請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87512完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡俊超 | zh_TW |
| dc.contributor.advisor | Jun-Chau Chien | en |
| dc.contributor.author | 莊書彥 | zh_TW |
| dc.contributor.author | Shu-Yan Chuang | en |
| dc.date.accessioned | 2023-06-14T16:04:52Z | - |
| dc.date.available | 2024-02-01 | - |
| dc.date.copyright | 2023-06-14 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-08 | - |
| dc.identifier.citation | [1] J.-C. Chien, P. L. Mage, H. T. Soh, and A. Arbabian, “An Aptamer-based Electrochemical-Sensing Implant for Continuous Therapeutic- Drug Monitoring in vivo,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2019, pp. C312–C313.
[2] J.-C. Chien, S. W. Baker, H. T. Soh, and A. Arbabian, “Design and Analysis of a Sample-and-Hold CMOS Electrochemical Sensor for Aptamer-Based Therapeutic Drug Monitoring,” IEEE J. Solid State Circuits, vol. 55, no. 11, pp. 2914–2929, Nov. 2020. [3] M. Thill, “MarginProbe: intraoperative margin assessment during breast conserving surgery by using radiofrequency spectroscopy,” Expert Rev Med Devices, vol. 10, no. 3, pp. 301–315, May 2013. [4] J.-C. Chien et al., “A Scalable Standing-Wave-Oscillator-based Imager with Near-Field-Modulated Pixels Achieving 64% Filling Factor for RF Intraoperative Imaging,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2022, pp. 162–163. [5] J. McCreary and P. Gray, “A high-speed, AII-MOS, successive-approximation weighted capacitor A/D conversion technique,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 38–39. [6] F. Kuttner, “A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 176–177. [7] Shuo-Wei Mike Chen and R. W. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13-μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2006, pp. 2350–2359. [8] J. Fredenburg and M. Flynn, “A 90MS/s 11MHz bandwidth 62dB SNDR noise-shaping SAR ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 468–470. [9] B. Ginsburg and A. Chandrakasan, “A 500MS/s 5b ADC in 65nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, pp. 140–141. [10] Y. Zhu et al., “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010. [11] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010. [12] Chang-Yuan Liou and Chih-Cheng Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 280–281. [13] J.-Y. Lin and C.-C. Hsieh, “A 0.3 V 10-bit 1.17 f SAR ADC With Merge and Split Switching in 90 nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 70–79, Jan. 2015. [14] J. Liu, X. Tang, W. Zhao, L. Shen, and N. Sun, “A 13-bit 0.005-mm 2 40-MS/s SAR ADC With kT/C Noise Cancellation,” IEEE J. Solid State Circuits, vol. 55, no. 12, pp. 3260–3270, Dec. 2020. [15] B. Razavi, “The Bootstrapped Switch [A Circuit for All Seasons],” IEEE Solid State Circuits Mag., vol. 7, no. 3, pp. 12–15, Summer 2015. [16] B. Razavi, “The Design of a Bootstrapped Sampling Circuit [The Analog Mind],” IEEE Solid State Circuits Mag., vol. 13, no. 1, pp. 7–12, Winter 2021. [17] J. Kim, B. S. Leibowitz, J. Ren, and C. J. Madden, “Simulation and Analysis of Random Decision Errors in Clocked Comparators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 8, pp. 1844–1857, Aug. 2009. [18] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid State Circuits, vol. 39, no. 7, pp. 1148–1158, Jul. 2004. [19] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid State Circuits, vol. 33, no. 2, pp. 179–194, 1998. [20] M. Jeeradit et al., “Characterizing sampling aperture of clocked comparators,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2008, pp. 68–69. [21] J. Kim, B. S. Leibowitz, and M. Jeeradit, “Impulse sensitivity function analysis of periodic circuits,” in Proc. IEEE Int. Conf. Computer-Aided Design (ICCAD), Nov. 2008, pp. 386–391. [22] H. O. Johansson and C. Svensson, “Time resolution of NMOS sampling switches used on low-swing signals,” IEEE J. Solid State Circuits, vol. 33, no. 2, pp. 237–245, 1998. [23] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink, and B. Nauta, “A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 244–610. [24] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s,” IEEE J. Solid State Circuits, vol. 45, no. 5, pp. 1007–1015, May 2010. [25] M. Boulemnakher, E. Andre, J. Roux, and F. Paillardet, “A 1.2V 4.5mW 10b 100MS/s Pipeline ADC in a 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 250–611. [26] C.-C. Liu, C.-H. Kuo, and Y.-Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE J. Solid State Circuits, vol. 50, no. 11, pp. 2645–2654, Nov. 2015. [27] P. Harpe, “A Compact 10-b SAR ADC With Unit-Length Capacitors and a Passive FIR Filter,” IEEE J. Solid State Circuits, vol. 54, no. 3, pp. 636–645, Mar. 2019. [28] P. J. A. Harpe et al., “A 26 μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE J. Solid State Circuits, vol. 46, no. 7, pp. 1585–1595, Jul. 2011. [29] D. A. Hall et al., “A CMOS Molecular Electronics Chip for Single-Molecule Biosensing,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022, pp. 1–3. [30] S.-Y. Lee et al., “A Wireless Urine Detection System and Platform with Power-Efficient Electrochemical Readout ASIC and ABTS-CNT Biosensor,” in Proc. IEEE Symp. VLSI Circuits, Jun. 2022, pp. 246–247. [31] A. Manickam et al., “A CMOS Electrochemical Biochip With 32 × 32 Three-Electrode Voltammetry Pixels,” IEEE J. Solid State Circuits, vol. 54, no. 11, pp. 2980–2990, Nov. 2019. [32] H. M. Jafari, K. Abdelhalim, L. Soleymani, E. H. Sargent, S. O. Kelley, and R. Genov, “Nanostructured CMOS Wireless Ultra-Wideband Label-Free PCR-Free DNA Analysis SoC,” IEEE J. Solid State Circuits, vol. 49, no. 5, pp. 1223–1241, May 2014. [33] OmniVision Technologies, “OmniVision Serial Camera Control Bus (SCCB) Functional Specification,” DSASW00321190 datasheet, June 2007. [34] K. Yamamoto and M. Fujishima, “A 44-μW 4.3-GHz injection-locked frequency divider with 2.3-GHz locking range,” IEEE J. Solid State Circuits, vol. 40, no. 3, pp. 671–677, Mar. 2005. [35] B. Razavi, “TSPC Logic [A Circuit for All Seasons],” IEEE Solid State Circuits Mag., vol. 8, no. 4, pp. 10–13, Fall 2016. [36] J. Liu, D. Li, Y. Zhong, X. Tang, and N. Sun, “A 250kHz-BW 93dB-SNDR 4 th -Order Noise-Shaping SAR Using Capacitor Stacking and Dynamic Buffering,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 369–371. [37] S. Li, B. Qiao, M. Gandara, and N. Sun, “A 13-ENOB 2 nd -order noise-shaping SAR ADC realizing optimized NTF zeros using an error-feedback structure,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 234–236. [38] X. Tang et al., “A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier,” IEEE J. Solid State Circuits, vol. 55, no. 12, pp. 3248–3259, Dec. 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87512 | - |
| dc.description.abstract | 本論文分成兩大部分,分別是用於體外診斷之核酸電化學生物感測器與近場射頻感測影像儀。
核酸電化學生物感測器利用合成核酸適體檢測目標分子是否存在與其濃度,提供即時檢測,無須額外試劑,適用於長期分子感測。我們利用氧化還原標記分子其電子轉移的特性,提出一種方波伏庫倫法讀出電路,可將信號增強100倍以上。作者開發了專門用於此生物感測器的十位元位雙模式(同步/非同步)逐漸趨近式類比數位轉換器,並引領電路系統整合與量測。此生物感測系統採用180奈米互補式金氧半導體製程製作,並與酸鹼值和溫度感測器整合,總功耗為2.4 mW。類比數位轉換器量測結果顯示於同步模式下,可達到58.00 dB之訊號雜訊失真比,而非同步模式下可達到55.13 dB之訊號雜訊失真比。感測鏈在±300 nA差分輸入電流下,達到0.26% THD,並於3.3 nF輸入負載電容而積分範圍考慮到1 kHz下,電流雜訊為5.2 pArms。透過萬古霉素適體和常間回文重複序列叢集關聯蛋白相關酶展示了其分子濃度檢測的能力 在第二個部分,我們專注於研發用於乳癌手術中的邊緣評估影像儀,確保癌細胞有徹底摘除。為了提高診斷準確性與減小感測面積,我們提出一種以駐波震盪器作為配置之現場可編程差動傳輸線,實現51.2 μm × 50 μm解析度與64%填滿率。作者開發了專門用於此影像儀的讀出電路,包括一個最大工作頻率為18 GHz之除64除頻鏈、一個用於頻率偵測的32位元的計數器,以及一個系統串化器。此影像系統採用180奈米互補式金氧半導體製程製作,每個SWO感測鏈功率消耗為107.8 mW。計數器量測結果顯示,工作頻率範圍為1 MHz到500 MHz,與Agilent 53220a進行比對,頻率誤差低於8 kHz。透過浸泡於墨水中的三通道微流道以及浸泡於福馬林中的老鼠腫瘤切片展示了其成像能力。 | zh_TW |
| dc.description.abstract | This thesis is divided into two parts: an aptamer-based electrochemical biosensor for in vitro diagnostics and a near-field RF-sensing imager.
An aptamer-based electrochemical biosensor employs synthetic nucleic acid aptamers for detecting the presence and the concentration of the target molecules in real-time without the need for reagents, making it suitable for long-term in vivo molecular sensing. We take advantage of the signaling property from the electron transfers of the redox reporters and present a square-wave volt-coulometry (SWVC) electrochemical readout circuit to achieve over 100 times signal enhancement. The author develops a 10-bit dual-mode (synchronous/asynchronous) SAR ADC dedicated to this biosensor system and leads both the system integration and testing. The biosensor system is implemented in 180-nm CMOS technology, integrated with pH and temperature sensors, and consumes a total power of 2.4 mW. The ADC measurement result shows an SNDR of 58.00 dB in the synchronous mode and 55.13 dB in the asynchronous mode. The sensor chain achieves 0.26% THD at ±300 nA differential input current and 5.2 pArms integrated up to 1 kHz with 3.3 nF input loading capacitors. We demonstrate the molecular concentration detection capability with vancomycin aptamer and CRISPR-associated enzymes (Cas). In the second part, we focus on intraoperative imaging for rapid margin assessment in breast tumor surgery to ensure the complete removal of cancer cells. To improve the diagnostic accuracy and reduce the sensing area, we propose a field-programmable differential trans-mission line (t-line) configured as a standing-wave oscillator (SWO) to achieve 51.2 μm × 50 μm spatial resolution at 64% filling-factor. The author develops a readout circuit dedicated to this imaging system, including a divide-by-64 frequency divider chain with a maximum operating frequency of 18 GHz, a timing-aware 32-bit counter for frequency detection, and a system serializer. The imaging system is implemented in 180-nm CMOS technology and each SWO sensing chain consumes a total power of 107.8 mW. The counter measurement result shows the operating frequency ranges from 1 MHz to 500 MHz with a frequency error lower than 8 kHz compared with Agilent 53220a. The imaging capability has been demonstrated with a three-channel microfluidics immersed in inked water and tumor tissues excised from mice immersed in formalin. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-14T16:04:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-06-14T16:04:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Aptamer-Based Electrochemical Biosensor 1 1.2 Near-Field Imager 4 Chapter 2 Aptamer-Based Electrochemical Biosensor Readout Circuit 6 2.1 System Architecture 6 2.2 Fundamentals of Analog-to-Digital Converters 8 2.2.1 Sampling Theorem 8 2.2.2 Quantization Error 9 2.2.3 Differential Non-linearity (DNL) 11 2.2.4 Integral Non-linearity (INL) 11 2.2.5 Signal-to-Noise Ratio (SNR) 13 2.2.6 Signal-to-Noise and Distortion Ratio (SNDR) 13 2.2.7 Effective Number of Bits (ENOB) 13 2.2.8 Spurious-Free Dynamic Range (SFDR) 14 2.2.9 Total Harmonic Distortion (THD) 14 2.3 Design of a 10-bit SAR ADC 15 2.3.1 Switching Procedures 16 2.3.2 Sampling Switch 18 2.3.3 Dynamic Comparator 22 2.3.4 Capacitive Digital-To-Analog Converter 32 2.3.5 SAR Logic and Serializer 34 2.3.6 ADC Simulation 35 2.4 Experimental Results 37 2.4.1 FPGA Control 37 2.4.2 PCB Design 37 2.4.3 Die Photo and Measurement Setup 37 2.4.4 ADC Standalone Measurement 40 2.4.5 Sensor Chain Measurement 46 Chapter 3 Near-Field Imager Readout Circuit 50 3.1 System Architecture 50 3.2 Design of Frequency Divider Chain 51 3.3 Design of Digital Readout Circuit 52 3.3.1 Readout Operation 52 3.3.2 Serial Camera Control Bus Protocol 54 3.4 Experimental Results 55 3.4.1 Die Photo and Measurement Setup 55 3.4.2 Counter Measurement 56 3.4.3 SWO Imaging Measurement 57 Chapter 4 Conclusion 59 Chapter 5 Future Works 61 REFERENCE 62 | - |
| dc.language.iso | en | - |
| dc.subject | 影像儀 | zh_TW |
| dc.subject | 核酸適體 | zh_TW |
| dc.subject | 逐漸趨近式類比數位轉換器 | zh_TW |
| dc.subject | Aptamer | en |
| dc.subject | Imager | en |
| dc.subject | SAR ADC | en |
| dc.title | 應用於核酸電化學生物感測器與近場影像儀之讀出電路 | zh_TW |
| dc.title | Readout Circuits for Aptamer-Based Electrochemical Biosensor and Near-Field Imager | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳信樹;廖育德 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Shu Chen;Yu-Te Liao | en |
| dc.subject.keyword | 核酸適體,影像儀,逐漸趨近式類比數位轉換器, | zh_TW |
| dc.subject.keyword | Aptamer,Imager,SAR ADC, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202300372 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-02-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 5.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
