Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃倬英zh_TW
dc.contributor.advisorCho-ying Huangen
dc.contributor.author王茵然zh_TW
dc.contributor.authorYin-Ran Wangen
dc.date.accessioned2023-05-18T17:08:09Z-
dc.date.available2023-11-10-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-02-16-
dc.identifier.citation曾聖凱,福衛二號絕對輻射校正及全球動態量程之建立,碩士論文,國立中央大學太空科學研究所,2017.
Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society B-Biological Sciences, 267(1445), 739-745. doi:DOI 10.1098/rspb.2000.1065
Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano, C., . . . Powers, J. S. (2017). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters, 12(2). ARTN 023001. doi:10.1088/1748-9326/aa5968
Bai, Y., Tang, P., & Hu, C. M. (2018). kCCA Transformation-Based Radiometric Normalization of Multi-Temporal Satellite Images. Remote Sensing, 10(3). ARTN 432.doi:10.3390/rs10030432
Canty, M. J., & Nielsen, A. A. (2006). Visualization and unsupervised classification of changes in multispectral satellite imagery. International Journal of Remote Sensing, 27(18), 3961-3975. doi:10.1080/01431160500222608
Canty, M. J., & Nielsen, A. A. (2008). Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment, 112(3), 1025-1036. doi:10.1016/j.rse.2007.07.013
Canty, M. J., Nielsen, A. A., & Schmidt, M. (2004). Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91(3-4), 441-451. doi:10.1016/j.rse.2003.10.024
Curnick, D. J., Davies, A. J., Duncan, C., Freeman, R., Jacoby, D. M. P., Shelley, H. T. E., . . . Pettorelli, N. (2021). SmallSats: a new technological frontier in ecology and conservation? Remote Sensing in Ecology and Conservation. doi:10.1002/rse2.239
Dash, J., & Ogutu, B. O. (2016). Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems. Progress in Physical Geography-Earth and Environment, 40(2), 322-351. doi:10.1177/0309133316639403
de Carvalh, O. A., Guimaraes, R. F., Silva, N. C., Gillespie, A. R., Gomes, R. A. T., Silva, C. R., & de Carvalho, A. P. F. (2013). Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression. Remote Sensing, 5(6), 2763-2794. https://doi.org/10.3390/rs5062763
Denaro, L. G., & Lin, C. H. (2020). Hybrid Canonical Correlation Analysis and Regression for Radiometric Normalization of Cross-Sensor Satellite Imagery. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 976-986. doi:10.1109/Jstars.2020.2971857
Du, Y., Teillet, P. M., & Cihlar, J. (2002). Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82(1), 123-134. doi:Pii S0034-4257(02)00029-9
Eastman, J. R., Sangermano, F., Machado, E. A., Rogan, J., & Anyamba, A. (2013). Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982-2011. Remote Sensing, 5(10), 4799-4818. doi:10.3390/rs5104799
Elvidge, C. D., Yuan, D., Weerackoon, R. D., & Lunetta, R. S. (1995). Relative Radiometric Normalization of Landsat Multispectral Scanner (Mss) Data Using an Automatic Scattergram-Controlled Regression. Photogrammetric Engineering and Remote Sensing, 61(10), 1255-1260. <Go to ISI>://WOS:A1995RX96200008
Frazier, A. E., & Hemingway, B. L. (2021). A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sensing, 13(19). ARTN 3930. doi:10.3390/rs13193930
Hall, F. G., Strebel, D. E., Nickeson, J. E., & Goetz, S. J. (1991). Radiometric Rectification - toward a Common Radiometric Response among Multidate, Multisensor Images. Remote Sensing of Environment, 35(1), 11-27. doi:Doi 10.1016/0034-4257(91)90062-B
Henebry, G. M., & Su, H. P. (1993). Using Landscape Trajectories to Assess the Effects of Radiometric Rectification. International Journal of Remote Sensing, 14(12), 2417-2423. doi:Doi 10.1080/01431169308954046
Hill, R. (2005). Day length seasonality and the thermal environment. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates: Studies of living and extinct human and non-human primates (pp. 197–214). Cambridge: Cambridge University Press.
Hong, G., & Zhang, Y. (2008). A comparative study on radiometric normalization using high resolution satellite images. International Journal of Remote Sensing, 29(2), 425-438. doi:10.1080/01431160601086019
Houborg, R., Fisher, J. B., & Skidmore, A. K. (2015). Advances in remote sensing of vegetation function and traits. International Journal of Applied Earth Observation and Geoinformation, 43, 1-6. doi:10.1016/j.jag.2015.06.001
Houborg, R., & McCabe, M. F. (2016). High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sensing, 8(9). ARTN 768. doi:10.3390/rs8090768
Houborg, R., & McCabe, M. F. (2018). A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sensing of Environment, 209, 211-226. doi:10.1016/j.rse.2018.02.067
Janzen, D. H. (1988). Management of Habitat Fragments in a Tropical Dry Forest - Growth. Annals of the Missouri Botanical Garden, 75(1), 105-116. doi:Doi 10.2307/2399468
Kayyali, M. S. (2002). Digital image processing. Lima: Facultad de Ingenieria y Arquitectura de la Universidad de San Martin de Porres.
Kriegler, F.J., Malila, W.A., Nalepka, R.F., and Richardson, W. (1969) 'Preprocessing transformations and their effects on multispectral recognition.' Proceedings of the Sixth International Symposium on Remote Sensing of Environment, p. 97-131
Lanza, B. (1976). Phenology and Seasonality Modeling - Lieth,H. Scientia, 111(5-8), 518-520.
Latte, N., & Lejeune, P. (2020). PlanetScope Radiometric Normalization and Sentinel-2 Super-Resolution (2.5 m): A Straightforward Spectral-Spatial Fusion of Multi-Satellite Multi-Sensor Images Using Residual Convolutional Neural Networks. Remote Sensing, 12(15). https://doi.org/ARTN 2366
Li, J., & Roy, D. P. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9). ARTN 902. doi:10.3390/rs9090902
Mandl, I., Holderied, M., & Schwitzer, C. (2018). The Effects of Climate Seasonality on Behavior and Sleeping Site Choice in Sahamalaza Sportive Lemurs, Lepilemur sahamalaza. International Journal of Primatology, 39(6), 1039-1067. doi:10.1007/s10764-018-0059-1
Markham, B., Storey, J., & Morfitt, R. (2015). Landsat-8 Sensor Characterization and Calibration. Remote Sensing, 7(3), 2279-2282. doi:10.3390/rs70302279
Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., . . . Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491-505. doi:10.1111/j.1365-2699.2005.01424.x
Morfitt, R., Barsi, J., Levy, R., Markham, B., Micijevic, E., Ong, L., . . . Vanderwerff, K. (2015). Landsat-8 Operational Land Imager (OLI) Radiometric Performance On-Orbit. Remote Sensing, 7(2), 2208-2237. doi:10.3390/rs70202208
Nielsen, A. A., Conradsen, K., & Simpson, J. J. (1998). Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sensing of Environment, 64(1), 1-19. doi:Doi 10.1016/S0034-4257(97)00162-4
Ocon, J. P., Ibanez, T., Franklin, J., Pau, S., Keppel, G., Rivas-Torres, G., . . . Gillespie, T. W. (2021). Global tropical dry forest extent and cover: A comparative study of bioclimatic definitions using two climatic data sets. Plos One, 16(5). ARTN e0252063. doi:10.1371/journal.pone.0252063
Rahman, M. M., Hay, G. J., Couloigner, I., Hemachandran, B., & Bailin, J. (2015). A comparison of four relative radiometric normalization (RRN) techniques for mosaicing H-res multi-temporal thermal infrared (TIR) flight-lines of a complex urban scene. Isprs Journal of Photogrammetry and Remote Sensing, 106, 82-94. doi:10.1016/j.isprsjprs.2015.05.002
Rouse, J.W, Haas, R.H., Scheel, J.A., and Deering, D.W. (1974) 'Monitoring Vegetation Systems in the Great Plains with ERTS.' Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, vol. 1, p. 48-62.
Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., . . . Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154-172. doi:10.1016/j.rse.2014.02.001
Sadeghi, V., Ebadi, H., & Ahmadi, F. F. (2013). A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods. Applied Mathematical Modelling, 37(9), 6437-6445. doi:10.1016/j.apm.2013.01.006
Schott, J. R., Salvaggio, C., & Volchok, W. J. (1988). Radiometric Scene Normalization Using Pseudoinvariant Features. Remote Sensing of Environment, 26(1), 1-&. doi:Doi 10.1016/0034-4257(88)90116-2
Stan, K., & Sanchez-Azofeifa, A. (2019). Tropical Dry Forest Diversity, Climatic Response, and Resilience in a Changing Climate. Forests, 10(5). ARTN 443. doi:10.3390/f10050443
Stevens, G. C. (1989). The Latitudinal Gradient in Geographical Range - How So Many Species Coexist in the Tropics. American Naturalist, 133(2), 240-256. doi:Doi 10.1086/284913
Syariz, M. A., Lin, B. Y., Denaro, L. G., Jaelani, L. M., Nguyen, M. V., & Lin, C. H. (2019). Spectral-consistent relative radiometric normalization for multitemporal Landsat 8 imagery. Isprs Journal of Photogrammetry and Remote Sensing, 147, 56-64. https://doi.org/10.1016/j.isprsjprs.2018.11.007
Tucker, C. J. (1979). Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment, 8(2), 127-150. doi:Doi 10.1016/0034-4257(79)90013-0
Van Schaik, C. P., & Brockman, D. K. (2005). Seasonality in primate ecology, reproduction, and life history: An overview. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates (pp. 3–20). Cambridge: Cambridge University Press.
Yang, X. J., & Lo, C. P. (2000). Relative radiometric normalization performance for change detection from multi-date satellite images. Photogrammetric Engineering and Remote Sensing, 66(8), 967-980.
Ye, W. T., van Dijk, A. I. J. M., Huete, A., & Yebra, M. (2021). Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. International Journal of Applied Earth Observation and Geoinformation, 94. ARTN 102238. doi:10.1016/j.jag.2020.102238
Yuan, D., & Elvidge, C. D. (1996). Comparison of relative radiometric normalization techniques. Isprs Journal of Photogrammetry and Remote Sensing, 51(3), 117-126. doi:Doi 10.1016/0924-2716(96)00018-4
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87335-
dc.description.abstract受限於技術和成本,具有良好空間解析度的陸地觀測衛星傳感器往往具有較低的時間解析度,因此在實際應用中需要不斷在空間和時間解析度間權衡,這種權衡在熱帶地區的研究中尤其具有挑戰性。濕潤季節頻繁的雲層增加了清晰影像的獲取難度。商業衛星儘管具有高性能,但其成本過高難以進行實際應用。如今以小衛星為代表的廉價商業衛星得到了發展,其中以Planet公司的產品作為代表。小衛星通過削減單個衛星的成本實現更密集的發射,並以星座組網的方式改善觀測模式,在空間解析度及獲取清晰影像能力上存在優勢。但小衛星資料質量尚未得到有效檢驗。現在來自挪威的環保組織NICFI與Planet開展了合作項目,提供了免費的熱帶地區Planet影像(Planet NICFI),藉此機會我們檢視了Planet NICFI的資料質量,以經過嚴格輻射校正的傳統衛星Landsat 8/9 OLI作為參照,發現Planet NICFI反映光譜變化能力有限,不能有效檢測乾燥季節植被生長差異。我們通過相對輻射校正(relative radiometric calibration, RRC )的方法嘗試改善Planet NICFI資料的輻射質量,以Landsat 8/9 OLI作為參考,增強不同波段間兩源影像的反射率一致性。本研究選取三種RRC方法進行對比,分別為基於非線性原理的直方圖匹配法(histogram matching, HM)、基於線性原理的MAD法(multivariate alternation detection)與IR-MAD法(iteration re-weighted MAD)。處理結果顯示,三種方法在操作穩定性上存在差異:HM法受限於參考影像質量,在濕潤季節效果不好。MAD法在濕潤季節檢測噪聲能力不足,而IR-MAD法在濕潤季節也可正常開展,取得了較好效果。經過RRC校正後Planet NICFI在保持高空間解析度與無雲的優勢的同時提高了光譜季節性差異。該結果為在熱帶乾燥林進行低成本與高空間解析度的大範圍植被生長監測提供了參考。zh_TW
dc.description.abstractEarth observation satellite with fine spatial resolution often has a low temporal resolution mainly due to technical limitations. The trade-off between spatial and temporal resolutions is particularly crucial in the tropics, for the more frequently cloud cover impedes optical satellite remote sensing instruments from obtaining cloud-free imagery. Commercial satellites may overcome the above issue, but the data may be costly. An alternative and cost-effective observation strategy based upon SmallSat has recently become an operational reality. SmallSats, represented by Planet’s products, achieve more intensive launches by reducing the cost of a single satellite, and improve the revisiting time through satellites constellations, which lead to its advantages in high spatial resolution and stronger ability to obtain clear images. Planet, through Norway’s International Climate and Forest Initiative (NICFI), now open free access to analysis-ready basemaps over the tropics, which shows a high potential in the field of vegetation metabolism monitoring. However, the radiometric data quality of SmallSat is not equivalent to a rigorously calibrated satellite such as Landsat 8. We tested the data quality of Planet NICFI by using Landsat 8/9 OLI as the reference images, and found that Planet NICFI has limited ability to reflect vegetation spectral changes in tropical dry forests (TDF), especially during the dry seasons. Therefore, we attempted to improve the radiometric quality of Planet NICFI by using relative radiometric calibration (RRC).We using Landsat 8/9 OLI as a reference data to enhance the consistency in surface reflectance of the two images. Three RRC methods were selected for comparison, namely histogram matching (HM) based on the nonlinear assumption, multivariate alternation detection (MAD) and iteration re-weighted MAD (IR-MAD) based on the linear assumption. The result showed that HM cannot be implemented when the images are contaminated by clouds , while MAD and IR-MAD are more generally available, for they can detect cloud-free pixels automatically and enhance the background no-change area. IR-MAD is more effective in removing noise and therefore can also operate normally in wet season. The calibrated data showed improvement in seasonal variation of spectral and has higher spatial details with clear boundary information compared to the reference Landsat 8/9 OLI imagery. Our findings provide a foundation for cost-effective and accurate high spatial resolution vegetation phenology monitoring in TDF.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:08:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T17:08:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的和技術路線 6
第二章 文獻回顧 8
2.1 陸地植物生長的季節性特徵及其觀測方法 8
2.2 衛星技術研究發展 9
2.2.1 傳統衛星技術進展與局限 9
2.2.2 小衛星技術進展與局限 10
2.2.3 立方衛星與Planet公司 13
2.2.4 Planet NICFI項目 14
2.3 影像相對輻射校正技術研究進展 15
第三章 資料來源及研究方法 21
3.1 研究對象介紹 21
3.1.1 熱帶地區植被組成及熱帶乾燥林的概念 21
3.1.2 研究區選取原則 23
3.2 資料收集及處理 26
3.2.1 Planet NICFI衛星影像 26
3.2.2 Landsat衛星影像 29
3.2.3 WorldView-2衛星影像 31
3.3 方法原理 32
3.3.1 直方圖匹配法 32
3.3.2 MAD法 33
3.3.3 IR-MAD法 36
3.3.4 歸一化植被指數NDVI 37
3.3.5 均方根誤差RMSE 38
第四章 實驗與分析 39
4.1 三種方法實驗與結果 39
4.1.1 基於分佈:直方圖匹配法 39
4.1.2 基於像元:MAD法與IR-MAD法 41
4.1.3 三種相對輻射校正效果對比與評價 50
4.2相對輻射校正後Planet NICFI反映的季節變化 55
4.2.1 整體區域光譜季節變化趨勢 55
4.2.2 特定像元光譜曲線變化趨勢 59
第五章 結論與討論 61
參考文獻 64
-
dc.language.isozh_TW-
dc.title運用相對輻射校正增強小衛星Planet NICFI偵測熱帶乾燥林植被季節性能力zh_TW
dc.titleRelative radiometric calibration of SmallSat Planet NICFI imagery improves detection of seasonality in tropical dry foresten
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee溫在弘;莊昀叡;鍾智昕zh_TW
dc.contributor.oralexamcommitteeTzai-Hung Wen;Yun-Ruei Chuang;Chih-Hsin Chungen
dc.subject.keyword熱帶乾燥林,植被季節性,相對輻射校正,Planet NICFI,Landsat 8/9 OLI,直方圖匹配,MAD,IR-MAD,zh_TW
dc.subject.keywordtropical dry forest,vegetation seasonality,relative radiometric calibration,Planet NICFI,Landsat 8/9 OLI,histogram matching,MAD,IR-MAD,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202300437-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-02-17-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
dc.date.embargo-lift2025-02-15-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved