Manickam, and V. Namasivayam (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 32(1): 403-425.
Pillaiyar, T., V. Namasivayam, M. Manickam, and S. H. Jung (2018) Inhibitors of melanogenesis: An updated review. Journal of Medicinal Chemistry 61(17): 7395-7418.
Qian, W., W. Liu, D. Zhu, Y. Cao, A. Tang, G. Gong, and H. Su (2020) Natural skin-whitening compounds for the treatment of melanogenesis (Review). Experimental and therapeutic medicine 20(1): 173-185.
Rain, A. N., S. Khozirah, M. Ridzuan, B. K. Ong, C. Rohaya, M. Rosilawati, L. Hamdino, A. Badrul, and I. Zaldah (2007) Antiplasmodial properties of some Malaysian medicinal plants. Tropical Biomedicine 24(1): 29-35.
Ramsden, C. A., and P. A. Riley (2014) Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorganic & Medicinal Chemistry 22(8): 2388-2395.
Salleh, W., F. Ahmad, H. Y. Khong, and R. M. Zulkifli (2016) Comparative study of the essential oils of three Beilschmiedia species and their biological activities. International Journal of Food Science and Technology 51(1): 240-249.
Salleh, W., F. Ahmad, and K. H. Yen (2015) Chemical compositions and biological activities of the essential oils of Beilschmiedia madang Blume (Lauraceae). Archives of Pharmacal Research 38(4): 485-493.
Setoguchi, H., T. A. Osawa, J. C. Pintaud, T. Jaffre, and J. M. Veillon (1998) Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85(11): 1507-1516.
Singleman, C., and N. G. Holtzman (2014) Growth and maturation in the zebrafish, Danio rerio: A staging tool for teaching and research. Zebrafish 11(4): 396-406.
Smeriglio, A., V. D'Angelo, M. Denaro, D. Trombetta, and M. P. Germano (2021) The hull of ripe pistachio nuts (Pistacia vera L.) as a source of new promising melanogenesis inhibitors. Plant Foods for Human Nutrition 76(1): 111-117.
Smith, R. M., R. A. Marty, and C. F. Peters (1981) The diterpene acids in the bled resins of 3 pacific kauri, Agathis vitiensis, Agathis lanceolata and Agathis macrophylla. Phytochemistry 20(9): 2205-2207.
Solano, F., S. Briganti, M. Picardo, and G. Ghanem (2006) Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Research 19(6): 550-571.
Sousa, O. V., G. Del-Vechio-Vieira, M. S. Alves, A. A. L. Araujo, M. A. O. Pinto, M. P. H. Amaral, M. P. Rodarte, and M. A. C. Kaplan (2012) Chemical composition and biological activities of the essential oils from Duguetia lanceolata St. Hil. barks. Molecules 17(9): 11056-11066.
Surapuram, V., W. N. Setzer, R. L. McFeeters, and H. McFeeters (2014) Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Natural Product Communications 9(11): 1603-1605.
Thomford, N. E., D. A. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi, and K. Dzobo (2018) Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. International Journal of Molecular Sciences 19(6): 29. 1578.
Tian, Y. F., X. Y. Jia, Q. Q. Wang, T. Y. Lu, G. D. Deng, M. Y. Tian, and Y. Zhou (2022) Antioxidant, antibacterial, enzyme inhibitory, and anticancer activities and chemical composition of Alpinia galanga flower essential oil. Pharmaceuticals 15(9): 15. 1069.
Verma, R. S., R. C. Padalia, P. Goswami, S. K. Verma, A. Chauhan, and M. P. Darokar (2016) Chemical composition and antibacterial activity of the essential oil of kauri pine [Agathis robusta (C. Moore ex F. Muell.) F.M. Bailey] from india. Journal of Wood Chemistry and Technology 36(4): 270-277.
Wang, T. J., J. An, X. H. Chen, Q. D. Deng, and L. Yang (2014) Assessment of Cuscuta chinensis seeds' effect on melanogenesis: Comparison of water and ethanol fractions in vitro and in vivo. Journal of Ethnopharmacology 154(1): 240-248.
Westerfield, M. (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio) (Ed.^Eds. 4th ed.). University of Oregon Press, Eugene, USA. pp.
Yan, T. C., J. Cao, and L. H. Ye (2022) Recent advances on discovery of enzyme inhibitors from natural products using bioactivity screening. Journal of Separation Science 45(14): 2766-2787.
Yoon, N. Y., T. K. Eom, M. M. Kim, and S. K. Kim (2009) Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. Journal of Agricultural and Food Chemistry 57(10): 4124-4129.
Zhou, W., Y. X. He, X. L. Lei, L. K. Liao, T. K. Fu, Y. Yuan, X. B. Huang, L. Q. Zou, Y. H. Liu, R. Ruan, and J. H. Li (2020) Chemical composition and evaluation of antioxidant activities, antimicrobial, and anti-melanogenesis effect of the essential oils extracted from Dalbergia pinnata (Lour.) Prain. Journal of Ethnopharmacology 254: 8. 112731.
Zolghadri, S., A. Bahrami, M. T. H. Khan, J. Munoz-Munoz, F. Garcia-Molina, F. Garcia-Canovas, and A. A. Saboury (2019) A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 34(1): 279-309.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87529-
dc.description.abstract貝殼杉屬 (Agathis) 植物主要分布於東南亞以及南半球,於民俗療法中具有舒緩疼痛功效,在前人研究中具有抗菌、抗真菌與抗瘧疾活性,然而其他的生物活性並無相關記載。此外,貝殼杉 (Agathis dammara) 為貝殼杉屬中少數分布於北半球的物種之一,因此本研究為探討貝殼杉是否具有其他生物活性,收集貝殼杉新鮮葉子後利用水蒸餾法 (hydrodistillation) 萃取貝殼杉葉部精油後,以氣相層析質譜儀分析精油化學成分,得知精油成分以 sesquiterpenoids 為主,依化學結構分類則以 cadinane 骨架的化合物為最多。生物活性方面,利用貝殼杉精油作為試樣測試其對黑色素生成抑制活性、黃嘌呤氧化酶抑制活性、抗病媒蚊幼蟲以及海蝦 (Artemia salina Leach) 致死試驗,在黑色素生成抑制活性探討上,包含測試酪胺酸酶抑制活性 (in vitro) 與斑馬魚 (Danio rerio) 黑色素定量試驗 (in vivo),結果顯示貝殼杉精油可抑制酪胺酸酶作為 diphenolase 之活性,且在斑馬魚黑色素定量試驗中,於 50 μg/mL 濃度時,可以減少斑馬魚體上的黑色素;然而在黃嘌呤氧化酶試驗中,可知貝殼杉葉部精油並非有效抑制尿酸生成的抑制劑。貝殼杉精油在抗病媒蚊幼蟲試驗中,對埃及斑蚊 (Aedes aegypti) 幼蟲具有良好毒殺效果。使用海蝦作為模式生物,貝殼杉精油可有效毒殺海蝦。經過上述活性評估過後,可知貝殼杉精油作為黑色素抑制劑與天然病媒蚊殺蟲劑具開發潛力。zh_TW
dc.description.abstractAgathis species are widely distributed around Southeast Asia and the Southern hemisphere. Traditionally, Agathis species were considered to be a remedy for aches. Besides ache treatment, Agathis species possess antibacterial, antifungal, and antimalarial activities. However, related studies for other bioactivities of the species, especially of Agathis dammara, are limited. Because of the lack of study on the bioactivities of A. dammara, this study aims to investigate the chemical composition of A. dammara leaf essential oil (ADEO) and to explore its bioactivities.
In the first part of the study, the chemical composition of ADEO was analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The results showed that the major constituents of ADEO were sesquiterpenoids characterized by the cadinene skeleton. To investigate bioactivities of ADEO, four activities, including antimelanogenic effect, xanthine oxidase inhibitory activity, mosquito larvicidal activity, and brine shrimp (Artemia salina Leach) lethality, were analyzed. In the antimelanogenic effect evaluation, both in vitro and in vivo assays were carried out. According to the result from in vitro assay, ADEO could inhibit tyrosinase activity when the substrate was 3,4-dihydroxyphenylalanine (L-DOPA). Furthermore, ADEO displayed antimelanogenic effect because ADEO could reduce zebrafish (Danio rerio) pigmentation at the concentration of 50 μg/mL. As for assessments of mosquito larvicidal activity and brine shrimp lethality, ADEO could work effectively against Aedes aegypti larvae and brine shrimp. However, ADEO cannot present xanthine oxidase inhibitory activity in the xanthine oxidase inhibition assay. According to these findings, ADEO could have a potential to be a natural whitening agent and a mosquito larvicide.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-14T16:10:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-14T16:10:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝 誌 I
摘 要 II
Abstract III
目 錄 IV
表目錄 VI
圖目錄 VII
壹、前 言 1
貳、文獻回顧 3
一、黑色素生成與其抑制機制 3
(一)、酪胺酸酶於黑色素生合成之作用機制 3
(二)、黑色素生合成途徑 4
(三)、黑色素生合成訊息傳遞途徑 8
(四)、黑色素生合成之抑制機制 9
二、斑馬魚的發育及作為模式生物的優勢 10
(一)、斑馬魚胚發育 11
(二)、斑馬魚的黑色素細胞 11
(三)、斑馬魚作為模式生物優勢 12
三、植物天然物抑制黑色素生成之成分 12
(一)、植物天然物抑制黑色素生成功效 12
(二)、天然物成分抑制黑色素生成功效 14
四、貝殼杉屬植物天然物成分及生物活性 15
(一)、貝殼杉屬植物天然物成分 16
(二)、貝殼杉屬植物天然物生物活性 18
參、材料與方法 19
一、試驗試材 19
(一)、試材 19
(二)、試驗藥品與溶劑 19
二、試驗方法 20
(一)、貝殼杉葉部精油萃取 20
(二)、精油成分分析 20
(三)、酪胺酸酶活性抑制試驗 21
(四)、斑馬魚試驗 22
(五)、黃嘌呤氧化酶活性抑制試驗 23
(六)、抗病媒蚊試驗 23
(七)、海蝦致死試驗 24
(八)、統計方法 24
肆、結果與討論 25
一、貝殼杉葉部精油含量與成分分析 25
(一)、貝殼杉葉部精油氣相層析-質譜儀分析 25
(二)、貝殼杉葉部精油主要成分鑑定 31
(三)、貝殼杉葉部精油其他成分鑑定 37
二、貝殼杉葉部精油之抑制黑色素生成活性評估 53
(一)、貝殼杉葉部精油對蕈類酪胺酸酶抑制活性 53
(二)、貝殼杉葉部精油抑制斑馬魚黑色素生成之活性 60
三、貝殼杉葉部精油對黃嘌呤氧化酶之抑制活性 65
四、貝殼杉葉部精油之抗病媒蚊幼蟲活性 66
五、貝殼杉精油對海蝦致死活性評估 71
伍、結論 75
陸、參考文獻 76
-
dc.language.isozh_TW-
dc.subject黑色素抑制活性zh_TW
dc.subject貝殼杉zh_TW
dc.subject植物天然物zh_TW
dc.subject斑馬魚zh_TW
dc.subject埃及斑蚊zh_TW
dc.subject海蝦致死活性zh_TW
dc.subjectzebrafish (Danio rerio)en
dc.subjectAgathis dammaraen
dc.subjectantimelanogenic effecten
dc.subjectbrine shrimp lethality activityen
dc.subjectAedes aegyptien
dc.subjectplant natural producten
dc.title貝殼杉葉部精油之化學成分與生物活性研究zh_TW
dc.titleStudies on Chemical Constituents and Bioactivities of Agathis dammara Leaf Essential Oilen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉逸軒;張美鈴zh_TW
dc.contributor.oralexamcommitteeI-Hsuan Liu;Mei-Ling Changen
dc.subject.keyword貝殼杉,植物天然物,斑馬魚,埃及斑蚊,海蝦致死活性,黑色素抑制活性,zh_TW
dc.subject.keywordAgathis dammara,plant natural product,zebrafish (Danio rerio),Aedes aegypti,brine shrimp lethality activity,antimelanogenic effect,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202300349-
dc.rights.note未授權-
dc.date.accepted2023-02-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
10.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved