請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87353完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽 | zh_TW |
| dc.contributor.advisor | Feng-Yu Tsai | en |
| dc.contributor.author | 黃聖文 | zh_TW |
| dc.contributor.author | Sheng-Wen Huang | en |
| dc.date.accessioned | 2023-05-18T17:14:16Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-06-20 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-12-06 | - |
| dc.identifier.citation | 1. L. M. Fraas, Low-cost solar electric power, Springer, 2014.
2. D. M. Chapin, C. S. Fuller and G. L. Pearson, Journal of applied physics, 1954, 25, 676-677. 3. A. ur Rehman and S. H. Lee, ScientificWorldJournal, 2013, 2013, 470347. 4. Y. C. Liang, G. S. Samudra and C.-F. Huang, Power microelectronics: device and process technologies, World Scientific, 2009. 5. Wikipedia, Copper Indium Gallium Selenide, https://en.wikipedia.org/wiki/Copper_indium_gallium_selenide). 6. J. F. Geisz, R. M. France, K. L. Schulte, M. A. Steiner, A. G. Norman, H. L. Guthrey, M. R. Young, T. Song and T. Moriarty, Nature Energy, 2020, 5, 326-335. 7. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the american chemical society, 2009, 131, 6050-6051. 8. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html). 9. G. Rose, Annalen der Physik, 1839, 124, 551-573. 10. V. M. Goldschmidt, Naturwissenschaften, 1926, 14, 477-485. 11. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, Chemistry of Materials, 2015, 28, 284-292. 12. G. Kieslich, S. Sun and A. K. Cheetham, Chemical Science, 2014, 5, 4712-4715. 13. R. D. Shannon, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 1976, 32, 751-767. 14. Q. Chen, N. De Marco, Y. M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 2015, 10, 355-396. 15. B. Saparov and D. B. Mitzi, Chemical reviews, 2016, 116, 4558-4596. 16. S. Kubota, S. Ozaki, J. Onishi, K. Kano and O. Shirai, Analytical Sciences, 2009, 25, 189-193. 17. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, Adv Mater, 2013, 25, 3727-3732. 18. G. Tumen-Ulzii, C. Qin, T. Matsushima, M. R. Leyden, U. Balijipalli, D. Klotz and C. Adachi, Solar RRL, 2020, 4, 2000305. 19. Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga and Y. Qi, Advanced Materials Interfaces, 2015, 2, 1500195. 20. L. Nakka, Y. Cheng, A. G. Aberle and F. Lin, Advanced Energy and Sustainability Research, 2022, 2200045. 21. W. Shockley and H. J. Queisser, Journal of Applied Physics, 1961, 32, 510-519. 22. S. Rühle, Solar Energy, 2016, 130, 139-147. 23. J. Werner, B. Niesen and C. Ballif, Advanced Materials Interfaces, 2017, 5, 1700731. 24. Z. Qiu, Z. Xu, N. Li, N. Zhou, Y. Chen, X. Wan, J. Liu, N. Li, X. Hao, P. Bi, Q. Chen, B. Cao and H. Zhou, Nano Energy, 2018, 53, 798-807. 25. J. A. Steele, H. Jin, I. Dovgaliuk, R. F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere and S. M. Rogge, Science, 2019, 365, 679-684. 26. C. Liu, Y. Yang, O. A. Syzgantseva, Y. Ding, M. A. Syzgantseva, X. Zhang, A. M. Asiri, S. Dai and M. K. Nazeeruddin, Adv Mater, 2020, 32, e2002632. 27. H. B. Lee, N. Kumar, B. Tyagi, S. He, R. Sahani and J. W. Kang, Materials Today Energy, 2021, 21, 100759. 28. K. Liao, C. Li, L. Xie, Y. Yuan, S. Wang, Z. Cao, L. Ding and F. Hao, Nano-Micro Letters, 2020, 12, 1-22. 29. J. T. Lin, D. G. Chen, C. H. Wu, C. S. Hsu, C. Y. Chien, H. M. Chen, P. T. Chou and C. W. Chiu, Angewandte Chemie International Edition, 2021, 60, 7866-7872. 30. Y. Yang, C. Liu, O. A. Syzgantseva, M. A. Syzgantseva, S. Ma, Y. Ding, M. Cai, X. Liu, S. Dai and M. K. Nazeeruddin, Advanced Energy Materials, 2021, 11, 2002966. 31. S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz and S. Olthof, Nature communications, 2019, 10, 1-10. 32. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano letters, 2013, 13, 1764-1769. 33. A. Rajagopal, R. J. Stoddard, S. B. Jo, H. W. Hillhouse and A. K.-Y. Jen, Nano letters, 2018, 18, 3985-3993. 34. N. Li, Y. Jia, Y. Guo and N. Zhao, Advanced Materials, 2022, 34, 2108102. 35. N. Liu and C. Yam, Physical Chemistry Chemical Physics, 2018, 20, 6800-6804. 36. T. Gallet, D. Grabowski, T. Kirchartz and A. Redinger, Nanoscale, 2019, 11, 16828-16836. 37. J. Xue, R. Wang and Y. Yang, Nature Reviews Materials, 2020, 5, 809-827. 38. Y. Yuan and J. Huang, Accounts of chemical research, 2016, 49, 286-293. 39. M. Taukeer Khan, F. Khan, A. Al‐Ahmed, S. Ahmad and F. Al‐Sulaiman, The Chemical Record, 2022, e202100330. 40. Y. Chen, W. Zhou, X. Chen, X. Zhang, H. Gao, N. A. N. Ouedraogo, Z. Zheng, C. B. Han, Y. Zhang and H. Yan, Advanced Functional Materials, 2022, 32, 2108417. 41. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip, R. Comin and E. H. Sargent, Nano letters, 2014, 14, 6281-6286. 42. V. K. Ravi, G. B. Markad and A. Nag, ACS Energy Letters, 2016, 1, 665-671. 43. M. C. Brennan, S. Draguta, P. V. Kamat and M. Kuno, ACS Energy Letters, 2017, 3, 204-213. 44. S. K. Gautam, M. Kim, D. R. Miquita, J. E. Bourée, B. Geffroy and O. Plantevin, Advanced Functional Materials, 2020, 30, 2002622. 45. C. G. Bischak, C. L. Hetherington, H. Wu, S. Aloni, D. F. Ogletree, D. T. Limmer and N. S. Ginsberg, Nano letters, 2017, 17, 1028-1033. 46. S. Chen, Y. Hou, H. Chen, X. Tang, S. Langner, N. Li, T. Stubhan, I. Levchuk, E. Gu and A. Osvet, Advanced Energy Materials, 2018, 8, 1701543. 47. S. Fang, W. Yao, Z. Hu, L. Huang, X. Liu, H. Zhang, J. Zhang and Y. Zhu, The Journal of Physical Chemistry C, 2021, 125, 21370-21380. 48. T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng and F. Huang, Energy & Environmental Science, 2017, 10, 2509-2515. 49. Z. Yang, A. Rajagopal, S. B. Jo, C.-C. Chueh, S. Williams, C.-C. Huang, J. K. Katahara, H. W. Hillhouse and A. K.-Y. Jen, Nano letters, 2016, 16, 7739-7747. 50. J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey and E. J. Wolf, Science, 2020, 367, 1097-1104. 51. B. Chen, P. N. Rudd, S. Yang, Y. Yuan and J. Huang, Chemical Society Reviews, 2019, 48, 3842-3867. 52. Y. Zheng, X. Wu, J. Liang, Z. Zhang, J. Jiang, J. Wang, Y. Huang, C. Tian, L. Wang and Z. Chen, Advanced Functional Materials, 2022, 2200431. 53. Y. Yao, P. Hang, B. Li, Z. Hu, C. Kan, J. Xie, Y. Wang, Y. Zhang, D. Yang and X. Yu, Small, 2022, 2203319. 54. J. Liang, C. Chen, X. Hu, Z. Chen, X. Zheng, J. Li, H. Wang, F. Ye, M. Xiao and Z. Lu, ACS Applied Materials & Interfaces, 2020, 12, 48458-48466. 55. B. P. Kore, W. Zhang, B. W. Hoogendoorn, M. Safdari and J. M. Gardner, Communications Materials, 2021, 2, 1-10. 56. S. Gharibzadeh, P. Fassl, I. M. Hossain, P. Rohrbeck, M. Frericks, M. Schmidt, M. R. Khan, T. Abzieher, B. A. Nejand and F. Schackmar, Energy & Environmental Science, 2021, 14, 5875-5893. 57. T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring and M. D. McGehee, Journal of Materials Chemistry A, 2017, 5, 11483-11500. 58. M. I. Saidaminov, K. Williams, M. Wei, A. Johnston, R. Quintero-Bermudez, M. Vafaie, J. M. Pina, A. H. Proppe, Y. Hou and G. Walters, Nature materials, 2020, 19, 412-418. 59. H. X. Dang, K. Wang, M. Ghasemi, M.-C. Tang, M. De Bastiani, E. Aydin, E. Dauzon, D. Barrit, J. Peng and D.-M. Smilgies, Joule, 2019, 3, 1746-1764. 60. Y. Zhang, Y. Huang, X. Wang, J. Sun, R. Si and H. Zhou, Journal of Materials Chemistry C, 2020, 8, 15351-15360. 61. Y. Zhou, H. Xue, Y. H. Jia, G. Brocks, S. Tao and N. Zhao, Advanced functional materials, 2019, 29, 1905739. 62. Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu and Y. Hao, Advanced Energy Materials, 2018, 8, 1703432. 63. P.-H. Lee, T.-T. Wu, C.-F. Li, D. Głowienka, Y.-H. Sun, Y.-T. Lin, H.-W. Yen, C.-G. Huang, Y. Galagan and Y.-C. Huang, Chemical Engineering Journal, 2021, 412, 128746. 64. B. Li, Y. Xiang, K. I. Jayawardena, D. Luo, Z. Wang, X. Yang, J. F. Watts, S. Hinder, M. T. Sajjad and T. Webb, Nano Energy, 2020, 78, 105249. 65. Z. Zhou, Q. Wu, R. Cheng, H. Zhang, S. Wang, M. Chen, M. Xie, P. K. L. Chan, M. Grätzel and S. P. Feng, Advanced Functional Materials, 2021, 31, 2011270. 66. A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. Morales Vilches, E. Kasparavicius and J. A. Smith, Science, 2020, 370, 1300-1309. 67. A. R. Zanatta, Scientific reports, 2019, 9, 1-12. 68. J. Singh, Optical properties of condensed matter and applications, John Wiley & Sons, 2006. 69. F. Urbach, Physical Review, 1953, 92, 1324. 70. C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen and Z. Yu, Journal of Materials Chemistry A, 2016, 4, 12080-12087. 71. T. Wu, L. Collins, J. Zhang, P.-Y. Lin, M. Ahmadi, S. Jesse and B. Hu, ACS nano, 2017, 11, 11542-11549. 72. M. Ahmadi, Y. C. Hsiao, T. Wu, Q. Liu, W. Qin and B. Hu, Advanced Energy Materials, 2017, 7, 1601575. 73. J. N. Wilson, J. M. Frost, S. K. Wallace and A. Walsh, APL Materials, 2019, 7, 010901. 74. Y. Li, Y. Lu, X. Huo, D. Wei, J. Meng, J. Dong, B. Qiao, S. Zhao, Z. Xu and D. Song, RSC advances, 2021, 11, 15688-15694. 75. A. Kostopoulou, M. Sygletou, K. Brintakis, A. Lappas and E. Stratakis, Nanoscale, 2017, 9, 18202-18207. 76. B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang and L. Yin, Nature communications, 2018, 9, 1-8. 77. F. Li, Y. Pei, F. Xiao, T. Zeng, Z. Yang, J. Xu, J. Sun, B. Peng and M. Liu, Nanoscale, 2018, 10, 6318-6322. 78. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, Chemistry of Materials, 2016, 28, 284-292. 79. T. Bu, L. K. Ono, J. Li, J. Su, G. Tong, W. Zhang, Y. Liu, J. Zhang, J. Chang and S. Kazaoui, Nature Energy, 2022, 1-9. 80. D. Regaldo, A. Bojar, S. P. Dunfield, P. Lopez‐Varo, M. Frégnaux, V. Dufoulon, S. T. Zhang, J. Alvarez, J. J. Berry and J. B. Puel, Progress in Photovoltaics: Research and Applications, 2022, 30, 994-1002. 81. L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen and L. Li, Science, 2019, 363, 265-270. 82. G. Yang, Z. Ni, Z. J. Yu, B. W. Larson, Z. Yu, B. Chen, A. Alasfour, X. Xiao, J. M. Luther and Z. C. Holman, Nature Photonics, 2022, 16, 588-594. 83. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter and A. J. Pearson, Nature, 2018, 555, 497-501. 84. S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao and Y. Gao, Science, 2019, 365, 473-478. 85. J. Y. Ye, J. Tong, J. Hu, C. Xiao, H. Lu, S. P. Dunfield, D. H. Kim, X. Chen, B. W. Larson and J. Hao, Solar Rrl, 2020, 4, 2000082. 86. B. Chen, P. Wang, R. Li, N. Ren, W. Han, Z. Zhu, J. Wang, S. Wang, B. Shi, J. Liu, P. Liu, Q. Huang, S. Xu, Y. Zhao and X. Zhang, ACS Energy Letters, 2022, 7, 2771-2780. 87. D. B. Khadka, Y. Shirai, M. Yanagida, T. Noda and K. Miyano, ACS Applied Materials & Interfaces, 2018, 10, 22074-22082. 88. D. Kim, H. J. Jung, I. J. Park, B. W. Larson, S. P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras and S. G. Ji, Science, 2020, 368, 155-160. 89. J. Chen, D. Wang, S. Chen, H. Hu, Y. Li, Y. Huang, Z. Zhang, Z. Jiang, J. Xu and X. Sun, ACS Applied Materials & Interfaces, 2022. 90. J. Tao, X. Liu, J. Shen, S. Han, L. Guan, G. Fu, D.-B. Kuang and S. Yang, ACS nano, 2022, 16, 10798-10810. 91. X. Liu, Z. Wu, X. Fu, L. Tang, J. Li, J. Gong and X. Xiao, Nano Energy, 2021, 86, 106114. 92. C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin, H. Cui, H. Wang, C. Wang, Z. Li and J. Gong, Nano Energy, 2021, 90, 106608. 93. J. Liu, E. Aydin, J. Yin, M. De Bastiani, F. H. Isikgor, A. U. Rehman, E. Yengel, E. Ugur, G. T. Harrison and M. Wang, Joule, 2021, 5, 3169-3186. 94. F. Peña-Camargo, P. Caprioglio, F. Zu, E. Gutierrez-Partida, C. M. Wolff, K. Brinkmann, S. Albrecht, T. Riedl, N. Koch and D. Neher, ACS Energy Letters, 2020, 5, 2728-2736. 95. X. Wang, Y. Chen, T. Zhang, X. Wang, Y. Wang, M. Kan, Y. Miao, H. Chen, X. Liu and X. Wang, ACS Energy Letters, 2021, 6, 2735-2741. 96. R. Li, B. Chen, N. Ren, P. Wang, B. Shi, Q. Xu, H. Zhao, W. Han, Z. Zhu and J. Liu, Advanced Materials, 2022, 2201451. 97. A. F. Palmstrom, G. E. Eperon, T. Leijtens, R. Prasanna, S. N. Habisreutinger, W. Nemeth, E. A. Gaulding, S. P. Dunfield, M. Reese and S. Nanayakkara, Joule, 2019, 3, 2193-2204. 98. S. Gharibzadeh, I. M. Hossain, P. Fassl, B. A. Nejand, T. Abzieher, M. Schultes, E. Ahlswede, P. Jackson, M. Powalla and S. Schäfer, Advanced Functional Materials, 2020, 30, 1909919. 99. B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu, J. Shi, D. Spronk, P. N. Rudd, Z. Holman and J. Huang, Joule, 2019, 3, 177-190. 100. S. Cho, P. Pandey, J. Park, T.-W. Lee and D.-W. Kang, ACS Applied Energy Materials, 2021, 5, 387-396. 101. M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte and B. Rech, Energy & Environmental Science, 2018, 11, 3511-3523. 102. Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng, Y. Shao, Y. Fang, Y. Bai, C. Wang and J. Huang, Advanced materials, 2017, 29, 1700607. 103. Z. Li, J. Zhang, S. Wu, X. Deng, F. Li, D. Liu, C. C. Lee, F. Lin, D. Lei and C.-C. Chueh, Nano Energy, 2020, 78, 105377. 104. C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha, C. Li, G. Yang, F. Yao, X. Zheng and R. J. Ellingson, Nano Energy, 2019, 61, 141-147. 105. Y. Zhou, X. Yin, Q. Zhang, N. Wang, A. Yamamoto, K. Koumoto, H. Shen and H. Lin, Materials Today Energy, 2019, 12, 363-370. 106. K.-C. Hsiao, B.-T. Lee, M.-H. Jao, T.-H. Lin, C.-H. Hou, J.-J. Shyue, M.-C. Wu and W.-F. Su, Chemical Engineering Journal, 2021, 409, 128100. 107. K. A. Bush, K. Frohna, R. Prasanna, R. E. Beal, T. Leijtens, S. A. Swifter and M. D. McGehee, ACS Energy Letters, 2018, 3, 428-435. 108. C. T. Lin, J. Lee, J. Kim, T. J. Macdonald, J. Ngiam, B. Xu, M. Daboczi, W. Xu, S. Pont and B. Park, Advanced Functional Materials, 2020, 30, 1906763. 109. Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. Oliver and J. Lim, Science, 2020, 369, 96-102. 110. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng and J. Huang, Nature Energy, 2017, 2, 1-9. 111. D. B. Khadka, Y. Shirai, M. Yanagida, T. Noda and K. Miyano, ACS applied materials & interfaces, 2018, 10, 22074-22082. 112. M. Hu, C. Bi, Y. Yuan, Y. Bai and J. Huang, Advanced Science, 2016, 3, 1500301. 113. W.-Q. Wu, Z. Yang, P. N. Rudd, Y. Shao, X. Dai, H. Wei, J. Zhao, Y. Fang, Q. Wang and Y. Liu, Science advances, 2019, 5, eaav8925. 114. Y. Chen, W. Tang, Y. Wu, R. Yuan, J. Yang, W. Shan, S. Zhang and W.-H. Zhang, Solar RRL, 2020, 4, 2000344. 115. K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Hoye, C. D. Bailie and T. Leijtens, Nature Energy, 2017, 2, 1-7. 116. P. S. Schulze, A. J. Bett, M. Bivour, P. Caprioglio, F. M. Gerspacher, Ö. Ş. Kabaklı, A. Richter, M. Stolterfoht, Q. Zhang and D. Neher, Solar RRL, 2020, 4, 2000152. 117. C. Bi, Y. Yuan, Y. Fang and J. Huang, Advanced Energy Materials, 2015, 5, 1401616. 118. P.-H. Lee, T.-T. Wu, C.-F. Li, D. Glowienka, Y.-X. Huang, S.-H. Huang, Y.-C. Huang and W.-F. Su, Solar RRL, 2022, 6, 2100891. 119. 吳庭慈,以濺鍍技術製備氧化銦鈰透明電極並應用於四接點鈣鈦礦/矽晶串疊型太陽能電池, 2020. 120. V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger and D. Fattakhova-Rohlfing, Chemistry of Materials, 2009, 21, 5229-5236. 121. M. Kojima, H. Kato and M. Gatto, Philosophical Magazine B, 1993, 68, 215-222. 122. A. Guerrero, J. You, C. Aranda, Y. S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert and Y. Yang, ACS nano, 2016, 10, 218-224. 123. L. Zuo, J. Yao, H. Li and H. Chen, Solar energy materials and solar cells, 2014, 122, 88-93. 124. Y. Chen, Z. Ying, X. Li, X. Wang, J. Wu, M. Wu, J. Sun, J. Sheng, Y. Zeng and B. Yan, Nano Energy, 2022, 100, 107529. 125. Z. Ying, X. Yang, J. Zheng, Y. Zhu, J. Xiu, W. Chen, C. Shou, J. Sheng, Y. Zeng and B. Yan, Journal of Materials Chemistry A, 2021, 9, 12009-12018. 126. C. O. R. Quiroz, Y. Shen, M. Salvador, K. Forberich, N. Schrenker, G. D. Spyropoulos, T. Heumüller, B. Wilkinson, T. Kirchartz and E. Spiecker, Journal of Materials Chemistry A, 2018, 6, 3583-3592. 127. A. Rohatgi, K. Zhu, J. Tong, D. H. Kim, E. Reichmanis, B. Rounsaville, V. Prakash and Y.-W. Ok, IEEE Journal of Photovoltaics, 2020, 10, 417-422. 128. B. Tyagi, H. B. Lee, N. Kumar, W.-Y. Jin, K.-J. Ko, M. M. Ovhal, R. Sahani, H.-J. Chung, J. Seo and J.-W. Kang, Nano Energy, 2022, 95, 106978. 129. E. Aydin, M. De Bastiani, X. Yang, M. Sajjad, F. Aljamaan, Y. Smirnov, M. N. Hedhili, W. Liu, T. G. Allen and L. Xu, Advanced functional materials, 2019, 29, 1901741. 130. D. Zhang, M. Najafi, V. Zardetto, M. Dörenkämper, X. Zhou, S. Veenstra, L. Geerligs, T. Aernouts and R. Andriessen, Solar Energy Materials and Solar Cells, 2018, 188, 1-5. 131. Y. Cheng, Z. Zeng, T. Liu, Y. Wang, C. D. Rodríguez-Gallegos, H. Liu, X. Liu, M. Thway, D. Khup and A. M. Khaing, Solar RRL, 2022, 6, 2100809. 132. Z. Ying, Y. Zhu, X. Feng, J. Xiu, R. Zhang, X. Ma, Y. Deng, H. Pan and Z. He, Advanced Materials Interfaces, 2021, 8, 2001604. 133. D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye, J. Yoon, C. Wu, M. Sanghadasa, S. F. Liu and S. Priya, Nano Energy, 2021, 84, 105934. 134. B. Chen, S.-W. Baek, Y. Hou, E. Aydin, M. De Bastiani, B. Scheffel, A. Proppe, Z. Huang, M. Wei and Y.-K. Wang, Nature communications, 2020, 11, 1-9. 135. T. Duong, H. Pham, T. C. Kho, P. Phang, K. C. Fong, D. Yan, Y. Yin, J. Peng, M. A. Mahmud and S. Gharibzadeh, Advanced Energy Materials, 2020, 10, 1903553. 136. M. Jaysankar, B. A. Raul, J. Bastos, C. Burgess, C. Weijtens, M. Creatore, T. Aernouts, Y. Kuang, R. Gehlhaar and A. Hadipour, ACS Energy Letters, 2018, 4, 259-264. 137. Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu and X. Xu, Advanced Functional Materials, 2020, 30, 1908298. 138. T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E. C. Wang, T. C. Kho, K. C. Fong and M. Stocks, Advanced Energy Materials, 2017, 7, 1700228. 139. H. Jung, G. Kim, G. S. Jang, J. Lim, M. Kim, C. S. Moon, X. Hao, N. J. Jeon, J. S. Yun and H. H. Park, ACS Applied Materials & Interfaces, 2021, 13, 30497-30503. 140. A. Hajjiah, F. Parmouneh, A. Hadipour, M. Jaysankar and T. Aernouts, Materials, 2018, 11, 2570. 141. T. Bu, J. Li, H. Li, C. Tian, J. Su, G. Tong, L. K. Ono, C. Wang, Z. Lin and N. Chai, Science, 2021, 372, 1327-1332. 142. Y. S. Shin, K. Lee, Y. R. Kim, H. Lee, I. M. Lee, W. T. Kang, B. H. Lee, K. Kim, J. Heo and S. Park, Advanced Materials, 2018, 30, 1704435. 143. F.-C. Chiu, Advances in Materials Science and Engineering, 2014, 2014. 144. S. Takeshita, Clemson University, 2008. 145. J. V. Li and G. Ferrari, Capacitance spectroscopy of semiconductors, CRC Press, 2018. 146. A. Lasia, in Modern aspects of electrochemistry, Springer, 2002, pp. 143-248. 147. A. K. Zak, W. A. Majid, M. E. Abrishami and R. Yousefi, Solid State Sciences, 2011, 13, 251-256. 148. V. Mote, Y. Purushotham and B. Dole, Journal of theoretical and applied physics, 2012, 6, 1-8. 149. D. Liu, D. Luo, A. N. Iqbal, K. W. Orr, T. A. Doherty, Z.-H. Lu, S. D. Stranks and W. Zhang, Nature materials, 2021, 20, 1337-1346. 150. Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg and Z. Yu, Science, 2020, 367, 1352-1358. 151. S. Ravishankar, T. Unold and T. Kirchartz, Science, 2021, 371, eabd8014. 152. Z. Ni, S. Xu and J. Huang, Science, 2021, 371, eabd8598. 153. J. T. Heath, in Capacitance Spectroscopy of Semiconductors, Jenny Stanford Publishing, 2018, pp. 85-113. 154. C. Michelson, A. Gelatos and J. Cohen, Applied Physics Letters, 1985, 47, 412-414. 155. T. Walter, R. Herberholz, C. Müller and H. Schock, Journal of applied physics, 1996, 80, 4411-4420. 156. A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, 2011. 157. P. Calado, D. Burkitt, J. Yao, J. Troughton, T. M. Watson, M. J. Carnie, A. M. Telford, B. C. O’Regan, J. Nelson and P. R. Barnes, Physical Review Applied, 2019, 11, 044005. 158. W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J. P. C. Baena, A. Hagfeldt and M. Graetzel, Energy & Environmental Science, 2018, 11, 151-165. 159. M. Leilaeioun and Z. C. Holman, Journal of Applied Physics, 2016, 120, 123111. 160. 陳敏璋, 半導體元件物理課程講義, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87353 | - |
| dc.description.abstract | 近年來,由於環保意識抬頭,非再生能源產業的各種環境議題被各界廣泛討論,例如火力發電產業對於溫室氣體的排放,或核能發電對於核廢料最終處置的方式,因此如何尋找一個乾淨且高效的發電方式,一直是近年科學家一直努力的方向。鈣鈦礦太陽能電池(perovskite solar cells, PSCs),由於其擁有較高的光電轉換效率,以及能夠使用全溶液製成的特性,被認為非常具有商業化的潛力,而除了元件本身的效率及穩定性外,如何針對其應用端開發,也是鈣鈦礦材料研究上一個非常重要的議題。
鈣鈦礦/矽晶串疊型太陽能電池是近年來光伏領域中的熱門研究方向,藉由調整鈣鈦礦的能隙大小,便能夠藉由串聯的方式減少單結太陽能電池中的熱馳豫損失(thermalization loss)以及吸收損失(absorption loss)現象,是目前最有希望打破 Shockley−Queisser 極限 (S−Q limit) 的方式,藉由上下電池分工吸收不同波段的光,便能夠進一步朝向突破單結太陽能電池最高理論效率邁進(~33%)。然而,寬能隙鈣鈦礦最主要的問題是開路電壓的損失,以及光致相分離現象。這些現象主要是來自於主動層中大量存在的缺陷,這些缺陷會在主動層內部或是表面形成陷阱能階,導致載子發生非放射性複合,以及引發離子遷移所導致的光致相分離,造成寬能隙鈣鈦礦元件效率表現不佳。 本研究使用銫-甲咪混合離子系統,藉由調控銫離子與溴離子含量改變鈣鈦礦的能隙,並發展出能隙1.65eV的高光穩定性寬能隙鈣鈦礦組成Cs0.30FA0.70Pb(I0.85Br0.15)3,於532nm波長之雷射激發10分鐘後,光致發光訊號僅位移6.38 nm。為了進一步提升銫-甲咪混合離子系統相對較差的載子擴散長度,使用銣離子摻雜提升寬能隙鈣鈦礦的元件表現,無論是從與載子傳輸層間的能階匹配度、缺陷密度,以及離子遷移的表現上,銣離子摻雜的寬能隙鈣鈦礦表現都有相應的提升。銣離子摻雜的元件表現相較於無摻雜的鈣鈦礦,平均光電轉換效率由原先的18.59%提升至20.54%,最高效率可以達到21.95%,為目前能隙1.6eV以上的反式寬能隙鈣鈦礦元件中最佳。而根據此鈣鈦礦系統所製備之四接點鈣鈦礦/矽晶串疊型太陽能電池效率則可以達到28.97%,亦為目前反式寬能隙鈣鈦礦元件中最高的效率表現。 | zh_TW |
| dc.description.abstract | In recent Years, because of the rise of environmental awareness, various environmental issues about the non-renewable energy industry have been widely discussed, such as the greenhouse gas emissions from the thermal power plant or the final disposal of nuclear waste from nuclear power generation. Perovskite solar cells (PSCs) are considered to have potential for commercialization due to their high photovoltaic efficiency and solution processable.
By adjusting the bandgap of the perovskite, it is possible to reduce the thermalization loss and absorption loss in single-junction solar cells by connecting them in series, which is the most promising way to break through the Shockley-Queisser limit. By dividing the absorption of light between the upper and lower cells, it is possible to move further towards breaking the theoretical maximum efficiency of single-junction solar cells (~33%). However, the main problem with wide bandgap perovskite is the photoinduced phase segregation and the loss of open-circuit voltage. These phenomena are mainly due to the presence of a large number of defects in the active layer, which can form trap energy levels within or on the surface of the active layer, leading to non-radioactive recombination of carriers and photoinduced phase segregation due to ion migration, resulting in poor efficiency. In this study, we use cesium-formamidinium mixed cation system to optimize the energy gap of perovskite by changing the content of cesium and bromine ions, and successfully develop a highly photos stable wide bandgap perovskite composition: Cs0.30FA0.70Pb(I0.85Br0.15)3 with a bandgap of 1.65 eV. After 10 minutes of laser excitation at 532 nm, the photoluminescence signal was only displaced by 6.38 nm. To further enhance the relatively poor carrier spreading length of the Cs-FA mixed cation system, Rb ion was used to enhance the performance of the wide bandgap perovskite, in terms of energy level matching with the carrier transport layer, defect density, and ion migration performance. Rb-doped devices show an increase in average photovoltaic conversion efficiency from 18.59% to 20.54%, with a maximum efficiency of 21.95%, which is the best inverted perovskite solar cell devices with a bandgap larger than 1.6eV. The efficiency of the four-terminal perovskite/ silicon tandem solar cell based on this this system can reach 28.97%, which is also the highest performance compare to other researches base on inverted structure so far. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:14:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T17:14:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xv 第一章 前言與文獻回顧 1 1.1近期太陽能電池的發展 1 1.2鈣鈦礦太陽能電池簡介 7 1.2.1鈣鈦礦的形成條件 8 1.2.2鈣鈦礦電池結構介紹 11 1.2.3鈣鈦礦太陽能電池運作原理 12 1.3研究動機 14 1.3.1太陽能電池效率與肖克利-奎伊瑟極限 14 1.3.2鈣鈦礦/矽晶串疊型太陽能電池介紹 15 1.3.3寬能隙鈣鈦礦太陽能電池發展近況 18 1.3.4混合離子型鈣鈦礦與開路電壓損失 24 1.4鈣鈦礦太陽能電池的效率損失 25 1.4.1鈣鈦礦太陽能電池主動層中的效率損失 27 1.4.2鈣鈦礦太陽能電池界面傳輸的效率損失 29 1.4.3鈣鈦礦太陽能電池主動層與載子傳輸層能階匹配 30 1.4.4鈣鈦礦太陽能電池與離子遷移 32 1.4.4混合離子型鈣鈦礦的光致相分離問題 33 1.4.5混合離子型鈣鈦礦的開路電壓損失與解決方法 37 1.5研究目標 39 1.5.1混合離子型寬能隙鈣鈦礦配方調控 39 1.5.2鈣鈦礦/矽晶串疊型太陽能電池問題與優化 42 第二章 實驗設計與方法 44 2.1實驗用化學物質列表 44 2.2分析方法與量測 46 2.2.1光伏表現分析 46 2.2.2 薄膜性質分析 47 2.2.3 元件電性分析 49 2.3鈣鈦礦太陽能電池各層前驅液製備 55 2.4鈣鈦礦太陽能電池元件製備 58 第三章 結果與討論 62 3.1混合離子型寬能隙鈣鈦礦配方調控 62 3.1.1銫-甲脒混合離子型寬能隙鈣鈦礦配方開發 63 3.1.2銫-甲脒混合離子型寬能隙鈣鈦礦材料分析 65 3.1.3銫-甲脒混合離子型寬能隙鈣鈦礦薄膜性質分析 71 3.1.4 銫-甲脒混合離子型寬能隙鈣鈦礦元件表現 75 3.2銣離子摻雜高效率混合離子型寬能隙鈣鈦礦配方開發 78 3.2.1不同陽離子摻雜對於寬能隙鈣鈦礦元件表現影響 78 3.2.2不同陽離子摻雜寬能隙鈣鈦礦材料分析 79 3.2.3銣離子摻雜寬能隙鈣鈦礦薄膜性質分析 84 3.2.4銣離子摻雜寬能隙鈣鈦礦元件表現 90 3.3鈣鈦礦/矽晶串疊型太陽能電池製程調整及元件表現 98 第四章 結論 108 第五章 建議 110 附錄 114 (附錄1) 空間電荷限制電流分析 114 (附錄2) 電化學阻抗圖譜分析 118 (附錄3) 二次多項式擬合鈣鈦礦組成能隙分析補充資料 122 (附錄4) X光繞射圖譜應用晶體尺寸和微區應變分析 124 (附錄5) 頻率-電容特性分析鈣鈦礦介電常數補充資料 126 (附錄6) 鈣鈦礦縱深缺陷密度與缺陷態密度分析 127 (附錄7) 理想因子量測與鈣鈦礦中的主要復合機制分析 129 參考文獻 133 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 半透明 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 串疊型 | zh_TW |
| dc.subject | 矽晶 | zh_TW |
| dc.subject | 鈣鈦礦 | zh_TW |
| dc.subject | 四接點式 | zh_TW |
| dc.subject | 寬能隙 | zh_TW |
| dc.subject | silicon | en |
| dc.subject | wide bandgap | en |
| dc.subject | solar cell | en |
| dc.subject | tandem | en |
| dc.subject | four terminal | en |
| dc.subject | perovskite | en |
| dc.subject | semitransparent | en |
| dc.title | 高效率混合鹵素型寬能隙鈣鈦礦太陽能電池並應用於四接點鈣鈦礦/矽晶串疊型太陽能電池 | zh_TW |
| dc.title | High efficiency mixed halide wide bandgap perovskite solar cell for 4-terminal perovskite/silicon tandem solar cell | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林唯芳;黃裕清 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Fang Su;Yu-Ching Huang | en |
| dc.subject.keyword | 寬能隙,半透明,四接點式,鈣鈦礦,矽晶,串疊型,太陽能電池, | zh_TW |
| dc.subject.keyword | wide bandgap,semitransparent,four terminal,perovskite,silicon,tandem,solar cell, | en |
| dc.relation.page | 146 | - |
| dc.identifier.doi | 10.6342/NTU202210078 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-12-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2025-01-01 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf | 8.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
