請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87340完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑珍 | zh_TW |
| dc.contributor.advisor | Shu-Jen Wang | en |
| dc.contributor.author | 陳耀堂 | zh_TW |
| dc.contributor.author | Yao-Tang Chen | en |
| dc.date.accessioned | 2023-05-18T17:09:50Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-06-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-02-20 | - |
| dc.identifier.citation | Achatz B, von Rüden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel K-H, Franken P, Waller F (2010) Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil 333: 59-70
Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85: 1-12 Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols 8: 1765-1786 Anith KN, Sreekumar A, Sreekumar J (2015) The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 65: 9-16 Anum J, O’Shea C, Zeeshan Hyder M, Farrukh S, Skriver K, Malik SI, Yasmin T (2022) Germin like protein genes exhibit modular expression during salt and drought stress in elite rice cultivars. Molecular Biology Reports 49: 293-302 Bütehorn B, Rhody D, Franken P (2000) Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1α of the root endophyte Piriformospora indica. Plant Biology, 2: 687-692 Bang SW, Choi S, Jin X, Jung SE, Choi JW, Seo JS, Kim J-K (2022) Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Plant Biotechnology Journal 20: 736-747 Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M (2015) Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. Frontiers in Plant Science 6:667 Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in Microbiology 9:1606 Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57: 289-300 Bernier F, Berna A (2001) Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? Plant Physiology and Biochemistry 39: 545-554 Bertolazi AA, de Souza SB, Ruas KF, Campostrini E, de Rezende CE, Cruz C, Melo J, Colodete CM, Varma A, Ramos AC (2019) Inoculation with Piriformospora indica is more efficient in wild-type rice than in transgenic rice over-expressing the vacuolar H+-PPase. Frontiers in Microbiology 10:1087 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120 Bonneau L, Huguet S, Wipf D, Pauly N, Truong H-N (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist 199: 188-202 Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmüller R (2010) Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytologist 185: 1062-1073 Chen CY, Huang PH, Yeh KW, Wang SJ (2022) Colonization of Piriformospora indica enhances insect herbivore resistance of rice plants through jasmonic acid- and antioxidant-mediated defense mechanisms. Journal of Plant Interactions 17: 9-18 Chinpongpanich A, Limruengroj K, Phean-o-pas S, Limpaseni T, Buaboocha T (2012) Expression analysis of calmodulin and calmodulin-like genes from rice, Oryza sativa L. BMC Research Notes 5: 625 Choudhury ATMA, Kennedy IR (2005) Nitrogen Fertilizer Losses from Rice Soils and Control of Environmental Pollution Problems. Communications in Soil Science and Plant Analysis 36: 1625-1639 Dabral S, Yashaswee, Varma A, Choudhary DK, Bahuguna RN, Nath M (2019) Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells. Ecotoxicology and Environmental Safety 186: 109741 Daneshkhah R, Grundler FMW, Wieczorek K (2018) The role of MPK6 as mediator of ethylene/jasmonic acid signaling in Serendipita indica-colonized Arabidopsis roots. Plant Molecular Biology Reporter 36: 284-294 Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences 103: 18450-18457 Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil 226: 131-151 Dong S, Tian Z, Chen PJ, Senthil Kumar R, Shen CH, Cai D, Oelmüllar R, Yeh KW (2013) The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. Journal of Experimental Botany 64: 4529-4540 Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W (2005) BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21: 3439-3440 Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols 4: 1184-1191 Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences 112: E911-E920 Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32: 3047-3048 Frater PN, Borer ET, Fay PA, Jin V, Knaeble B, Seabloom E, Sullivan L, Wedin DA, Harpole WS (2018) Nutrients and environment influence arbuscular mycorrhizal colonization both independently and interactively in Schizachyrium scoparium. Plant and Soil 425: 493-506 Gao Z, Wang Y, Chen G, Zhang A, Yang S, Shang L, Wang D, Ruan B, Liu C, Jiang H, Dong G, Zhu L, Hu J, Zhang G, Zeng D, Guo L, Xu G, Teng S, Harberd NP, Qian Q (2019) The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications 10: 5207 Garnica S, Liao Z, Hamard S, Waller F, Parepa M, Bossdorf O (2022) Environmental stress determines the colonization and impact of an endophytic fungus on invasive knotweed. Biological Invasions 24: 1785-1795 Ghaffari MR, Mirzaei M, Ghabooli M, Khatabi B, Wu Y, Zabet-Moghaddam M, Mohammadi-Nejad G, Haynes PA, Hajirezaei MR, Sepehri M, Salekdeh GH (2019) Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environmental and Experimental Botany 157: 197-210 Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500 Glick BR (2012) Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012: 963401 Höfte H, Voxeur A (2017) Plant cell walls. Current Biology 27: R865-R870 Hafeez-ur-Rehman, Nawaz A, Awan MI, Ijaz M, Hussain M, Ahmad S, Farooq M (2019) Direct Seeding in Rice: Problems and Prospects. In M Hasanuzzaman, ed, Agronomic Crops: Volume 1: Production Technologies. Springer Singapore, Singapore, pp 199-222 Hara Y, Yokoyama R, Osakabe K, Toki S, Nishitani K (2013) Function of xyloglucan endotransglucosylase/hydrolases in rice. Annals of Botany 114: 1309-1318 Harman GE, Uphoff N (2019) Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019: 9106395 Hart MM, Antunes PM, Chaudhary VB, Abbott LK (2018) Fungal inoculants in the field: Is the reward greater than the risk? Functional Ecology 32: 126-135 Hart MM, Reader RJ (2002) Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF? Mycorrhiza 12: 297-301 Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68: 101-110 Hill, T. W., and E. Kafer (2001) "Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions," Fungal Genetics Reports: Vol. 48, Article 8 Hirano K, Aya K, Kondo M, Okuno A, Morinaka Y, Matsuoka M (2012) OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Reports 31: 91-101 Hiruma K, Kobae Y, Toju H (2018) Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host–symbiont molecular mechanisms. Current Opinion in Plant Biology 44: 145-154 Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47: 834-838 Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel K-H, Schäfer P (2011) Broad-Spectrum Suppression of Innate Immunity Is Required for Colonization of Arabidopsis Roots by the Fungus Piriformospora indica Plant Physiology 156: 726-740 Jeong HY, Nguyen HP, Lee C (2015) Genome-wide identification and expression analysis of rice pectin methylesterases: Implication of functional roles of pectin modification in rice physiology. Journal of Plant Physiology 183: 23-29 Jiang Z, Zhong Y, Yang J, Wu Y, Li H, Zheng L (2019) Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Science of The Total Environment 670: 210-217 Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signaling & Behavior 8: e26891 Jogawat A, Vadassery J, Verma N, Oelmüller R, Dua M, Nevo E, Johri AK (2016) PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Scientific Reports 6: 36765 Kari Dolatabadi H, Mohammadi Goltapeh E (2014) Effect of inoculation with piriformospora indica and sebacina vermifera on growth of selected brassicaceae plants under greenhouse conditions. Journal of Horticultural Research 21: 115-124 Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, von Wettstein D, Kogel K-H, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLOS ONE 7: e35502 Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12: 357-360 Kimura, J (1931) Responses of rice plants to mineral nutrients in a culture solution in comparison with those of barley and wheat. Journal Plant Agricultural Experiment Station 1: 375-402. Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of BvGLP-1 Encoding a Germin-Like Protein from Sugar Beet in Arabidopsis thaliana Leads to Resistance Against Phytopathogenic Fungi. 23: 446-457 Koutroubas SD, Ntanos DA (2003) Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Research 83: 251-260 Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Döhlemann S, von Wirén N, Parniske M, Zuccaro A (2013) Host-related metabolic cues affect colonization strategies of a root endophyte. Proceedings of the National Academy of Sciences 110: 13965-13970 Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B, Oelmüller R, Yeh KW (2011) Growth Promotion of Chinese Cabbage and Arabidopsis by Piriformospora indica Is Not Stimulated by Mycelium-Synthesized Auxin. Molecular Plant-Microbe Interactions® 24: 421-431 Liao Y, Smyth GK, Shi W (2013) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923-930 Lin PC, Lilananda I, Shao KH, Wu HY, Wang SJ (2023) Role of auxin in the symbiotic relationship between Piriformospora indica and rice plants. Rhizosphere 25: 100632 Liu H, Guo Z, Gu F, Ke S, Sun D, Dong S, Liu W, Huang M, Xiao W, Yang G, Liu Y, Guo T, Wang H, Wang J, Chen Z (2017) 4-Coumarate-CoA Ligase-Like Gene OsAAE3 Negatively Mediates the Rice Blast Resistance, Floret Development and Lignin Biosynthesis. 7 Liu Q, Luo L, Zheng L (2018) Lignins: Biosynthesis and Biological Functions in Plants. 19: 335 Liu X, Xu S, Zhang J, Ding Y, Li G, Wang S, Liu Z, Tang S, Ding C, Chen L (2016) Effect of continuous reduction of nitrogen application to a rice-wheat rotation system in the middle-lower Yangtze River region (2013–2015). Field Crops Research 196: 348-356 Lopes MJdS, Dias-Filho MB, Gurgel ESC (2021) Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. 5 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550 Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A Germin-Like Protein Gene Family Functions as a Complex Quantitative Trait Locus Conferring Broad-Spectrum Disease Resistance in Rice. Plant Physiology 149: 286-296 Marowa P, Ding A, Kong Y (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Reports 35: 949-965 Maza E (2016) In Papyro Comparison of TMM (edgeR), RLE (DESeq2), and MRN Normalization Methods for a Simple Two-Conditions-Without-Replicates RNA-Seq Experimental Design. 7 Mengistu AA (2020) Endophytes: Colonization, behaviour, and their role in defense mechanism. International Journal of Microbiology 2020: 6927219 Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ (2021) Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. 5 Murphy BR, Doohan FM, Hodkinson TR (2014) Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 62: 29-39 Murphy BR, Doohan FM, Hodkinson TR (2015) Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis 65: 1-7 Mustafa S, Kabir S, Shabbir U, Batool R (2019) Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 78: 115-123 Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelmüller R (2012) Indole-3-Acetaldoxime-Derived Compounds Restrict Root Colonization in the Beneficial Interaction Between Arabidopsis Roots and the Endophyte Piriformospora indica. 25: 1186-1197 Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49: 1-17 Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33: 197 Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6: 763-775 Pham GH, Kumari R, Singh A, Malla R, Prasad R, Sachdev M, Kaldorf M, Buscot F, Oelmüller R, Hampp R, Saxena AK, Rexer K-H, Kost G, Varma A (2004) Axenic culture of symbiotic fungus Piriformospora indica. In A Varma, L Abbott, D Werner, R Hampp, eds, Plant Surface Microbiology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 593-613 Prasad R, Shivay YS, Kumar D (2017) Current Status, Challenges, and Opportunities in Rice Production. In BS Chauhan, K Jabran, G Mahajan, eds, Rice Production Worldwide. Springer International Publishing, Cham, pp 1-32 Qiang X, Weiss M, Kogel K-H, SchÄFer P (2012 a) Piriformospora indica—a mutualistic basidiomycete with an exceptionally large plant host range. Molecular Plant Pathology 13: 508-518 Qiang X, Zechmann B, Reitz MU, Kogel K-H, Schäfer P (2012 b) The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress–triggered caspase-dependent cell death The Plant Cell 24: 794-809 Rakotoson T, Dusserre J, Letourmy P, Ramonta IR, Cao T-V, Ramanantsoanirina A, Roumet P, Ahmadi N, Raboin L-M (2017) Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Research 213: 194-203 Raun WR, Johnson GV (1999) Improving Nitrogen Use Efficiency for Cereal Production. Agronomy Journal 91: 357-363 Ray P, Abraham PE, Guo Y, Giannone RJ, Engle NL, Yang ZK, Jacobson D, Hettich RL, Tschaplinski TJ, Craven KD (2019) Scavenging organic nitrogen and remodelling lipid metabolism are key survival strategies adopted by the endophytic fungi, Serendipita vermifera and Serendipita bescii to alleviate nitrogen and phosphorous starvation in vitro. 11: 548-557 Reitz M, Pai S, Imani J, Schäfer P (2013) New insights into the subcellular localization of Tubby-like proteins and their participation in the Arabidopsis-Piriformospora indica interaction. Plant Signaling & Behavior 8: e25198 Reshna OP, Beena R, Joy M, Viji MM, Roy S (2022) Elucidating the effect of growth promoting endophytic fungus Piriformospora indica for seedling stage salinity tolerance in contrasting rice genotypes. Journal of Crop Science and Biotechnology Sahraeian SME, Mohiyuddin M, Sebra R, Tilgner H, Afshar PT, Au KF, Bani Asadi N, Gerstein MB, Wong WH, Snyder MP, Schadt E, Lam HYK (2017) Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nature Communications 8: 59 Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel K-H (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. The Plant Journal 59: 461-474 Schulz B, Boyle C (2005) The endophytic continuum. Mycological Research 109: 661-686 ShangGuan X, Qi Y, Wang A, Ren Y, Wang Y, Xiao T, Shen Z, Wang Q, Xia Y (2023) OsGLP participates in the regulation of lignin synthesis and deposition in rice against copper and cadmium toxicity. 13 Shrivastava, S., & Varma, A. (2014). From Piriformospora indica to Rootonic: A review. African Journal of Microbiology Research, 8(32), 2984-2992 Singh S, Singh A, Nandi AK (2016) The rice OsSAG12-2 gene codes for a functional protease that negatively regulates stress-induced cell death. Journal of Biosciences 41: 445-453 Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology 167: 1009-1017 Štorchová H, Hrdličková R, Chrtek J, Tetera M, Fitze D, Fehrer J (2000) An Improved Method of DNA Isolation from Plants Collected in the Field and Conserved in Saturated NaCl/CTAB Solution. Taxon 49: 79-84 Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology 121: 102-117 Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37: 914-939 Tsai H-J, Shao K-H, Chan M-T, Cheng C-P, Yeh K-W, Oelmüller R, Wang S-J (2020) Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signaling & Behavior 15: 1722447 Usadel Br, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MCao, Steinhauser D, Scheible W-Rd, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M (2005) Extension of the Visualization Tool MapMan to Allow Statistical Analysis of Arrays, Display of Coresponding Genes, and Comparison with Known Responses. Plant Physiology 138: 1195-1204 Vadassery J, Oelmüller R (2009) Calcium signaling in pathogenic and beneficial plant microbe interactions. Plant Signaling & Behavior 4: 1024-1027 Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, Lee J, Oelmüller R (2009) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. The Plant Journal 59: 193-206 Vahabi K, Dorcheh SK, Monajembashi S, Westermann M, Reichelt M, Falkenberg D, Hemmerich P, Sherameti I, Oelmüller R (2016) Stress promotes Arabidopsis - Piriformospora indica interaction. Plant Signaling & Behavior 11: e1136763 Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmüller R (2015) The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC Plant Biology 15: 58 Varma A, Savita Verma n, Sudha n, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte. Applied and Environmental Microbiology 65: 2741-2744 Varma A, Singh A, Sudha, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: An Axenically Culturable Mycorrhiza-Like Endosymbiotic Fungus. In B Hock, ed, Fungal Associations. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 125-150 Verma N, Narayan OP, Prasad D, Jogawat A, Panwar SL, Dua M, Johri AK (2022) Functional characterization of a high-affinity iron transporter (PiFTR) from the endophytic fungus Piriformospora indica and its role in plant growth and development. Environmental Microbiology 24: 689-706 Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90: 896-903 Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK (2008) The Receptor-Like Cytoplasmic Kinase (OsRLCK) Gene Family in Rice: Organization, Phylogenetic Relationship, and Expression during Development and Stress. Molecular Plant 1: 732-750 Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences 102: 13386-13391 Weiß M, Waller F, Zuccaro A, Selosse M-A (2016) Sebacinales – one thousand and one interactions with land plants. 211: 20-40 Wu M, Wei Q, Xu L, Li H, Oelmüller R, Zhang W (2018) Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant and Soil 432: 333-344 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2 Yang Y, Yu Y, Liang Y, Anderson CT, Cao J (2018) A Profusion of Molecular Scissors for Pectins: Classification, Expression, and Functions of Plant Polygalacturonases. 9 Yokoyama R, Rose JKC, Nishitani K (2004) A Surprising Diversity and Abundance of Xyloglucan Endotransglucosylase/Hydrolases in Rice. Classification and Expression Analysis. Plant Physiology 134: 1088-1099 Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology 16: 284-287 Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA (2013) LACCASE Is Necessary and Nonredundant with PEROXIDASE for Lignin Polymerization during Vascular Development in Arabidopsis. The Plant Cell 25: 3976-3987 Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C, Bai Y (2019 a) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology 37: 676-684 Zhang J, Zhang C, Yang J, Zhang R, Gao J, Zhao X, Zhao J, Zhao D, Zhang X (2019 b) Insights into Endophytic Bacterial Community Structures of Seeds Among Various Oryza sativa L. Rice Genotypes. Journal of Plant Growth Regulation 38: 93-102 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87340 | - |
| dc.description.abstract | 土壤益生真菌的應用能在減少化學肥料的施用同時促進作物的生長,然而土壤益生真菌與作物的交互作用會受到環境因子的影響。氮為影響植物的生長發育的重要環境營養元素。印度梨形孢真菌 (Piriformosopra indica, P. indica) 是一種極具生物性肥料發展性的土壤益生真菌,其會與宿主植物的根部共生並且促進植株生長。本研究探討於氮濃度減少情況下水稻與P. indica的共生程度變化,進而了解其對水稻植株生長勢之影響,並以轉錄體分析探討氮源濃度影響P. indica與水稻共生之機制。本研究結果顯示,在氮濃度的減少下,P. indica的共生效率上升,同時在不同氮濃度接種P. indica後水稻的生長勢都有所提升。不同的水稻品種 (臺中在來一號,TCN1與臺農六十七號,TNG67) 受氮源影響的共生程度變化趨勢相近,而接種P. indica後對TCN1植株生長勢之促進效果較TNG67高,並且觀察到在較高共生效率的處理組其植株生長促進率較高。本研究觀察在共培養前期的缺氮顯著影響到水稻與P. indica的定殖百分率,由RNA-seq分析結果顯示在缺氮下接種P. indica,水稻根部部分木質素累積及許多次級代謝物途徑相關基因表現下降,推測次級代謝物或其相關植物防禦途徑為調控水稻與P. indica相互作用之重要機制。此外,germin-like protein相關基因群在正常氮與缺氮下接種P. indica表現上升,其表現可能影響水稻與P. indica共生。 | zh_TW |
| dc.description.abstract | Applying beneficial endophytic fungi can promote crop growth and reduce chemical fertilizer use. However, the symbiosis between beneficial endophytic fungi and crops would be affected by environmental nutrients. Nitrogen plays an important role in plant growth and development. Piriformospora indica (P. indica) is a root endophytic fungus that would be potentially developed to be a useful biofertilizer. In this research, the effects of nitrogen dosage in culture solutions on the symbiosis between rice and P. indica were observed, and the related mechanisms were discussed based on transcriptome analysis. The result showed that colonization efficiency between P. indica and rice increased when nitrogen dosage of the culture solution was reduced. The promotion rate of rice growth was also increased after P. indica inoculation under low nitrogen conditions. The trend of colonization efficiency changes of TCN1 and TNG67 rice varieties affected by nitrogen dosages were similar, but the P. indica-induced growth promotion of TCN1 rice seedings was higher than that of TNG67. Moreover, the P. indica-induced growth promotion was higher in seedings with higher P. indica colonization efficiency. Furthermore, the P. indica sporulation rate could be affected when nitrogen deficiency was treated at the co-culture stage. Transcriptome analysis showed that several genes involved in lignin accumulation and secondary metabolism were down-regulated in P. indica-inoculated plants in both sample groups with or without nitrogen, and the fold change of these genes in nitrogen deficiency conditions were higher than that in regular nitrogen treatments. It was suggested that nitrogen deficiency-promoted P. indica colonization could be mediated the regulations of secondary metabolism and defense-related pathway. Germin-like protein genes expression increased in P. indica-inoculated plants in both groups with or without nitrogen, and it was suggested to involve the regulating mechanism of P.indica-rice colnization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:09:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-05-18T17:09:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iv 圖目錄 vii 表目錄 viii 縮寫字對照表 ix 前言 1 1. 印度梨形孢真菌 2 2. 印度梨形孢真菌與植物宿主的共生過程 2 3. 印度梨形孢真菌之共生效率分析 3 4. 水稻與印度梨形孢真菌之共生 3 5. 環境營養源對內共生真菌與植物共生之影響 4 6. 秈稻與稉稻氮素利用效率及根圈微生物組成之差異 4 7. 影響植物與印度梨形孢真菌共生之機制 5 8. 研究目的 6 材料與方法 7 1. 植物材料 7 1.1. 水稻品種 7 1.2. 水稻消毒與培養 7 2. 真菌材料 7 2.1. 真菌菌種 7 2.2. P. indica培養 7 2.3. P. indica接種 8 3. 水稻與P. indica共生後共生指標分析 8 3.1. P. indica共生後水稻根部菌絲與孢子染色分析 8 3.2. P. indica共生後水稻根部Pitef1相對DNA含量與相對基因表現量 8 4. 試驗材料處理 9 4.1. 不同氮濃度對水稻與P. indica共生影響之試驗 9 4.2. 分析不同時期缺氮處理對TCN1及TNG67與P. indica共生影響之試驗 9 4.3. 缺氮條件對於水稻與P. indica共生影響之時程分析試驗 10 4.4. 轉錄體分析缺氮條件對於水稻與P. indica共生影響之試驗 10 5. 即時定量基因表現分析 11 5.1. DNA 萃取 11 5.2. RNA 萃取 11 5.3. 以DNase 處理RNA樣品 11 5.4. 相對基因表現量計算 12 6. 轉錄體分析 (RNA-seq) 13 6.1. RNA定序 13 6.2. 定序後資料分析 13 6.3. 基因功能富集分析 14 7. 統計分析 14 結果 15 1. 不同氮濃度對水稻與P. indica共生之影響 15 1.1. 不同氮濃度下水稻與P. indica共生效率分析 15 1.2. 不同氮濃度下水稻與P. indica共生後生長勢變化 15 2. 不同時期缺氮處理對TCN1及TNG67水稻與P. indica共生之影響 16 2.1. 共培養時期缺氮處理下TCN1及TNG67水稻與P. indica共生效率 16 2.2. 缺氮處理下TCN1及TNG67與P. indica共生後生長勢變化 17 3. 缺氮條件下P. indica共生水稻根部轉錄體差異表現分析 18 3.1. 缺氮影響P. indica與水稻共生效率之時程分析 18 3.2. 以RNA-seq分析缺氮調控P. indica共生效率之相關機制 18 3.3. 以real-time RT-PCR分析驗證RNA-seq結果中部分DEGs之表現 21 討論 23 1. 氮濃度影響水稻與P. indica的共生效率 23 2. 水稻與P. indica的共生效率對於水稻生長勢的影響 23 3. 缺氮下促進水稻與P. indica共生的機制 25 4. 結論與未來展望 27 附錄 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 共生效率 | zh_TW |
| dc.subject | 印度梨形孢真菌 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 氮 | zh_TW |
| dc.subject | nitrogen | en |
| dc.subject | rice | en |
| dc.subject | Piriformospora indica | en |
| dc.subject | colonization efficiency | en |
| dc.title | 氮源濃度影響水稻與印度梨形孢真菌共生之探討 | zh_TW |
| dc.title | Effect of Nitrogen Rates on the Symbiosis between Rice and Piriformospora indica | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃文理;林雅芬;劉啟德 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Lii Huang;Ya-Fen Lin;Chi-Te Liu | en |
| dc.subject.keyword | 水稻,氮,印度梨形孢真菌,共生效率, | zh_TW |
| dc.subject.keyword | rice,nitrogen,Piriformospora indica,colonization efficiency, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202300400 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-02-21 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
